2018-2020年北京中考数学复习各地区模拟试题分类(12)——图形的变化及答案
北京市2020中考数学模拟试卷解析版

北京市2020中考数学模拟试卷一.选择题(每题2分,满分16分)1.﹣3的倒数是()A.﹣B.C.±3 D.32.电影《流浪地球》深受人们喜欢,截止到2019年2月17日,票房达到3650000000,则数据3650000000科学记数法表示为()A.0.365×1010B.36.5×108C.3.65×108D.3.65×1093.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.4.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A.15πcm2B.24πcm2C.39πcm2D.48πcm25.在一个有 10 万人的小镇,随机调查了 1000 人,其中有 120 人周六早上观看中央电视台的“朝闻天下”节目,那么在该镇随便问一个人,他在周六早上观看中央电视台的“朝闻天下”节目的概率大约是()A.B.C.D.6.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.=B.=+100C.=D.=﹣1007.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是() A .5,5B .5,6C .6,6D .6,58.已知:如图,点P 是正方形ABCD 的对角线AC 上的一个动点(A 、C 除外),作PE ⊥AB 于点E ,作PF ⊥BC于点F ,设正方形ABCD 的边长为x ,矩形PEBF 的周长为y ,在下列图象中,大致表示y 与x 之间的函数关系的是( )A .B .C .D .二.填空题(共8小题,满分16分,每小题2分) 9.如果在实数范围内有意义,则x 的取值范围是 .10.分解因式:a 3﹣a 2+a = . 11.化简÷= .12.如图,△ABC 中,点D 、E 分別在AB 、AC 上,DE ∥BC ,AD :DB =1:2,则△ADE 与△ABC 的面积的比为 .13.不等式组的解集为 .14.(2分)如图,OC 是⊙O 的半径,AB 是弦,OC ⊥AB ,点P 在⊙O 上,∠APC =23°,则∠AOB = .15.如图,已知抛物线y=x2﹣1与x轴正半轴交于C点,顶点为D点过O点任作直线交抛物线于A、B,过点B作BE⊥x轴于E,则OB﹣BE的值为.16.不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4,随机抽取一张卡片,则抽取的卡片上数字是偶数的概率是.三.解答题(共12小题,满分68分)17.(5分)计算:()﹣2﹣+(﹣4)0﹣cos45°.18.(5分)解方程:2x(x﹣y)+2xy=8.19.(5分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD =DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.20.(5分)如图,在平行四边形ABCD中,AM⊥BC,AN⊥CD,垂足分别为M.M,求证:△AMN ∽△DCA.21.(5分)已知关于x的二次方程x2+mx+n2+1=0.(1)若n=1,且此方程有一个根为﹣1,求m的值;(2)若m=2,判断此方程根的情况.22.(5分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.23.(6分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,AD=5,求OC的值.24.(6分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据:从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制如下:甲:78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙:93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40 整理、描述数据按如下(表格)分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70﹣79分为生产技能良好,60﹣69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下(表格)表所示:得出结论:(1)请补充表格1:a = ,b = . (2)估计乙部门生产技能优秀的员工人数为 ;(3)可以推断出 部门员工的生产技能水平较高,理由为:① ;② .(从两个不同的角度说明你推断的合理性)25.(6分)如图,AB 为⊙O 的直径,P 是BA 延长线上一点,CG 是⊙O 的弦∠PCA =∠ABC ,CG ⊥AB ,垂足为D(1)求证:PC 是⊙O 的切线; (2)求证:=;(3)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,连接BE ,若sin ∠P =,CF =5,求BE 的长.26.(6分)已知抛物线y =﹣x 2+bx +c 经过点A (3,0),B (﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.27.(7分)如图,已知△ABC,以A为圆心AB为半径作圆交AC于E,延长BA交圆A于D 连DE并延长交BC于F,CE2=CF•CB.(1)判断△ABC的形状,并证明你的结论;(2)如图1,若BE=CE=2,求⊙A的面积;(3)如图2,若tan∠CEF=,求cos∠C的值.28.(7分)如图,直线y=x+a与x轴交于点A(4,0),与y轴交于点B,抛物线y=x2+bx+c 经过点A,B.点M(m,0)为x轴上一动点,过点M且垂直于x轴的直线分别交直线AB 及抛物线于点P,N.(1)填空:点B的坐标为,抛物线的解析式为;(2)当点M在线段OA上运动时(不与点O,A重合),①当m为何值时,线段PN最大值,并求出PN的最大值;②求出使△BPN为直角三角形时m的值;(3)若抛物线上有且只有三个点N到直线AB的距离是h,请直接写出此时由点O,B,N,P构成的四边形的面积.参考答案一.选择题1.解:﹣3的倒数是﹣,故选:A.2.解:将3650000000用科学记数法表示为:3.65×109.故选:D.3.解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:A.4.解:这个圆锥的全面积=•2π•3•5+π•32=24π(cm2).故选:B.5.解:由题意知:1000人中有120人看中央电视台的早间新闻,∴在该镇随便问一人,他看早间新闻的概率大约是=.故选:C.6.解:设学校购买文学类图书平均每本书的价格是x元,可得:,故选:B.7.解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.8.解:由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选:A.二.填空题(共8小题,满分16分,每小题2分)9.解:∵在实数范围内有意义,∴x+8≥0,∴x的取值范围是x≥﹣8,故答案为:x≥﹣8.10.解:原式=a(a2﹣a+1),故答案为:a(a2﹣a+1)11.解:原式=÷=•(x+1)(x﹣1)=x+1,故答案为:x+1.12.解:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE :S△ABC=1:9.故答案为:1:9.13.解:解不等式8x>48,得:x>6,解不等式2(x+8)<34,得:x<9,则不等式组的解集为6<x<9,故答案为:6<x<9.14.解:∵OC是⊙O的半径,AB是弦,OC⊥AB,∴=,∴∠AOC=∠BOC,∵∠APC=23°,∴∠AOC=2∠APC=46°,∴∠BOC=46°,∴∠AOB=46°+46°=92°,故答案为:92°.15.解:设B(m, m2﹣1),则OB==+1.∵BE⊥x轴,∴BE=m2﹣1.∴OB﹣BE=2.故答案为2.16.解:∵有四张完全相同的卡片,把它们分别标上数字1、2、3、4,其中卡片上数字是偶数的有2张,∴抽取的卡片上数字是偶数的概率是=;故答案为:.三.解答题(共12小题,满分68分)17.解:原式=4﹣3+1﹣×=2﹣1=1.18.解:2x2﹣2xy+2xy=8,x2=8,x=±2,19.解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.20.解:∵AM⊥BC,AN⊥CD,∴∠AMC=∠ANC=90°,∴A ,M ,N ,C 四点共圆, ∴∠ACM =∠ANM ,∠MAN =∠MCN , ∵在平行四边形ABCD 中,AD ∥BC ,∴∠D =∠MCN ,∠DAC =∠ACM , ∴∠DAC =∠ANM ,∠D =∠MAN , ∴△AMN ∽△DCA .21.【解答】解:(1)将x =﹣1,n =1代入原方程,得:(﹣1)2﹣m +12+1=0, 解得:m =3.(2)当m =2时,原方程为x 2+2x +n 2+1=0, ∴△=22﹣4×1×(n 2+1)=﹣4n 2.当n =0时,△=﹣4n 2=0,此时原方程有两个相等的实数根; 当n ≠0时,△=﹣4n 2<0,此时原方程无解.22.解:(1)把A 点(1,4)分别代入反比例函数y =,一次函数y =x +b , 得k =1×4,1+b =4, 解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =的图象上, ∴n ==﹣1;(2)如图,设直线y =x +3与y 轴的交点为C , ∵当x =0时,y =3, ∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.23.(1)证明:连结DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线;(2)解:∵△COD≌△COB.