汽油加氢脱硫技术研究及展望
催化裂化汽油加氢脱硫技术及工艺流程分析

催化裂化汽油加氢脱硫技术及工艺流程分析摘要:经济与社会不断发展、进步,人们生活水平不断提升,我国机动车数量也在快速攀升,与此同时,由机动车尾气排放对环境造成的污染也越来越明显,因此对催化裂化汽油加氢脱硫技术进行研究极具现实意义。
基于此,文章对汽油燃烧排放的硫化物种类及其危害进行了阐述,分析了催化加氢脱硫(HDS)反应原理,并对催化裂化汽油加氢脱硫技术及其工艺流程进行可分析,以期能够为提升汽油脱硫处理质量提供有效参考。
关键词:催化裂化;汽油;加氢脱硫;应用低硫含量是当前世界车用汽油应用发展的主要趋势之一。
对于我国的车用汽油而言,其四分之三以上是催化裂化汽油,也称为FCC汽油。
然而,FCC汽油具备烯烃、硫含量较高,安定性不高的缺陷,对车用汽油指标造成不良影响,此类汽车用油的污染物排放标准难以达到国际先进标准,甚至与国内最新的机动车污染物排放指标相去甚远。
虽说汽油中硫化物含量值不是最高,但是其产生的危害却极大。
一方面,硫化物燃烧生成物主要是SOx的形式,也是引发酸雨的主要因素,而且SOx排放过大也会刺激NO,、CO这些有毒有害气体的生产与排放。
另一方面,硫化物还会使汽油燃烧时还会导致汽车尾气转化器催化剂失效,NO、SOx、CO等有害气体的排放量进一步增加,降低城市空气质量。
除此之外,硫化物也会对金属设备产生一定程度腐蚀危害,影响汽油泵等相关部件的使用寿命,提高了事故概率。
一、催化加氢脱硫(HDS)反应原理分析HDS反应原理,主要是利用在石油中加氢使得含硫化合物氢解形成相应的烃合物与H2S,进而脱去石油中的硫原子,其过程中C—S键的断裂与相应断裂物的饱和是最为基本的化学反应。
例如噻吩和苯并噻吩的HDS过程通常包含了加氢与裂解两途径。
通过加氢使噻吩环双键饱和接着开环脱硫形成烷烃,再通过裂解反应使开环脱硫形成丁二烯,丁二烯在氢环境中饱和。
噻吩经过加氢脱硫处理后主要产生丁二烯、丁烯,丁烷、C2、C3产物则少得多。
汽油脱硫技术

汽油脱硫技术摘要:我国成品汽油中90%以上的含硫化合物来自催化裂化汽油,降低成品油中硫含量的关键是降低FCC汽油的硫含量。
本文主要综述了FCC汽油脱硫技术的优缺点。
关键词:催化裂化;汽油;脱硫技术前言据统计,我国车用汽油中90%的硫来自催化裂化。
而催化裂化汽油中的硫化物存在形式以硫醇、硫醚、二硫化物和噻吩类硫化物为主,其中噻吩类硫的含量占总硫含量的60%以上,而硫醚硫和噻吩硫的含量占总硫的85%以上。
因此,催化汽油脱硫过程中如何促进噻吩类和硫醚类化合物的转化是降低催化汽油硫含量的关键。
围绕低硫和超低硫油品的生产,开发出了许多相关的脱硫技术,目前相关的脱硫技术大体上可以分为两类:加氢脱硫和非加氢脱硫。
加氢脱硫技术主要包括催化裂化进料加氢脱硫技术、选择性加氢脱硫技术、非选择性加氢脱硫技术和催化蒸馏加氢脱硫技术;非加氢脱硫技术主要包括吸附脱硫、氧化脱硫和生物脱硫以及添加剂技术等。
1. 加氢脱硫技术1.1 FCC原料加氢预处理脱硫技术是通过对FCC原料油加氢处理来降低FCC汽油硫含量,可将FCC原料硫含量降至0.2%以下,从而使FCC汽油硫含量降到200μg/g。
对催化裂化原料油进行加氢处理,可以同时降低催化裂化汽油和馏分油的硫含量,可以显著地改善产品的产率和质量。
但投资高(FCC原料加氢预处理所需投资为其他方法的4~5倍),要消耗氢气,操作费用高,且难以满足硫含量小于30μg/g的要求。
1.2 FCC过程直接脱硫技术该技术是在FCC过程中使用具有降低硫含量的催化剂和助剂以及其他工艺新技术,从而在催化裂化反应过程中直接达到降硫的目的。
该类技术的特点是使用方便、不需增加投资和操作费用,缺点是脱硫效果差。
1.3 FCC汽油加氢处理①催化裂化汽油全馏分加氢精制,可以将催化裂化汽油中的硫含量降到50μg/g,但是由于轻汽油馏分中的烯烃得以饱和,汽油辛烷值RON要损失较多;②催化裂化汽油重馏分加氢精制,只对催化裂化汽油重馏分进行加氢精制,可避免轻汽油馏分中烯烃得以饱和,使辛烷值损失较少;③两段反应工艺,为了克服FCC汽油加氢的缺点,采用两段反应器工艺,第一段为加氢处理,第二段为异构化,但它同时也增加了投资和操作的费用。
石油化工厂里的工艺-催化汽油选择性加氢脱硫醇技术

催化汽油选择性加氢脱硫醇技术(RSDS技术)