∴CD=CB.∵DE=2BC,∴ED=2CD.∵AD∥OC,∴△EDA∽△ECO.∴,∵AD=5,∴OC=.24.解:(1)由题意知a=7、b=10,故答案为:7、10;(2)故估计乙部门生产技能优秀的员工人数为×400=240(人).故答案为:240;(3)可以推断出甲部门员工的生产技能水平较高,理由为:①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.25.解:(1)如图所示,连接OC,∵AB为⊙O的直径,∴∠ACB=90°,即∠ACO+∠OCB=90°,∵OB=OC,∴∠OCB=∠ABC,∴∠ACO+∠ABC=90°,∵∠PCA=∠ABC,∴∠PCA+∠ACO=90°,∴PC是⊙O的切线;(2)∵∠P=∠P,∠PCA=∠PBC,∴△PCA∽△PBC,∴=,∵CG⊥AB,∴∠ADC=∠ACB=90°,∵∠CAD=∠BAC,∴△ACD∽△ABC,∴=,∴=;(3)∵AE∥PC,∴∠PCA=∠CAF,∵AB⊥CG,∴=,∴∠ACF=∠ABC,∵∠PCA=∠ABC,∴∠ACF=∠CAF,∴FA=FC,∵CF=5,∴AF=5,∵AE∥PC,∴∠FAD=∠P,∵sin∠P=,∴sin∠FAD=,∴FD=3,AD=4,CD=8,在Rt△COD中,设CO=r,则有r2=(r﹣4)2+82∴r=10,∴AB=2r=20,∵AB是直径,∴∠AEB=90°,∴sin∠EAB=,∴=,∴=,∴EB=12.26.解:(1)∵抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).∴抛物线的解析式为:y=﹣(x﹣3)(x+1),即y=﹣x2+2x+3,(2)∵抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点坐标为:(1,4).27.解:(1)∵CE2=CF•CB,∴,∴△CEF∽△CBE,∴∠CBE=∠CEF,∵AE=AD,∴∠ADE=∠AED=∠FEC=∠CBE,∵BD为直径,∴∠ADE+∠ABE=90°,∴∠CBE+∠ABE=90°,∴∠DBC=90°∴△ABC为直角三角形.(2)∵BE=CE∴设∠EBC=∠ECB=x,∴∠BDE=∠EBC=x,∵AE=AD∴∠AED=∠ADE=x,∴∠CEF=∠AED=x∴∠BFE=2x在△BDF中由△内角和可知:3x=90°,∴x=30°,∴∠ABE=60°∴,∴⊙A的面积为(3)由(1)知:∠BDF=∠CEF=∠CBE,∵tan∠CBE=,设EF=a,BE=2a,∴,∴AD=AB=,∴DE=2BE=4a,过F作FK∥BD交CE于K,∴∵∴,∴∴∴28.解:(1)把点A坐标代入直线表达式y=x+a,解得:a=﹣3,则:直线表达式为:y═x﹣3,令x=0,则:y=﹣3,则点B坐标为(0,﹣3),将点B的坐标代入二次函数表达式得:c=﹣3,把点A的坐标代入二次函数表达式得:×16+4b﹣3=0,解得:b=﹣,故:抛物线的解析式为:y=x2﹣x﹣3,故:答案为:(0,﹣3),y=x2﹣x﹣3;(2)①∵M(m,0)在线段OA上,且MN⊥x轴,∴点P(m, m﹣3),N(m, m2﹣m﹣3),∴PN=m﹣3﹣(m2﹣m﹣3)=﹣(m﹣2)2+3,∵a=﹣<0,∴抛物线开口向下,∴当m=2时,PN有最大值是3,②当∠BNP=90°时,点N的纵坐标为﹣3,把y=﹣3代入抛物线的表达式得:﹣3=m2﹣m﹣3,解得:m=3或0(舍去m=0),∴m=3;当∠NBP=90°时,∵BN⊥AB,两直线垂直,其k值相乘为﹣1,设:直线BN的表达式为:y=﹣x+n,把点B的坐标代入上式,解得:n=﹣3,则:直线BN的表达式为:y=﹣x﹣3,将上式与抛物线的表达式联立并解得:m=或0(舍去m=0),当∠BPN=90°时,不合题意舍去,故:使△BPN为直角三角形时m的值为3或;(3)∵OA=4,OB=3,在Rt△AOB中,tanα=,则:cosα=,sinα=,∵PM∥y轴,∴∠BPN=∠ABO=α,若抛物线上有且只有三个点N到直线AB的距离是h,则只能出现:在AB直线下方抛物线与过点N的直线与抛物线有一个交点N,在直线AB 上方的交点有两个.当过点N的直线与抛物线有一个交点N,点M的坐标为(m,0),设:点N坐标为:(m,n),则:n=m2﹣m﹣3,过点N作AB的平行线,则点N所在的直线表达式为:y=x+b,将点N坐标代入,解得:过N点直线表达式为:y=x+(n﹣m),将抛物线的表达式与上式联立并整理得:3x2﹣12x﹣12+3m﹣4n=0,△=144﹣3×4×(0=﹣12+3m﹣4n)=0,将n=m2﹣m﹣3代入上式并整理得:m2﹣4m+4=0,解得:m=2,则点N的坐标为(2,﹣),则:点P坐标为(2,﹣),则:PN=3,∵OB=3,PN∥OB,∴四边形OBNP为平行四边形,则点O到直线AB的距离等于点N到直线AB的距离,即:过点O与AB平行的直线与抛物线的交点为另外两个N点,即:N′、N″,直线ON的表达式为:y=x,将该表达式与二次函数表达式联立并整理得:x2﹣4x﹣4=0,解得:x=2±2,则点N′、N″的横坐标分别为2,2﹣2,作NH ⊥AB 交直线AB 于点H ,则h =NH =NP sin α=,作N ′P ′⊥x 轴,交x 轴于点P ′,则:∠ON ′P ′=α,ON ′==(2+2),S 四边形OBPN =BP •h =×=6,则:S 四边形OBP ′N ′=S △OP ′N ′+S △OBP ′=6+6,同理:S 四边形OBN ″P ″=6﹣6,故:点O ,B ,N ,P 构成的四边形的面积为:6或6+6或6﹣6.。
2020年中考数学图形的变换专题(附答案)

2020年中考数学图形的变换专题(附答案)一、单选题(共12题;共24分)1.若△ABC与△DEF的相似比是3:2,△DEF的最长边是6cm,那么△ABC的最长边是()A. 4cmB. 9cmC. 4cm或9cmD. 以上答案都不对2.如果五边形ABCDE∽五边形POGMN且对应高之比为3:2,那么五边形ABCDE和五边形POGMN的面积之比是()A. 2:3B. 3:2C. 6:4D. 9:43.如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A1处,已知OA=,AB=1,则点A1的坐标是( )A. (,)B. (,3)C. (,)D. (,)4.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A. 5.1米B. 6.3米C. 7.1米D. 9.2米5.设a、b、c分别为△ABC中∠A,∠B和∠C的对边,则△ABC的面积为()A. B. C. D.6.如图,在ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:① :②S△BCE=36:③S△ABE=12:④△AEF∽△ACD;其中一定正确的是()A. ①②③④B. ①④C. ②③④D. ①②③7.如图,E是平行四边形ABCD的边AB延长线上一点,DE交BC于F,连接AF,CE.则图中与△ABF面积一定相等的三角形是()A. △BEFB. △DCFC. △ECFD. △EBC8.如图,一把梯子靠在垂直水平地面的墙上,梯子AB的长是3米。
若梯子与地面的夹角为α,则梯子顶端到地面的距离BC为()A. 3sina米B. 3cosa米。
(9)2018-2020年北京中考数学复习各地区模拟试题分类(9)——三角形参考答案

(9)——三角形参考答案与试题解析一.选择题(共3小题)1.【解答】解:∵在△ABC 中,AC =BC ,∠C =90°,∴∠CAB =∠B =45°,∵点D 是BC 的中点,AC =1,∴CD =BD=12,AB=2,∴AD=AC 2+CD 2=过D 作DH ⊥AB 于H ,∴△BDH 是等腰直角三角形,∴DH=∴AH=AD 2−DH 2==∵∠EDH +∠DEH °,∴∠DEH =∠ADH ,∴△ADH ∽△AED ,∴AD AE =AH AD ,∴AE=AD 2AH =∴BE =AB ﹣AE=∴△BDE 的面积=12=124,故选:A .2.【解答】解:由作图可得,OC =OE ,FC =FG ,OF =OF ,∴△OCF ≌△OGF (SSS ),∴∠BOG =∠AOB ,故A 选项正确;若CG =OC =OG ,则△OCG 是等边三角形,∴∠COG =60°,∴∠AOB=12∠COG =30°,故B 选项正确;∵OC =OE ,FC =FG ,∴OF 垂直平分CG ,故C 选项正确;∴CG =2MG <2FG ,故D 选项错误;故选:D .3.【解答】解:设目的地确切位置的坐标为(x ,y ),根据题意有(x +1)2+(y −2)2=5(x −3)2+(y −2)2=3,解可得x =3y =5或x =3y =−1故所求点的坐标为(3,5)或(3,﹣1).故选:B .二.填空题(共8小题)4.【解答】解:如图所示:根据tan ∠1=13,可设AB =x ,BC =3x ,由勾股定理得:AC =(3x)2+x 2=10x ,∵大正方形的面积是40,∴(10x)2=40,解得:x =2或x =﹣2(舍去),∴AB =2,BC =6,∴S △ABC =12×2×6=6,∴四个三角形的面积之和=4×6=24,∴小正方形的面积=40﹣24=16.故答案为16.5.【解答】解:连接AE ,PE ,则∠EAB =∠PCD ,故∠PAB ﹣∠PCD =∠PAB ﹣∠EAB =∠PAE ,设正方形网格的边长为a ,则PA=a 2+(2a)2=5a ,PE=5a ,AE=a 2+(3a)2=10a ,∵PA 2+PE 2=5a 2+5a 2=10a 2=AE 2,∴△APE 是直角三角形,∠APE =90°,又∵PA =PE ,∴∠PAE =∠PEA =45°,∴∠PAB ﹣∠PCD =45°,故答案为:45.6.【解答】解:设竹子折断处离地面x尺,则斜边为(20﹣x)尺,根据勾股定理得:x2+62=(20﹣x)2.故答案为x2+62=(20﹣x)2.7.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).故答案为:2.2.8.【解答】解:∵在△ABC中,∠BAC=90°,D为BC中点,若AD=52,∴BC=2AD=5,∵AC=3,∴AB=BC2−AC2=4,故答案为:4.9.【解答】解:如图,建立平面直角坐标系,过点B作BC⊥x轴于C,作BD⊥y轴于D,则BD=OC.∵A处到雁栖湖国际会展中心B处相距4km,A在B南偏西45°方向上,∴AB=4km,∠BAC=∠ABC=45°.∴AC=BC.∵AC2+BC2=AB2=16,∴AC=BC=22.∴OC=OA+AC=22+2.∴B(22+2,22).故答案是:(22+2,22).10.【解答】解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=35°+90°=125°,∵a∥b,∴∠ACD=180°﹣125°=55°,∴∠2=∠ACD﹣∠ACB=55°﹣45°=10°;故答案为:10°11.【解答】解:由题意可知:∠A=30°,∴AB=2BC,故①错误;∵l1∥l2,∴∠CDB=∠1=60°,∴△BCD是等边三角形,故②正确;∵△BCD是等边三角形,∴∠BCD=60°,∴∠ACD=∠A=30°,∴AD=CD=BD,故③正确;故答案为:②③三.解答题(共27小题)12.【解答】证明:∵AB∥CE,∴∠A=∠ECD.∵在△ABC和△CDE中,∠A=∠ECD,AC=CE∠ACB=∠E∴△ABC≌△CDE(ASA).13.【解答】解:(1)依题意补全图形如图所示;(2)如图,连接DE,DG,∵在正方形ABCD中,AD=CD,∠A=∠DCF=90°,∵AE=CF,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF,∵∠DCF=90°,∴DC⊥FG,∵CF=CG,∴DF=DG,∴∠CDF=∠CDG,∴DE=DG,∠ADE=∠CDG,∵∠ADC=90°,∴∠EDG=90°,∴△EDG是等腰直角三角形,∴EG=2DG=2DF.14.【解答】.解:(1)①如图1所示:②证明:∵∠C=60°,∠DBN=60°,∴∠C=∠DBN,∵∠DBN+∠ABD=180°,∴∠C+∠ABD=180°,在四边形ACDB中,∠CDB+∠BAC=180°,∵∠BAC+∠MAC=180°,∴∠CDB=∠MAC;(2)BC=3时,对于任意一点C,总有AB+BD=3.证明:如图2,连接BC,在直线MN上截取AH=BD,连接CH,∵∠MAC=∠CDB,AC=CD,∴△ACH≌△DCB(SAS),∴∠ACH=∠DCB,CH=CB,∵∠DCB+∠ACB=∠ACD=60°,∴∠HCB=∠ACH+∠ACB=60°,∴△HCB是等边三角形,∴BC=BH=BA+BD=3.15.【解答】解:(1)证明:∵CD =CB ,∴∠COD=∠COB.∵OD=OB,∴OC垂直平分BD;(2)①补全图形,如图所示:;②∵CE 是⊙O 的切线,切点为C ,∴OC ⊥CE 于点C .记OC 与BD 交于点F ,由(1)知OC ⊥BD ,∴∠OCE =∠OFB =90°.∴DB ∥CE ,∴∠AEC =∠ABD .∵在Rt △ABD 中,AD =6,sin ∠ABD =sin ∠AEC=35,∴BD =8,AB =10.∴OA =OB =OC =5.由(1)可知OC 平分BD ,即DF =BF ,∴BF =DF =4,OF 为△ABD 的中位线,∴OF=12AD =3,∴CF =2.∴在Rt △CFD 中,CD=CF 2+DF 2=25.∴CD 的长为25.16.【解答】解:(1)x =BM =1.8,在△MBD 中,BD =3,cos ∠B=35,设cos B =cosβ,tanβ=43,过点M 作MH ⊥BD 于点H ,在Rt △NHM 中,BH =BM cosβ=1.8×35=1.08,同理MH =1.44,HD =BD ﹣BH =3﹣1.08=1.92,MD=MH 2+HD 2=2.4,MD 2=HD 2+MH 2,则BD 2=BM 2+MD 2,故∠BMD =90°,则y =MN =MD tanβ=(DB sinβ)tanβ=2.4×43=3.2,补全的表格数据如下:x /cm 00.30.5 1.0 1.5 1.8 2.0 2.5 3.0 3.5 4.0 4.5 4.8 5.0y /cm 2.5 2.44 2.42 2.47 2.79 3.2 2.94 2.52 2.41 2.48 2.66 2.93.08 3.2(2)描点、连线得到以下函数图象:(3)当MN=BD时,即y=3,从图象看x即BM的长度大约是1.7,1.9,4.7;故答案为:1.7,1.9,4.7(填的数值上下差0.1都算对).17.【解答】(1)解:图形如图1所示:(2)①证明:如图2中,∵C,H关于AQ对称,∴∠CAE=∠EAH,AC=AH,∵AE=AE,∴△ACE≌△AHE(SAS),∴EC=EH,∵EF垂直平分线段BC,∴EC=EB,∴EH=EB,∴△EHB是等腰三角形.②解:如图2﹣1中,作EM ⊥AB 于M .∵EH =EB ,EM ⊥BH ,∴HM =MB ,∴AC +AB =AH +AB =AM ﹣HM +AM +BM =2AM ,∵AC +AB=2,∴4AM=11AE ,在Rt △AEM 中,cos ∠EAB=AM AE =∴cos ∠EAB=18.【解答】解:(1)根据题意作图如下:(2)连接BM ,如图2,∵点D 与点E 关于AM 所在直线对称,∴AE =AD ,∠MAD =∠MAE ,∵四边形ABCD 是正方形,∴AD =AB ,∠D =∠ABF =90°,∵BM =BF ,∴△ADM ≌△ABF (SAS ),∴AF =AM ,∠FAB =∠MAD ,∴∠FAB =∠NAE ,∴∠FAE =∠MAB ,∴△FAE ≌△MAB (SAS ),∴EF =BM ,∵四边形ABCD 是正方形,∴BC =CD =AB =3,∵DM =1,∴CM =2,∴BM=BC 2+CM 2=13,∴EF=13;(3)设DM =x (x >0),则CM =3﹣x ,∴EF =BM=CM 2+BC 2=x 2−6x +18,∵AE =AD =3,AF =AM=DM 2+AD 2=x 2+9,∴AF >AE ,∴当△AEF 为等腰三角形时,只能有两种情况:AE =EF ,或AF =EF ,①当AE =EF 时,有x 2−6x +18=3,解得x =3∴tan ∠DAM=DM DA =33=1;②当AF =EF 时,x 2−6x +18=x 2+9,解得,x=32,∴tan ∠DAM=DM DA =323=12,综上,tan ∠DAM 的值为1或12.故答案为:tan ∠DAM 的值为1或12.19.【解答】(1)证明:∵∠A =90°,CE ⊥BD 于E ,∴∠A =∠CEB =90°.∵AD ∥BC ,∴∠EBC =∠ADB .又∵BD =BC ,∴△ABD ≌△ECB (AAS ),∴BE =AD ;(2)解:∵∠DCE =15°,CE ⊥BD 于E ,∴∠BDC =∠BCD =75°,∴∠BCE =60°,∠CBE =∠ADB =30°,在Rt △ABD 中,∠ADB =30°,AB =2.∴BD =4,AD =23.∴S △ABD =12×23×2=23.∵△ABD ≌△ECB .∴CE =AB =2.∴S △BCD =12×4×2=4.∴S 四边形ABCD =S △ABD +S △BCD =4+23.20.【解答】(1)证明:∵AD ⊥DB ,点E 为AB 的中点,∴DE =BE=12AB .∴∠1=∠2.∵DE ∥BC ,∴∠2=∠3.∴∠1=∠3.∴BD 平分∠ABC .(2)解:∵AD⊥DB,∠A=30°∴∠1=60°.∴∠3=∠2=60°.∵∠BCD=90°,∴∠4=30°.∴∠CDE=∠2+∠4=90°.在Rt△BCD中,∠3=60°,DC=23,∴DB=4.∵DE=BE,∠1=60°,∴DE=DB=4.∴EC=DE2+CD2=(23)2+42=27.21.【解答】解:(1)补全图形如图:(2)证明:∵∠ACB=90°,CD=CB,∴AD=AB.∴∠BAD=2∠BAC.∵∠B=4∠BAC,∴∠B=2∠BAD.(3)EA=EB+DB,证明:在EA上截取EG=EB,连接DG.∵DE⊥AB,∴DG=DB.∴∠DGB=∠B.∵∠B=2∠BAD,∴∠DGB=2∠BAD.∵∠DGB=∠BAD+∠ADG,∴∠BAD=∠ADG.∴GA=GD.∴GA=DB.∴EA=EG+AG=EB+DB.22.【解答】(1)证明:作BN⊥AD于N,BM⊥AC于M.∵∠BAM=∠BAN,∠AMB=∠ANB=90°,AB=AB,∴△ABM≌△ABN(AAS),∴AM=AN,BM=BN,∵∠MAN+∠MBN=180°,∠MAN+∠CBD=180°,∴∠CBD=∠MBN,∴∠CBM=∠NBD,∵∠BMC=∠BND=90°,BM=BN,∴△BMC≌△BND(ASA),∴BC=BD.(2)解:在Rt△BND中,∵BD=10,cos∠ADB=25=DNBD,∴DN=4,∵AD=AN+DN,AC=AM﹣CM,AM=AN,CM=DN=4,∴AD﹣AC=AN+DN﹣AM+CM=8.23.【解答】解:(1)如图1所示:连接CD,DE与CF相交于点H,∵在Rt△ABC中,D为AB中点,∴CD=BD,又∵AC=BC,∴DC⊥AB,∴∠ABC=∠DCB=45°,∵∠ACB=90°,∴∠BCE=90°,∵∠ABC+∠ABF=180°,∠DCE=∠DCB+∠BCE,∴∠DBF=180°﹣45°=135°,∠DCE=90°+45°=135°,∴∠DBF=∠DCE,∵DF⊥DE,∴∠DHF+∠F=90°,又∵∠CHE+∠E=90°;∠CHE=∠DHF,∴∠F=∠E,在△DBF和△DCE中∠F=∠E,∠DBF=∠DCE DB=DC ,∴△DBF≌△DCE(AAS),∴BF =CE .(2)如图2所示线段DF 与AB 的数量关系:DF=.连接BE ,设AD =BD =a ,则AB =2a .∵△DBF ≌△DCE ,∴DF =DE .∵CE =AC ,DA =DB ,∴DC ∥BE ,又∵∠ADC =90°,∴∠ABE =90°,∵∠A =45°,∴∠AEB =45°,∴AB =BE =2a ,在Rt △BDE 中,由勾股定理得:DE 2=DB 2+BE 2,∴DE=a 2+(2a)2=5a ,∴DF=5a ,∴DF AB =5a 2a =52.即DF=.24.