催化汽油加氢脱硫醇装置的主要目的是拖出催化汽油中的硫含量,目前我国大部分地区汽油执行国三标准,硫含量要求小于150ppm,烯烃含量不大于30%,苯含量小于1%。
在汽油加氢脱硫的过程中,烯烃极易饱和,辛烷值损失较大,针对这一问题,石科院开发了RSDS技术。
本技术的关键是将催化汽油轻重组分进行分离,重组分进行加氢脱硫,轻组分碱洗脱硫。
采取轻重组分分离的理论基础是,轻组分中烯烃含量高,可达到50%以上,通过直接碱洗,辛烷值几乎不损失。
而重组分中烯烃大多是环烯烃,经过加氢后变为环烷烃,辛烷值几乎不损失,导致重组分加氢辛烷值损失的是C7以上单烯烃和双烯烃饱和,但以上两种物质所占比例较小,正常情况下重组分加氢后辛烷值损失在1.5以内。
RSDS技术的另一个优点是设立了两个反应器,第一个反应器在低温高空速下操作,目的是将二烯烃饱和成单烯烃,防止在高温反应条件下二烯烃聚合生胶,可以延长装置运转周期。
60万吨汽油选择性加氢
P7202E7204E7204E7207。
催化汽油加氢脱硫技术简介

催化汽油加氢脱硫技术简介催化汽油加氢脱硫技术简介摘要:本文介绍了国内外催化汽油加氢脱硫技术的工艺以及工业进展情况,并针对国内催化汽油的特点,对我国的加氢脱硫技术提出了建议。
关键词:催化汽油加氢脱硫工艺特点Technology progress of FCC gasoline hydrodesulphurization Abstract: The main purpose of this article is to introduce different technological features of FCC gasoline hydrodesulphurization technology both at home and abroad, and put forward proposal for domestic development.Key words: FCC gasoline; hydrodesulfurization; technological features汽油低硫化是一种发展趋势,限制硫含量是生产清洁燃料和控制汽油排放污染最有效的方法之一。
目前我国成品汽油的主要调和组分有催化裂化汽油、催化重整汽油、烷基化汽油、异构化汽油等,其中的催化裂化汽油占我国成品汽油的80%以上,因此,如何有效地控制催化汽油的硫含量是控制成品汽油硫含量的关键。
与国外汽油相比,我国的催化裂化汽油基本呈现两高两低的特点(高硫高烯烃,低芳烃低辛烷值),由于烯烃是辛烷值比较高的组分,因此如何在脱硫的同时尽量保持烯烃不被饱和,就成了催化汽油加氢脱硫的研究重点。
以下便是对国内外的几家选择性加氢脱硫技术的简要介绍。
1.Prime G+技术:AXENS的Prime-G+是在Prime-G的基础上发展起来的,采用固定床双催化剂的加氢脱硫技术。
该技术能够在保证脱硫的同时尽量减少烯烃的饱和。
其工艺流程包括:全馏分选择性加氢(SHU)及分馏,重汽油选择性加氢脱硫(HDS)。
催化裂化汽油选择性加氢脱硫催化剂的研究的开题报告

催化裂化汽油选择性加氢脱硫催化剂的研究的开题报告
【开题报告】
催化裂化汽油选择性加氢脱硫催化剂的研究
一、选题背景
随着油品需求的不断增长和对环境保护意识的不断提高,催化裂化汽油的脱硫和加氢
处理技术逐渐成为炼油行业的关注领域。
其中,选择性加氢脱硫催化剂是催化裂化汽
油脱硫和加氢处理的核心催化剂之一,其性能的优劣直接影响到产品质量、工业生产
效率和经济效益。
因此,开展催化裂化汽油选择性加氢脱硫催化剂的研究具有十分重
要的现实意义。
二、研究内容
本次研究将以催化裂化汽油为研究对象,通过合成出一系列的催化剂,对比分析不同
催化剂的物化性质、表面结构、红外光谱、X射线衍射等技术手段,明确选择性加氢
脱硫催化剂的催化活性和选择性。
并通过模拟建模和反应动力学模型的构建,对反应
过程的关键参数进行优化和调控,探究催化剂的结构-性能关系。
三、研究目标
本次研究的主要目标为:
1. 合成出一系列具有不同物化性质的催化剂,通过 X射线衍射等技术手段进行表征。
2. 研究不同催化剂的催化活性和选择性,分析其结构-性能关系。
3. 结合模拟建模及反应动力学模型构建,对催化剂的结构和反应参数进行优化和调控。
四、研究意义
本次研究将有助于:
1. 提高催化裂化汽油选择性加氢脱硫催化剂的催化效率和产品质量,提高炼油行业生
产效率和经济效益。