【解答】(1)解:过点A 作AG ⊥BC 于点G ,如图1所示:∴∠DAG +∠ADG =90°,∵AD =AC ,∴∠CAG =∠DAG=12∠CAD=12α,∵CF ⊥AD 于点E ,∴∠DCE +∠ADG =90°,∴∠DCE =∠DAG=12∠CAD=12α,即∠BCF=12α;(2)证明:∵∠B =45°,AG ⊥BC ,∴∠BAG =45°,∵∠BAC =45°+∠CAG ,∠AFC =45°+∠DCE ,∠DCE =∠DAG ,∠CAG =∠DAG ,∴∠BAC =∠AFC ,∴AC =FC ;(3)解:DC=2BF ;理由如下:过F 点作FM ⊥BC 于M 点,如图2所示:则∠CMF =90°,△BFM 是等腰直角三角形,∴BF=2FM ,在△CFM 和△CAG 中,∠FCM =∠CAG∠CMF =∠AGC =90°CF =AC,∴△CFM ≌△CAG (AAS ),∴FM =CG=12DC ,∴BF=2CG=,∴DC=2BF .25.【解答】解:本题答案不唯一,如:(1)x /cm 00.51 1.52 2.53 3.54 4.55 5.56y /cm 10.871 1.32 1.73 2.18 2.65 2.292 1.8 1.73 1.82(2)(3)观察图象可得当MN =2cm 时,点M 运动的路程为2.3cm 或4cm 或6cm .故答案为:2.3或4或6.26.【解答】解:(1)当x =0时,y =AC =2;当x =2时,AP =AC =2,∵∠CAP =90°﹣∠B =60°,∴此时△CAP 为等边三角形,∴y =AC =2.故答案为:2;2.(2)描点、连线,画出函数图象.(3)观察函数图象,可知:当1≤x≤4时,y的值随x值的增大而增大.故答案为:当1≤x≤4时,y的值随x值的增大而增大(答案不唯一).27.【解答】解:∵AB=AC,∴∠B=∠C,∵∠B=50°,∴∠C=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠BAD=55°,∴∠DAE=25°,∵DE⊥AD,∴∠ADE=90°,∴∠DEC=∠DAE+∠ADE=115°.28.【解答】解:∵∠E=35°,ED⊥BC,∴∠B=55°∵∠BAC=90°,AD是BC边上的中线,∴DA=DB,∴∠B=∠DAB=55°,∴∠BDA=180°﹣55°﹣55°=70°.29.【解答】解:(1)如图1,连接DE,作PF⊥DE交DE于F.∵PE⊥BO,∠AOB=60°,∴∠OPE=30°,∴∠DPA=∠OPE=30°,∴∠EPD=120°,∵DP=PE,DP+PE=6,∴∠PDE=30°,PD=PE=3,∴DF=PD•cos30°=∴DE=2DF=33;(2)当M点在射线OA上且满足om=23时,DMME的值不变,始终为1.理由如下:如图2,当点P与点M不重合时,延长EP到K使得PK=PD.∵∠DPA=∠OPE,∠OPE=∠KPA,∴∠KPA=∠DPA,∴∠KPM=∠DPM,∵PK=PD,PM是公共边,∴△KPM≌△DPM(SAS),∴MK=MD,作ML⊥OE于L,MN⊥EK于N.∵MO=23,∠MOL=60°,∴ML=MO•sin60°=3,∵PE⊥BO,ML⊥OE,MN⊥EK,∴四边形MNEL为矩形.∴EN=ML=3.∵EK=PE+PK=PE+PD=6,∴EN=NK.∵MN⊥EK,∴MK=ME.∴ME=MK=MD,即DMME=1.当点P与点M重合时,由上过程可知结论成立.30.【解答】解:(1)∵AB=AD,∴∠ABD=∠ADB,∵∠ADB=∠CDE,∴∠ABD=∠CDE,∵∠BAC=90°,∴∠ABD+∠ACB=90°,∵CE⊥AE,∴∠DCE+∠CDE=90°,∴∠ACB=∠DCE;(2)补全图形,如图所示:∵∠BAD=45°,∠BAC=90°,∴∠BAE=∠CAE=45°,∠F=∠ACF=45°,∵AE ⊥CF ,BG ⊥CF ,∴AD ∥BG ,∵BG ⊥CF ,∠BAC =90°,且∠ACB =∠DCE ,∴AB =BG ,∵AB =AD ,∴BG =AD ,∴四边形ABGD 是平行四边形,∵AB =AD ,∴平行四边形ABGD 是菱形,设AB =BG =GD =AD =x ,∴BF=2BG=2x ,∴AB +BF =x+2x =2+2,∴x=2,过点B 作BH ⊥AD 于H ,∴BH==1.∴S 四边形ABDG =AD ×BH=2.31.【解答】(1)证明:∵AD ⊥DB ,点E 为AB 的中点,∴DE =BE=12AB .∴∠1=∠2.∵DE ∥BC ,∴∠2=∠3.∴∠1=∠3.∴BD 平分∠ABC .(2)解:∵AD ⊥DB ,∠A =30°,∴∠1=60°.∴∠3=∠2=60°.∵∠BCD =90°,∴∠4=30°.∴∠CDE =∠2+∠4=90°.在Rt △BCD 中,∠3=60°,DC=3,∴DB =2.∵DE =BE ,∠1=60°,∴DE =DB =2.∴EC=DE 2+DC 2=4+3=7.32.【解答】解:∵AD =3,AE =4,ED =5,∴AD 2+AE 2=ED 2.∴∠A =90°.∴DA ⊥AB .∵∠C =90°.∴DC ⊥BC .∵BD 平分∠ABC ,∴DC =AD .∵AD =3,∴CD =3.33.【解答】解:∵BE =CF ,∴BC =EF ,∵AB ∥DE ,∴∠B =∠DEF ,在△ABC 和△DEF 中,∠A =∠D∠B =∠DEF BC =EF,∴△ABC ≌△DEF ,∴AC =DF ,∵AC =6,∴DF =6.34.【解答】解:设每个直角三角形的面积为S ,S 1﹣S 2=4S (用含S 的代数式表示)①S 2﹣S 3=4S (用含S 的代数式表示)②由①,②得,S 1+S 3=2S 2,因为S 1+S 2+S 3=10,所以2S 2+S 2=10.所以S 2=103.故答案为:4S ;4S ;2S 2.35.【解答】解:∵BE 平分∠ABC ,∴∠ABC =2∠ABE =2×25°=50°,∵AD 是BC 边上的高,∴∠BAD =90°﹣∠ABC =90°﹣50°=40°,∴∠DAC =∠BAC ﹣∠BAD =60°﹣40°=20°.36.【解答】解:(1)∵点D 是BC 边的中点,DE ⊥BC ,∴DE 是线段BC 的垂直平分线,∴EB =EC ,∴∠ECB =∠B =45°,∴∠AEC =∠ECB +∠B =90°;(2)AE 2+EB 2=AC 2.∵∠AEC =90°,∴AE 2+EC 2=AC 2,∵EB =EC ,∴AE 2+EB 2=AC 2.37.【解答】证明:如图,连接AD .∵AB=AC,点D是BC边上的中点,∴AD平分∠BAC,∵DE、DF分别垂直AB、AC于点E和F.∴DE=DF.38.【解答】证明:∵AC=BC,CE为△ACB的中线,∴∠CAB=∠B,CE⊥AB,∴∠CAB+∠ACE=90°,∵AD为△ACB的高线,∴∠D=90°.∴∠DAB+∠B=90°,∴∠DAB=∠ACE,。
中考数学复习----《图形变化规律》专项练习题(含答案)

中考数学复习----《图形变化规律》专项练习题(含答案)练习题1、(2022•济宁)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是()A.297 B.301 C.303 D.400【分析】首先根据前几个图形圆点的个数规律即可发现规律,从而得到第100个图摆放圆点的个数.【解答】解:观察图形可知:摆第1个图案需要4个圆点,即4+3×0;摆第2个图案需要7个圆点,即4+3=4+3×1;摆第3个图案需要10个圆点,即4+3+3=4+3×2;摆第4个图案需要13个圆点,即4+3+3+3=4+3×3;…第n个图摆放圆点的个数为:4+3(n﹣1)=3n+1,∴第100个图放圆点的个数为:3×100+1=301.故选:B.2、(2022•广州)如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第n个图形需要2022根小木棒,则n的值为()A.252 B.253 C.336 D.337【分析】根据图形特征,第1个图形需要6根小木棒,第2个图形需要6×2+2=14根小木棒,第3个图形需要6×3+2×2=22根小木棒,按此规律,得出第n个图形需要的小木棒根数即可.【解答】解:由题意知,第1个图形需要6根小木棒,第2个图形需要6×2+2=14根小木棒,第3个图形需要6×3+2×2=22根小木棒,按此规律,第n个图形需要6n+2(n﹣1)=(8n﹣2)根小木棒,当8n﹣2=2022时,解得n=253,故选:B.3、(2022•玉林)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF 的顶点A处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是()A.4 B.23C.2 D.0【分析】分别计算红跳棋和黑跳棋过2022秒钟后的位置,红跳棋跳回到A点,黑跳棋跳到F点,可得结论.【解答】解:∵红跳棋从A点按顺时针方向1秒钟跳1个顶点,∴红跳棋每过6秒返回到A点,2022÷6=337,∴经过2022秒钟后,红跳棋跳回到A点,∵黑跳棋从A点按逆时针方向3秒钟跳1个顶点,∴黑跳棋每过18秒返回到A点,2022÷18=112•6,∴经过2022秒钟后,黑跳棋跳到E点,连接AE,过点F作FM⊥AE,由题意可得:AF=AE=2,∠AFE=120°,∴∠FAE=30°,在Rt△AFM中,AM=AF=,∴AE=2AM=2,∴经过2022秒钟后,两枚跳棋之间的距离是2.故选:B.4、(2022•荆州)如图,已知矩形ABCD的边长分别为a,b,进行如下操作:第一次,顺次连接矩形ABCD 各边的中点,得到四边形A 1B 1C 1D 1;第二次,顺次连接四边形A 1B 1C 1D 1各边的中点,得到四边形A 2B 2C 2D 2;…如此反复操作下去,则第n 次操作后,得到四边形A n B n ∁n D n 的面积是( )A .nab 2B .12−n ab C .12+n ab D .nab 22【分析】连接A 1C 1,D 1B 1,可知四边形A 1B 1C 1D 1的面积为矩形ABCD 面积的一半,则S 1=ab ,再根据三角形中位线定理可得C 2D 2=C 1,A 2D 2=B 1D 1,则S 2=C 1×B 1D 1=ab ,依此可得规律.