2. 丰富催化剂的结构和性能研究,为相关领域的科学研究提供参考和借鉴。
3. 为催化裂化汽油脱硫和加氢处理技术的发展提供新的思路和方向,推动其实现产业
化应用。
催化汽油加氢脱硫工艺技术现状及节能措施分析

催化汽油加氢脱硫工艺技术现状及节能措施分析发布时间:2021-07-12T02:30:59.893Z 来源:《中国科技人才》2021年第11期作者:张黛楠[导读] 汽油生产行业在我国社会发展过程中占据着非常重要的地位,并且与人们的日常生活有着紧密的联系,不过该行业在生产过程中会存在含硫量比较大的问题,这种问题会导致汽油在燃烧过程中会对自然环境带来较大程度的污染。
大庆石化公司炼油厂黑龙江省大庆市 163000摘要:在我国社会快速发展的今天,各个领域在实际发展生产过程中对环境的保护意识也在不断的提高,并且对内部的相关工作进行了不断的改进和完善。
就从目前情况看来,汽油生产行业在实际生产过程中会涉及到很多方面,这些方面会对自然环境带来一定程度的污染和破坏,为了能够达到预期的环保效果,相关企业要对脱硫工艺技术予以足够重视,并且还要对脱硫工艺技术进行不断的更新,这样才可以降低汽油当中的含硫量。
关键词:催化汽油;加氢脱硫;工艺技术;节能前言:汽油生产行业在我国社会发展过程中占据着非常重要的地位,并且与人们的日常生活有着紧密的联系,不过该行业在生产过程中会存在含硫量比较大的问题,这种问题会导致汽油在燃烧过程中会对自然环境带来较大程度的污染。
为了能够进一步提高汽油脱硫的效果,炼油化工企业要对催化汽油加氢脱硫技术进行充分的分析,并且结合实际情况来对其进行充分应用,这样才可以促进炼油化工企业的进一步发展。
一、催化汽油加氢脱硫工艺技术现状(一)催化汽油加氢脱硫工艺现状在经济全球化的影响下,世界各国在实际发展过程中对环境问题越来越重视,并且对各方面的发展也提出了更高的要求。
在日常生活和工作过程中最为重要的一种能源就是汽油,在通常的情况下,汽油是经过催化裂化而产生的,在这个过程中会含有较多的含硫物质,进而在汽油燃烧的时候就会出现大量的污染物,自然环境因此而受到污染。
然而,加氢脱硫技术的主要原理就是在汽油催化过程中选择性加氢脱硫,进而汽油当中烯烃含量得到进一步降低,并且辛烷值也会得到有效的恢复。
加氢脱硫技术
加氢脱硫技术毕业论文摘要加氢脱硫(HDS)技术是现在公认的最有效,最经济的的脱硫方法,而加氢脱硫技术的关键是加氢脱硫催化剂的选择。
目前加氢脱硫催化剂的一般组成为Co-Mo/Al2O3,即将氧化钴和氧化钼负载在活性氧化铝上。
这类加氢脱硫催化剂是以Mo的硫化物作为活性组分,以Co的硫化物为助催化剂,以Al2O3为载体所组成的。
当金属单独存在时催化活性并不高,只有二者同时存在时,才具有良好的催化活性。
在Co-Mo体系中,Co的加入不但对加氢脱硫反应起着促进作用,而且对异构烯烃的加氢还有轻微的抑制作用,相比之下正构烯烃的加氢饱和受到Co的抑制作用更强,因此能达到更好的加氢脱硫的目的。
本文使用智能重量分析仪(Intelligent Gravimetric Analyser)测得了不同温度下的异戊二烯(Isoprene)、1-戊烯(1-Pentene)及噻吩(Thiophene)在CoMo/γ-Al2O3选择性加氢脱硫催化剂上的吸附-脱附等温线及程序升温脱附曲线(DTG)并研究了其扩散性能。
结果表明:不同吸附质在CoMo/γ-Al2O3选择性加氢脱硫催化剂上的饱和吸附量由大到小的顺序为:噻吩>异戊二烯>1-戊烯;程序升温脱附曲线(DTG)显示噻吩与该催化剂存在两种吸附作用,即物理吸附和化学吸附,化学吸附形成Co-Mo-S相,可有效的提高加氢脱硫催化剂的选择性,而1-戊烯和异戊二烯在该催化剂上只存在一种弱吸附作用。
动力学结果表明三种不同吸附质的相对扩散系数大小顺序为1-戊烯>噻吩≈异戊二烯。
关键字:CoMo/γ-Al2O3;噻吩;1-戊烯;异戊二烯;吸附扩散AbstractAt present the most effective and economical desulfurization method is the hydrodesulfurization (HDS) technology and the key to hydrodesulfurization technology is the hydrodesulfurization catalysts. Now the general composition of the hydrodesulfurization catalyst is Co-Mo/Al2O3, which was prepared by loading cobalt oxide and molybdenum oxide in alumina. This kind of hydrodesulfurization catalyst use Mo-sulfide as active component, Co-sulfide as promotor catalyst, and Al2O3as the support. The catalytic activity is not high if only one metal active compound exist, but this catalyst showed a good catalytic activity when two active components (Co, Mo) were loaded. In the Co-Mo system, Co is not only promoting the hydrodesulfurization reaction, but also inhibiting the hydrogenation of heterogeneous olefins mildly, at the same time, the hydrogenation saturation of olefins is strongly inhibited by the influence of the Co, which can induce to a better hydrodesulfurization performance.An adsorption-desorption isotherms and temperature-programmed desorption curves of thiophene, 1-pentene and isoprene along with the diffusion coefficients on selective hydrodesulfurization c atalyst CoMo/γ-Al2O3were determined by an intelligent gravimetric analyzer (IGA) at different temperatures. The results indicated that: the order of saturated adsorption capacity of thiophene, 1-pentene and isoprene on CoMo/γ-Al2O3 is in: thiophene > isoprene > 1-pentene. The temperature programmed desorption curves of thiophene show that there were two kinds of adsorption, i.e. physical and chemical, and the phase of Co-Mo-S formed by chemical adsorption interaction, can effectively improve the selectivity of CoMo/γ-Al2O3catalysts. While for 1-pentene and isoprene, there was only one weak adsorption between adsorbent and catalyst. Kinetic results show that the relative diffusion coefficient on Co Mo/γ-Al2O3in the order of 1-pentene >thiophene ≈ isoprene.Key word: CoMo/γ-Al2O3; Thiophene ; 1-Pentene; Isoprene ; Adsorption and Diffusion目录前言 (1)1文献综述 (3)1.1 引言 (3)1.2 加氢脱硫技术 (4)1.2.1 加氢脱硫技术的发展现状 (4)1.2.2 加氢脱硫技术的不足 (5)1.2.3 加氢脱硫催化剂 ............................. 错误!未定义书签。