【解答】解:如图,连接A 1C 1,D 1B 1,∵顺次连接矩形ABCD 各边的中点,得到四边形A 1B 1C 1D 1, ∴四边形A 1BCC 1是矩形, ∴A 1C 1=BC ,A 1C 1∥BC , 同理,B 1D 1=AB ,B 1D 1∥AB , ∴A 1C 1⊥B 1D 1, ∴S 1=ab ,∵顺次连接四边形A 1B 1C 1D 1各边的中点,得到四边形A 2B 2C 2D 2,∴C2D2=C1,A2D2=B1D1,∴S2=C1×B1D1=ab,……依此可得S n=,故选:A.5、(2022•江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9 B.10 C.11 D.12【分析】列举每个图形中H的个数,找到规律即可得出答案.【解答】解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.6、(2022•重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32 B.34 C.37 D.41【分析】根据图形的变化规律得出第n个图形中有4n+1个正方形即可.【解答】解:由题知,第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,…,第n个图案中有4n+1个正方形,∴第⑨个图案中正方形的个数为4×9+1=37,故选:C.7、(2022•重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15 B.13 C.11 D.9【分析】根据前面三个图案中菱形的个数,得出规律,第n个图案中菱形有(2n﹣1)个,从而得出答案.【解答】解:由图形知,第①个图案中有1个菱形,第②个图案中有3个菱形,即1+2=3,第③个图案中有5个菱形即1+2+2=5,……则第n个图案中菱形有1+2(n﹣1)=(2n﹣1)个,∴第⑥个图案中有2×6﹣1=11个菱形,故选:C.8、(2022•青海)木材加工厂将一批木料按如图所示的规律依次摆放,则第n个图中共有木料根.【分析】观察图形可得:第n个图形最底层有n根木料,据此可得答案.【解答】解:由图可知:第一个图形有木料1根,第二个图形有木料1+2=3(根),第三个图形有木料1+2+3=6(根),第四个图形有木料1+2+3+4=10(根),......第n个图有木料1+2+3+4+......+n=(根),故答案为:.9、(2022•大庆)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是.【分析】从数字找规律,进行计算即可解答.【解答】解:由题意得:第一个图案中的“”的个数是:4=4+3×0,第二个图案中的“”的个数是:7=4+3×1,第三个图案中的“”的个数是:10=4+3×2,...∴第16个图案中的“”的个数是:4+3×15=49,故答案为:49.10、(2022•绥化)如图,∠AOB=60°,点P1在射线OA上,且OP1=1,过点P1作P1K1⊥OA交射线OB于K1,在射线OA上截取P1P2,使P1P2=P1K1;过点P2作P2K2⊥OA交射线OB于K2,在射线OA上截取P2P3,使P2P3=P2K2…按照此规律,线段P2023K2023的长为.【分析】根据题意和题目中的数据,可以写出前几项,然后即可得到P n K n的式子,从而可以写出线段P2023K2023的长.【解答】解:由题意可得,P1K1=OP1•tan60°=1×=,P2K2=OP2•tan60°=(1+)×=(1+),P3K3=OP3•tan60°=(1+++3)×=(1+)2,P4K4=OP4•tan60°=[(1+++3)+(1+)2]×=(1+)3,…,P n K n=(1+)n﹣1,∴当n=2023时,P2023K2023=(1+)2022,故答案为:(1+)2022.11、(2022•德阳)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是1+3=4,第三个正方形数是1+3+5=9,…………由此类推,图④中第五个正六边形数是.【分析】根据前三个图形的变化寻找规律,即可解决问题.【解答】解:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是1+3=4,第三个正方形数是1+3+5=9,……图③的点数叫做五边形数,从上至下第一个五边形数是1,第二个五边形数是1+4=5,第三个五边形数是1+4+7=12,……由此类推,图④中第五个正六边形数是1+5+9+13+17=45.故答案为:45.12、(2022•遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为.【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【解答】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.13、(2022•黑龙江)如图所示,以O为端点画六条射线OA,OB,OC,OD,OE,OF,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线上.【分析】根据规律得出每6个数为一周期.用2013除以6,根据余数来决定数2013在哪条射线上.【解答】解:∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,……每六个一循环,2013÷6=335……3,∴所描的第2013个点在射线和3所在射线一样,∴所描的第2013个点在射线OC上.故答案为:OC.。
2018-2020年山东中考复习数学各地区模拟试题分类(德州专版)(7)——图形的变化(含解析)

2018-2020年山东中考复习数学各地区模拟试题分类(德州专版)(7)——图形的变化一.选择题(共19小题)1.(2020•乐陵市二模)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(2020•庆云县模拟)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(2020•德城区模拟)在平面直角坐标系中,若点M(m,n)与点Q(﹣2,3)关于原点对称,则点P(m ﹣n,n)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.(2020•乐陵市二模)如图,两个等直径圆柱构成的T形管道,则其俯视图正确的是()A.B.C.D.5.(2020•德城区一模)在△ABC中,已知∠A、∠B都是锐角,|sin A﹣|+(1﹣tan B)2=0,那么∠C的度数为()A.75°B.90°C.105°D.120°6.(2020•德城区一模)如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=.下列给出的结论中,正确的有()①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或12.5;④0<CE≤6.4.A.1个B.2个C.3个D.4个7.(2020•庆云县模拟)如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD 的长为()A.1 B.C.2 D.8.(2019•乐陵市模拟)下面四个应用图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.9.(2019•陵城区二模)如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1,△2,△3,△4,…,则△2019的直角顶点的坐标为()A.(8076,0)B.(8064,0)C.(8076,)D.(8064,)10.(2019•夏津县二模)如图,在平行四边形ABCD中,AC、BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,S△AEF=4,则下列结论:①FD=2AF;②S△BCE=36;③S△ABE=12;④△AEF ∽△ACD,其中一定正确的是()A.①②③④B.①②C.②③④D.①②③11.(2019•禹城市一模)三通管的立体图如图所示,则这个几何体的主视图是()A.B.C.D.12.(2019•德城区一模)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6 B.8 C.10 D.1213.(2019•齐河县一模)下列标志中不是中心对称图形的是()A.中国移动B.中国银行C.中国人民银行D.方正集团14.(2019•河东区一模)如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.6 B.8 C.12 D.1015.(2018•禹城市一模)如图,已知点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为()A.(2,﹣1)B.(8,﹣4)C.(2,﹣1)或(﹣2,1 )D.(8,﹣4)或(﹣8,﹣4 )16.(2018•庆云县一模)如图所示的几何体,其主视图是()A.B.C.D.17.(2018•庆云县二模)如图,已知点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为()A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,﹣4)C.(2,﹣1)D.(8,﹣4)18.(2018•庆云县一模)如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B的对应点B′坐标为()A.(3,4)B.(7,4)C.(7,3)D.(3,7)19.(2018•乐陵市二模)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB、AC于点E、G.连接GF.下列结论:①∠AGD=112.