FCC汽油加氢脱硫提高辛烷值技术研究进展
摘要 : 综述了国内外 F C C 汽油加氢脱硫提高辛烷值工艺技术的研究进展 。该工艺技术的核心是处 理元素硫、 烯烃及辛烷值之间的关系 , 文中对脱硫保烯烃和脱硫降烯烃 2 方面进行了分析 , 同时对 该工艺技术的发展方向进行 了展望。 关键词 : F C C 汽油 ; 加氢脱硫 ; 辛烷值 ; 加氢精制 中图分类号 : T E 6 2 4 . 4 文献标识码 : B 文章编号 : 1 6 7 1 — 4 9 6 2 ( 2 0 1 3 ) 0 4 — 0 0 0 1 — 0 3
硫工艺对F C C重汽 油 馏分 进 行加 氢 脱 硫 。 目前 国 内外 典 型 的脱 硫 、 保 持 烯 烃 的选 择 性 加 氢 工 艺 主 要有 : S C A N i t n g工 艺 、 P r i me — G、 P r i m e — G 工 艺 和
OC T — M技术 等 。
硫的研究及工业技术主要是选择性加氢脱硫技术 和加 氢脱 硫保 辛 烷 值技 术 … 。针 对 我 国 F C C汽 油 硫高 、 烯烃高及辛烷值组分不足的实 际情况 , 从长 远 发 展 来 看 加 氢 脱 硫 保 辛 烷 值 技 术 更 有 发 展 前
景。
低硫含量 的同时尽量保持辛烷值 。P i r m e — G 工艺
S C AN i f n i n g 工 艺 最 早 的 工 业 应 用 对 象 是 馏 程 为
1 0 4 ~ 2 2 1 ℃ 的重 F C C汽 油 馏 分 。 当 S C A N i f n i n g 工
艺用于处理 F C C汽 油 中 间馏 分 时 , 装 置可 以保 持
8 0 %的脱硫率和 1 0 %~ 2 0 %的烯烃饱和率 。第 l 代 S C A N f i n i n g 过程 能 够 满 足 车用 汽 油硫 含 量低 于 1 0
汽油脱硫的方法与优缺点概述
汽油脱硫的方法与优缺点概述汽油脱硫的方法与优缺点概述摘要:国内外对汽油硫含量的限制日趋严格,如何高效深度脱硫又能保持辛烷值是当下研究热点。
本文对国内外几种典型的加氢脱硫、加氢脱硫-辛烷值恢复及选择性吸附脱硫工艺技术特点及发展现状进行了概述,并对今后脱硫的发展方向进行了预测。
关键词:汽油;脱硫;加氢;吸附;辛烷值恢复Discussion on Desulfurization Technology of Gasoline and Its Advantages and DisadvantagesAbstract: Due to strict regulations for sulfur content in gasoline, how to desulfurize deeply and maintain OCT. number becomes the hot spot of research. The research progress of typical selective hydrodesulfurization progress and hydrodesulfurization-octane recovery and adsorption desulfurization process at home and abroad were reviewed. Finally, the expectation in respect of gasoline deep desulfurization in the future was put forward.Key Words: Gasoline;Desulfurization;Hydrogenation; Adsorption; Octane recovery1. 引言汽油中含硫化物的燃烧会对大气造成污染,其产生的二氧化硫便是大气主要污染物之一,尾气中的硫化物也是PM2.5的组成之一。
FCC汽油选择性深度加氢脱硫工艺研究进展
近年来 , 随着人们对于化石燃料的需求和环保 法 规 的 日益 严 格 , 对 于油品 , 特别 是 汽 油 中硫 含 量