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE =2OG.其中正确结论的序号是()A.①②③④⑤B.①②③④C.①③④⑤D.①④⑤二.填空题(共14小题)20.(2020•庆云县模拟)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)21.(2020•德城区一模)在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D 的坐标为(0,2),延长CB交x轴于点A1,作第2个正方形A1B1C1C,延长C1B1交x轴于点A2,作第3个正方形A2B2C2C1,……按这样的规律进行下去,第2020个正方形的面积为.22.(2020•武城县模拟)如图,正方形ABCD的边长为1,AC、BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF 是菱形;②△HED的面积是1﹣;③∠AFG=135°;④BC+FG=.其中正确的结论是.(填入正确的序号)23.(2020•庆云县一模)如图,Rt△ABC中,∠BAC=90°,AB=,AC=2,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为.24.(2020•德城区一模)某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原坡角为45°的传送带AB,调整为坡度i=1:的新传送带AC(如图所示).已知原传送带AB的长是4米.那么新传送带AC的长是米.25.(2020•德城区模拟)如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为30°,看这栋高楼底部C的俯角为60°,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为米.26.(2019•乐陵市二模)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连结AG,CF下列结论:①△ABG≌△AFG;②BG=GC;③∠AGB=∠CFG;④;其中正确结论的序号是.27.(2019•临邑县二模)定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△A n﹣1B n﹣1C n﹣1经γ(n,180°)变换后得△A n B n∁n,则点A1的坐标是点A2019的坐标是.28.(2019•惠民县一模)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为.29.(2018•齐河县二模)如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”,如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′、B′分别是点A,B关于⊙O的反演点,A′B′的长.30.(2018•禹城市二模)如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0364).31.(2018•乐陵市一模)已知:如图,矩形ABCD中,AB=5,BC=3,E为AD上一点,把矩形ABCD沿BE折叠,若点A恰好落在CD上点F处,则AE的长为.32.(2018•德州一模)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有.33.(2018•武城县二模)在平面直角坐标系中,已知线段AB的两个端点分别是A(4,﹣1),B(1,1).将线段AB平移后得到线段AˊBˊ,若点Aˊ的坐标为(﹣2,2 ),则点Bˊ的坐标为.三.解答题(共10小题)34.(2020•德城区模拟)(1)如图1,正方形ABCD与正方形AEFG有公共的顶点A,连接DG,BE,AC,CF.①求证:DG=BE;②求的值;(2)将图1中的正方形AEFG旋转到图2的位置,当D,G,E在一条直线上,若DG=GE=3,求正方形ABCD的边长.35.(2020•庆云县模拟)如图11,在平面直角坐标系中,已知矩形OABC的顶点A在x轴上,顶点C在y 轴上,OA=8,OC=4,点P为对角线AC上一动点,过点P作PQ⊥PB,PQ交x轴于点Q.(1)tan∠ACB=;(2)在点P从点C运动到点A的过程中,的值是否发生变化?如果变化,请求出其变化范围;如果不变,请求出其值;(3)若将△QAB沿直线BQ折叠后,点A与点P重合,则PC的长为.36.(2020•乐陵市二模)某型号飞机的机翼形状如图,根据图示尺寸计算AC和AB的长度(精确到0.1米,≈1.41,≈1.73 ).37.(2019•齐河县一模)(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P是等边三角形ABC内一点,P A=1,PB=,PC=2.求∠BPC的度数.为利用已知条件,不妨把△BPC绕点C顺时针旋转60°得△AP'C,连接PP',则PP'的长为2;在△P AP'中,易证∠P AP'=90°,且∠PP'A的度数为30°,综上可得∠BPC的度数为90°,试写出推理过程;(2)类比迁移如图2,点P是等腰Rt△ABC内一点,∠ACB=90°,P A=2,PB=,PC=1.求∠APC的度数;(3)拓展应用如图3,在四边形ABCD中,BC=5,CD=8,AB=AC=AD,∠BAC=2∠ADC,请直接写出BD的长.38.(2019•德城一模)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,连接BC(1)如图1,连接AC,作OP⊥AC,垂足为P,求△AOC的面积和线段OP的长;(2)如图2,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN周长的最小值.39.(2019•庆云县二模)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆9m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)40.(2019•德城区一模)阅读材料:对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上.即如图①,若P A=PB,则点P在线段AB的垂直平分线上.请根据阅读材料,解决下列问题:如图②,直线CD是等边△ABC的对称轴,点D在AB上,点E是线段CD上的一动点(点E不与点C、D重合),连结AE、BE,△ABE经顺时针旋转后与△BCF重合.(I)旋转中心是点,旋转了(度);(II)当点E从点D向点C移动时,连结AF,设AF与CD交于点P,在图②中将图形补全,并探究∠APC的大小是否保持不变?若不变,请求出∠APC的度数;若改变,请说出变化情况.41.(2019•夏津县二模)数学活动课,老师和同学一起去测量校内某处的大树AB的高度,如图,老师测得大树前斜坡DE的坡度i=1:4,一学生站在离斜坡顶端E的水平距离DF为8m处的D点,测得大树顶端A的仰角为30°,已知BE=2m,此学生身高CD=1.7m,求大树的高度.(结果保留根号)42.(2019•禹城市二模)如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底部G点为BC的中点,求矮建筑物的高CD.43.(2019•乐陵市一模)正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是,∠AFB=∠;(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠P AQ=45°,试通过旋转的方式说明:DQ+BP=PQ;(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.2018-2020年山东中考复习数学各地区模拟试题分类(德州专版)(7)——图形的变化参考答案与试题解析一.选择题(共19小题)1.(2020•乐陵市二模)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、既是轴对称图形,也是中心对称图形,故本选项符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:C.2.(2020•庆云县模拟)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【解答】解:A、不是轴对称图形,是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、既是轴对称图形,又是中心对称图形,故本选项符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:C.3.(2020•德城区模拟)在平面直角坐标系中,若点M(m,n)与点Q(﹣2,3)关于原点对称,则点P(m ﹣n,n)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解答】解:∵点M(m,n)与点Q(﹣2,3)关于原点对称,∴m=2,n=﹣3,∴m﹣n=2﹣(﹣3)=5,则点P(m﹣n,n)为(5,﹣3),故P点所在象限是:第四象限.故选:D.4.(2020•乐陵市二模)如图,两个等直径圆柱构成的T形管道,则其俯视图正确的是()A.B.C.D.【答案】B【解答】解:两个等直径圆柱构成如图所示的T型管道的俯视图是矩形和圆的组合图,且圆位于矩形的中心位置,故选:B.5.(2020•德城区一模)在△ABC中,已知∠A、∠B都是锐角,|sin A﹣|+(1﹣tan B)2=0,那么∠C的度数为()A.75°B.90°C.105°D.120°【答案】C【解答】解:∵|sin A﹣|+(1﹣tan B)2=0,∴|sin A﹣|=0,(1﹣tan B)2=0,∴sin A=,tan B=1,∴∠A=30°,∠B=45°,∴∠C的度数为:180°﹣30°﹣45°=105°.故选:C.6.(2020•德城区一模)如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=.下列给出的结论中,正确的有()①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或12.5;④0<CE≤6.4.A.1个B.2个C.3个D.4个【答案】D【解答】解:①∵AB=AC,∴∠B=∠C,又∵∠ADE=∠B∴∠ADE=∠C,∴△ADE∽△ACD;故①正确,②作AG⊥BC于G,∵AB=AC=10,∠ADE=∠B=α,cosα=,∴BG=AB cos B,∴BC=2BG=2AB cos B=2×10×=16,∵BD=6,∴DC=10,∴AB=DC,在△ABD与△DCE中,,∴△ABD≌△DCE(ASA).故②正确,③当∠AED=90°时,由①可知:△ADE∽△ACD,∴∠ADC=∠AED,∵∠AED=90°,∴∠ADC=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且cosα=,AB=10,BD=8.当∠CDE=90°时,易△CDE∽△BAD,∵∠CDE=90°,∴∠BAD=90°,∵∠B=α且cosα=.AB=10,∴cos B==,∴BD=12.5.故③正确.④易证得△CDE∽△BAD,由②可知BC=16,设BD=y,CE=x,∴=,∴=,整理得:y2﹣16y+64=64﹣10x,即(y﹣8)2=64﹣10x,∴0<x≤6.4.故④正确.正确的有①②③④.故选:D.7.(2020•庆云县模拟)如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD 的长为()A.1 B.C.2 D.【答案】C【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选:C.8.(2019•乐陵市模拟)下面四个应用图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:C.9.(2019•陵城区二模)如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1,△2,△3,△4,…,则△2019的直角顶点的坐标为()A.(8076,0)B.(8064,0)C.(8076,)D.(8064,)【答案】A【解答】解:∵点A(﹣3,0)、B(0,4),∴AB==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2019÷3=673,∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点,∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).故选:A.10.(2019•夏津县二模)如图,在平行四边形ABCD中,AC、BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,S△AEF=4,则下列结论:①FD=2AF;②S△BCE=36;③S△ABE=12;④△AEF ∽△ACD,其中一定正确的是()A.①②③④B.①②C.②③④D.①②③【答案】D【解答】解:①∵四边形ABCD为平行四边形,∴OA=OC,AD∥BC,AD=BC.∵点E是OA的中点,∴CE=3AE.∵AF∥BC,∴△AEF∽△CEB,∴==3,∴BC=3AF,∴DF=2AF,结论①正确;②∵△AEF∽△CEB,CE=3AE,∴=32,∴S△BCE=9S△AEF=36,结论②正确;③∵△ABE和△CBE等高,且BE=3AE,∴S△BCE=3S△ABE,∴S△ABE=12,结论③正确;④假设△AEF∽△ACD,则∠AEF=∠ACD,∴EF∥CD,即BF∥CD.∵AB∥CD,∴BF和AB共线.∵点E为OA的中点,即BE与AB不共线,∴假设不成立,即AEF和△ACD不相似,结论④错误.综上所述:正确的结论有①②③.故选:D.11.(2019•禹城市一模)三通管的立体图如图所示,则这个几何体的主视图是()A.B.C.D.【答案】B【解答】解:从正面看是一个倒写的“T”字,故选:B.12.(2019•德城区一模)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6 B.8 C.10 D.12【答案】C【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故选:C.13.(2019•齐河县一模)下列标志中不是中心对称图形的是()A.中国移动B.中国银行C.中国人民银行D.方正集团【答案】C【解答】解:A、是中心对称图形.故错误;B、是中心对称图形.故错误;C、不是中心对称图形.故正确;D、是中心对称图形.故错误.故选:C.14.(2019•河东区一模)如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.6 B.8 C.12 D.10【答案】D【解答】解:如图,连接BM,∵点B和点D关于直线AC对称,∴NB=ND,则BM就是DN+MN的最小值,∵正方形ABCD的边长是8,DM=2,∴CM=6,∴BM==10,∴DN+MN的最小值是10.故选:D.15.(2018•禹城市一模)如图,已知点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为()A.(2,﹣1)B.(8,﹣4)C.(2,﹣1)或(﹣2,1 )D.(8,﹣4)或(﹣8,﹣4 )【答案】C【解答】解:以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为(﹣4×,2×)或[﹣4×(﹣),2×(﹣)],即(2,﹣1)或(﹣2,1),故选:C.16.(2018•庆云县一模)如图所示的几何体,其主视图是()A.B.C.D.【答案】B【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,右边一个小正方形,故选:B.17.(2018•庆云县二模)如图,已知点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为()A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,﹣4)C.(2,﹣1)D.(8,﹣4)【答案】A【解答】解:以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为(﹣4×,2×)或[﹣4×(﹣),2×(﹣)],即(2,﹣1)或(﹣2,1),故选:A.18.(2018•庆云县一模)如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B的对应点B′坐标为()A.(3,4)B.(7,4)C.(7,3)D.(3,7)【答案】C【解答】解:当x=0时,y=﹣x+4=4,则B点坐标为(0,4);当y=0时,﹣x+4=0,解得x=3,则A点坐标为(3,0),则OA=3,OB=4,∵△AOB绕点A顺时针旋转90°后得到△AO′B′,∴∠OAO′=90°,∠AO′B′=∠AOB=90°,AO′=AO=3,O′B′=OB=4,即AO′⊥x轴,O′B′∥x轴,∴点B′坐标为(7,3).故选:C.19.(2018•乐陵市二模)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB、AC于点E、G.连接GF.下列结论:①∠AGD=112.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE =2OG.其中正确结论的序号是()A.①②③④⑤B.①②③④C.①③④⑤D.①④⑤【答案】D【解答】解:∵在正方形纸片ABCD中,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,∴∠GAD=45°,∠ADG=∠ADO=22.5°,∴∠AGD=112.5°,∴①正确.∵tan∠AED=,AE=EF<BE,∴AE<AB,∴tan∠AED=>2,∴②错误.∵AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,∴③错误.根据题意可得:AE=EF,AG=FG,又∵EF∥AC,∴∠FEG=∠AGE,又∵∠AEG=∠FEG,∴∠AEG=∠AGE,∴AE=AG=EF=FG,∴四边形AEFG是菱形,∴④正确.∵在等腰直角三角形BEF和等腰直角三角形OFG中,BE2=2EF2=2GF2=2×2OG2,∴BE=2OG.∴⑤正确.故其中正确结论的序号是:①④⑤.故选:D.二.填空题(共14小题)20.(2020•庆云县模拟)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度233m.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)【答案】233米.【解答】解:作AD⊥BC交CB的延长线于D,设AD为x,由题意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt△ADC中,∠ACD=35°,∴tan∠ACD=,∴=,解得,x≈233.所以,热气球离地面的高度约为233米,故答案为:233米.21.(2020•德城区一模)在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D 的坐标为(0,2),延长CB交x轴于点A1,作第2个正方形A1B1C1C,延长C1B1交x轴于点A2,作第3个正方形A2B2C2C1,……按这样的规律进行下去,第2020个正方形的面积为5×()4038.【答案】见试题解答内容【解答】解:设正方形的面积分别为S1,S2…,S n,根据题意,得:AD∥BC∥C1A2∥C2B2,∴∠BAA1=∠B1A1A2=∠B2A2x(同位角相等).