提 出 了越来 越严 格 的 限制 。美 国 T i e r I I 规 范要 求从 2 0 0 6年起 汽 油 中硫含 量要 小 于 3 0 g ・ g - ; 多数 欧 洲 国 家 2 0 0 5年 就 执 行 了 欧 I V 排 放 标 准 ( E N 2 2 8 — 2 o o 4 ) , 要求汽油硫含量小于 5 0 g ・ g - X , 欧 盟 要求 2 0 0 9年 汽油 硫含 量小 于 1 O g ・ 。 在我国,
辛烷值损失小的 F C C汽油选择性 深度加氢脱硫新 工艺 , 如: O C T — M 系列 、 R S D S系 列 、 F R S工 艺 、 C D O S 工艺 、 C D T E C H系 列 、 P r i m e — G系列 以及 S C A N i f n i n g
系 列等 。
t e r i s t i c s a n d印p l i c a t i o n s we r e a l s o p o i n t e d o u t . Ke y wo r d s : F CC n a p h t h a; s e l e c t i v e d e e p h y d r o d e s u i f u r i z a t i o n; p r o c e s s ; p og r r e s s
1 O g ‘ g - ) [ 1 1 。
烃集 中在轻馏分 ( L C N) 的分布特点 , 以9 0 ℃为切割 点, 将F C C汽油 分 馏 为 HC N和 L C N, 其 中: H C N加 氢脱 硫 , 然后 再与 L C N混 合后 进行 脱 硫 醇处 理 的一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽油加氢脱硫技术研究及展望
摘要:随着人们对生存环境的日益重视,环境保护法的日益严格,对车用燃料的质量提出了更高的要求,生产低硫、低芳烃、低密度、高十六烷值的清洁柴油是今后世界范围内的柴油生产的总趋势,为适应未来清洁柴油生产需求,国内外科研机构及企业,创新并开发出一些先进技术以满足生产清洁柴油的需求。
汽车尾气造成的大气污染问题已引起人们的密切关注,降低汽油硫含量是改善空气质量的有效手段,采用有效的技术手段降低催化裂化(FCC)汽油硫含量已成为当务之急。
本文介绍了催化裂化原料加氢预处理、催化裂化过程直接脱硫和催化裂化汽油精制脱硫三种FCC汽油脱硫技术。
关键词:催化裂化汽油脱硫技术清洁汽油
随着世界范围内经济的快速发展,车用汽油的消耗量与日俱增,由于人们对环保要求的不断提高,汽车尾气造成的大气污染问题已引起人们的密切关注。
汽车尾气排放达标的关键在于提高车用燃料油的质量,因此欧美相继颁布了汽车尾气排放标准,限制汽车尾气中CO、SOx、NOX颗粒物和炭烟等有害污染物的含量。
我国也已从2010年1月1日起在全国范围内启动“国Ⅲ”标准,硫含量要求降至150μg/g以下。
据调查,我国成品汽油中90%以上的硫来自于催化裂化(FCC)汽油馏分,而西方国家成品汽油中FCC汽油的比例低于30%。
随着石油加工原料的日益重质化和劣质化,FCC汽油硫含量也将进一步升高。
因此,迫切需要对FCC汽油馏分进行处理,深度脱除其中的硫化物,以得到符合清洁燃料标准的成品汽油,开发相应的催化裂化新技术、新工艺也成为研究者和使用者普遍关注的问题。
一、催化裂化汽油中的含硫化合物的分布
确定催化裂化汽油中含硫化合物的类型、含量以及分布情况是催化裂化汽油脱硫技术研究的出发点。
国内外关于降低催化裂化汽油中含硫化合物的研究普遍认为,催化裂化汽油中的含硫化合物主要以噻吩和噻吩衍生物的形式存在,一般约占含硫化合物总量的70%以上,这类含硫化合物在催化裂化反应条件下比较稳定,很难裂化。
因此,减少噻吩类含硫化合物是降低FCC汽油硫含量的关键。
二、催化裂化汽油脱硫技术的研究进展
加氢催化剂的预硫化按照载硫的方式可分为器内预硫化和器外预硫化。
器内预硫化是在催化剂装入反应器之后再进行预硫化处理。
器内预硫化又分两种方式:一种是在氢气存在下直接使用一定浓度的硫化氢或在循环气中注入二硫化碳或其它有机硫化物进行硫化,称为干法预硫化;另一种是在氢气存在下,用含硫化合物(二硫化碳、二甲基二硫等)的烃类或馏分油在液相或半液相状态下进行硫化,称为湿法预硫化。
器外预硫化技术是将新鲜或再生的氧化态催化剂在装入加氢装置之前进行预硫化处理的工艺方法。
采用特殊的工艺过程,将硫化剂提前引入催化剂孔道内,或以某种硫化物的形式与催化剂的活性金属组分相结合,将氧化态催化剂转变为器外预硫化催化剂,装填后无需引入硫化剂,以缩短开工时
1.催化裂化原料加氢预处理
催化裂化原料加氢预处理可以从根本上解决汽油硫含量问题,同时可以提高催化裂化装置的轻质油收率,降低生焦率。
但该方案需要新建高压装置并在高苛刻条件下操作,因此操作费用、投资费用高(FCC原料加氢预处理所需投资为其他方法的4~5倍),且难以满足硫含量小于30μg/g的要求。
因此尽管催化裂化原料加氢预处理是生产清洁燃料最有效的方案,但是若只采用对FCC原料进行脱硫的方法很难生产超低硫汽油,同时由于需要较高的设备投资目前仍少采用。
2.催化裂化过程直接脱硫
催化裂化过程直接脱硫的方法是利用催化剂、助剂和工艺方面的新技术,从而在催化裂化反应过程中直接达到降硫的目的。
由于该方法具有投资少、操作灵活、在炼油厂容易实现等优势,近年来受到了国内外业内人士的普遍重视。
3.催化裂化汽油精制脱硫
催化裂化汽油精制脱硫的研究是目前最活跃的领域之一。
由于常规的后加氢处理工艺即直接对FCC汽油进行加氢处理耗氢量高,辛烷值损失大,使得生产成本上升不能产生经济效益。
因此此法曾经只是产品质量升级的补救措施。
但是世界上许多公司都已针对催化裂化汽油开发出各具特色的脱硫工艺。
这些工艺根据其采用的脱硫技术主要包括加氢脱硫、吸附脱硫、溶剂萃取脱硫、生物脱硫、氧化脱硫、膜分离脱硫等。
1) 加氢脱硫
传统的FCC汽油加氢脱硫技术同时脱除汽油中硫化物以及汽油中的高辛烷值组分,造成汽油辛烷值损失。
因此,目前具有较高脱硫活性、对汽油辛烷值影响较小的加氢脱硫技术主要包括选择性加氢脱硫和加氢脱硫辛烷值恢复技术。
2) 吸附脱硫
吸附脱硫技术的优点是脱硫效果好、不降低汽油的辛烷值,同时操作条件温和、投资和操作费用低,环境污染少。
目前吸附脱硫技术的工业化仍存在一定问题。
其关键在于提高其脱硫的选择性、吸附容量并开发出经济的吸附剂再生方法。
3) 溶剂萃取脱硫
溶剂萃取脱硫技术在常温常压下操作、溶剂可循环使用且不改变油品的化学成分,因此该工艺简单,能耗低。
由于一般物理萃取的效率都比较低,难以达到深度脱硫的目的,因此溶剂萃取脱硫技术成功应用的关键在于高效萃取剂的选
4) 生物脱硫
生物脱硫技术是一种可脱除汽油中的有机硫化物的新型环保脱硫技术。
该技术具有投资和操作费用低、能耗小、低温低压操作、不需要H2等优点,同时生物脱硫技术也是传统加氢脱硫后深度脱硫的有效途径。
5)目前柴油脱硫
中国石油和中国石油大学合作开发出了PHF-101新型柴油加氢精制催化剂,该催化剂具有优异的加氢脱硫、脱氮和芳烃加氢活性,特别适合于劣质柴油(催化、焦化柴油)的深度加氢精制,自2008年成功开发出PHF-101催化剂以来,催化剂分别于2010年9月和2011年11月在大庆石化120万吨/年柴油加氢精制装置和乌鲁木齐石化200万吨/年柴油加氢精制装置成功进行工业应用。
PHF-101催化剂是中国石油自主开发的第一个满足国Ⅳ、国Ⅴ标准清洁柴油生产的加氢精制催化剂,该催化剂可以满足直馏柴油、催化裂化柴油、焦化柴油或汽柴油混合油加氢生产国Ⅳ、国Ⅴ标准清洁柴油的生产需要。
与国内外同类型柴油加氢催化剂相比,PHF-101催化剂具有原料适应性强、活性稳定性好、处理量大、抗结焦能力强、装填密度低的特点。
6) 膜分离脱硫
膜分离脱硫工艺投资小、操作费用低、经济性好且对汽油的辛烷值无影响。
但由于受膜再生和膜成本的限制,膜脱硫过程目前尚未实现工业化应用。
三、小结
近年来,我国加工进口原油的比例逐年增加,其中中东高钒、高硫原油将成为我国主要进口的原油。
而由于FCC汽油中的硫化物占成品汽油中硫化物总量的85%以上,因此在原料变差变重而环保法规要求越来越高的情况之下,降低FCC汽油硫含量已成为当务之急.发展FCC汽油深度脱硫的节能技术、高效技术、绿色技术,对我们的社会和环境都有着十分重要的意义。
参考文献:
[1]山红红,李春义,赵博艺等.FCC汽油中硫分布和催化脱硫研究[J].石油大学学报(自然科学版),2001,25(6):78-80.
[2]陈俊武,卢捍卫.催化裂化在炼油厂中的地位和作用展望--催化裂化仍将发挥主要作用[J].石油学报(石油加工),2003,19(1):1-11.
[5]王宏伟,贺振富,田辉平等.FCC汽油非临氢脱硫技术进展[J].化工进展,2005,24(11):1216-1224.。