∵∠ABA1=∠A1B1A2=∠A2B2x=90°,∴△BAA1∽△B1A1A2,在直角△ADO中,根据勾股定理,得:AD=,tan∠ADO==,∵tan∠BAA1==tan∠ADO,∴BA1=AB=,∴CA1=+,同理,得:C1A2=(+)×(1+)由正方形的面积公式,得:S1=()2,S2=()2×(1+)2,S3=()2×(1+)4=5×()4,由此,可得S n=()2×(1+)2(n﹣1)=5×()2n﹣2.∴第2020个正方形的面积为5×()4038,故答案为:5×()4038.22.(2020•武城县模拟)如图,正方形ABCD的边长为1,AC、BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF 是菱形;②△HED的面积是1﹣;③∠AFG=135°;④BC+FG=.其中正确的结论是①②③.(填入正确的序号)【答案】见试题解答内容【解答】解:∵正方形ABCD的边长为1,∴∠BCD=∠BAD=90°,∠CBD=45°,BD=,AD=CD=1.由旋转的性质可知:∠HGD=∠BCD=90°,∠H=∠CBD=45°,BD=HD,GD=CD,∴HA=BG=﹣1,∠H=∠EBG=45°,∠HAE=∠BGE=90°,∴△HAE和△BGE均为直角边为﹣1的等腰直角三角形,在Rt△AED和Rt△GED中,,∴Rt△AED≌Rt△GED(HL),∴∠AED=∠GED=(180°﹣∠BEG)=67.5°,AE=GE,∴∠AFE=180°﹣∠EAF﹣∠AEF=180°﹣45°﹣67.5°=67.5°=∠AEF,∴AE=AF.∵AE=GE,AF⊥BD,EG⊥BD,∴AF=GE且AF∥GE,∴四边形AEGF为平行四边形,∵AE=GE,∴平行四边形AEGF是菱形,故①正确;∵HA=﹣1,∠H=45°,∴AE=﹣1,∴△HED的面积=DH×AE=(﹣1)=1﹣,故②正确;∵四边形AEGF是菱形,∴∠AFG=∠GEA=2×67.5°=135°,故③正确;∵四边形AEGF是菱形,∴FG=AE=﹣1,∴BC+FG=1+﹣1=,故④不正确.故答案为:①②③.23.(2020•庆云县一模)如图,Rt△ABC中,∠BAC=90°,AB=,AC=2,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为.【答案】见试题解答内容【解答】解:作A关于BC的对称点A',连接AA',交BC于F,过A'作A'E⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长;Rt△ABC中,∠BAC=90°,AB=,AC=2,∴BC=,S△ABC=AB•AC=BC•AF,∴×2=5AF,∴AF=2,∴AA'=2AF=4,∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,∴∠A'=∠C,∵∠AEA'=∠BAC=90°,∴△AEA'∽△BAC,∴,∴,∴A'E=,即AD+DE的最小值是;故答案为:.24.(2020•德城区一模)某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原坡角为45°的传送带AB,调整为坡度i=1:的新传送带AC(如图所示).已知原传送带AB的长是4米.那么新传送带AC的长是8米.【答案】见试题解答内容【解答】解:过点A作AD⊥CB延长线于点D,∵∠ABD=45°,∴AD=BD,∵AB=4,∴AD=BD=AB sin45°=4×=4,∵坡度i=1:,∴==,则DC=4,故AC==8(m).故答案为:8.25.(2020•德城区模拟)如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为30°,看这栋高楼底部C的俯角为60°,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为160米.【答案】见试题解答内容【解答】解:过A作AD⊥BC,垂足为D.在Rt△ABD中,∵∠BAD=30°,AD=120m,∴BD=AD•tan30°=120×=40m,在Rt△ACD中,∵∠CAD=60°,AD=120m,∴CD=AD•tan60°=120×=120m,∴BC=BD+CD=40+120=160m.故答案为:160.26.(2019•乐陵市二模)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连结AG,CF下列结论:①△ABG≌△AFG;②BG=GC;③∠AGB=∠CFG;④;其中正确结论的序号是①②③.【答案】见试题解答内容【解答】解:∵△ADE沿AE对折至△AFE,∴AF=AD,∠AFE=∠D=90°,DE=EF,∵四边形ABCD是正方形,∴AB=AD,∴AB=AF,在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),故①正确;∴BG=FG,∵AB=6,CD=3DE,∴DE=2,CE=6﹣2=4,设BG=x,则CG=6﹣x,EG=x+2,在Rt△CEG中,CG2+CE2=EG2,即(6﹣x)2+42=(x+2)2,解得:x=3,∴BG=FG=CG=3,故②正确;∴∠GCF=∠GFC,由Rt△ABG和Rt△AFG得,∠AGB=∠AGF,由三角形的外角性质,∠BGF=∠GCF+∠GFC,∴∠AGB=∠GCF=∠GFC,故③正确∵S△GCE=×GC×EC=6∴S△CEF=×6=故④错误故答案为:①②③27.(2019•临邑县二模)定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△A n﹣1B n﹣1C n﹣1经γ(n,180°)变换后得△A n B n∁n,则点A1的坐标是(﹣)点A2019的坐标是(﹣,﹣).【答案】见试题解答内容【解答】解:根据图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.△ABC经γ(1,180°)变换后得△A1B1C1,A1坐标(﹣,﹣)△A1B1C1经γ(2,180°)变换后得△A2B2C2,A2坐标(﹣,)△A2B2C2经γ(3,180°)变换后得△A3B3C3,A3坐标(﹣,﹣)△A3B3C3经γ(4,180°)变换后得△A4B4C4,A4坐标(﹣,)△A4B4C4经γ(5,180°)变换后得△A5B5C5,A5坐标(﹣,﹣)依此类推……可以发现规律:A n纵坐标为:(﹣1)n•,当n是奇数,A n横坐标为:﹣,当n是偶数,A n横横坐标为:﹣,n=2019时,是奇数,A2019横坐标是﹣,纵坐标为﹣,故答案为:(﹣,﹣),(﹣,﹣).28.(2019•惠民县一模)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为6.【答案】见试题解答内容【解答】解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6,故答案为6.29.(2018•齐河县二模)如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”,如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′、B′分别是点A,B关于⊙O的反演点,A′B′的长2.【答案】见试题解答内容【解答】解:设OA交⊙O于C,连结B′C,如图2,∵OA′•OA=42,而r=4,OA=8,∴OA′=2,∵OB′•OB=42,∴OB′=4,即点B和B′重合,∵∠BOA=60°,OB=OC,∴△OBC为等边三角形,而点A′为OC的中点,∴B′A′⊥OC,在Rt△OA′B′中,sin∠A′OB′=,∴A′B′=4sin60°=2,故答案为:2.30.(2018•禹城市二模)如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0364)29.1m.【答案】见试题解答内容【解答】解:作DE⊥AB于E点,作AF⊥DE于F点,如图,设DE=xm,CE=2.4xm,由勾股定理,得x2+(2.4x)2=1952,解得x=75m,∴DE=75m,CE=2.4x=180m,∴EB=BC﹣CE=306﹣180=126m.∵AF∥DG,∴∠1=∠ADG=20°,∵tan∠1=tan∠ADG=tan20°=0.364,AF=EB=126m,tan∠1==0.364,∴DF=0.364AF=0.364×126=45.9,∴AB=FE=DE﹣DF=75﹣45.9≈29.1m.故答案为29.1m.31.(2018•乐陵市一模)已知:如图,矩形ABCD中,AB=5,BC=3,E为AD上一点,把矩形ABCD沿BE折叠,若点A恰好落在CD上点F处,则AE的长为.【答案】见试题解答内容【解答】解:由折叠的性质可知,BF=AB=5,EF=EA,在Rt△BCF中,CF==4,∴DF=DC﹣CF=1,设AE=x,则EF=x,DE=3﹣x,在Rt△DEF中,EF2=DE2+DF2,即x2=(3﹣x)2+12,解得,x=,故答案为:.32.(2018•德州一模)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有①②③④.【答案】见试题解答内容【解答】解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF﹣GF,DF=CD﹣FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确;③∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),故③正确;④∵=,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,如图所示:设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2,∴3S△EDH=13S△DHC,故④正确;故答案为:①②③④.33.(2018•武城县二模)在平面直角坐标系中,已知线段AB的两个端点分别是A(4,﹣1),B(1,1).将线段AB平移后得到线段AˊBˊ,若点Aˊ的坐标为(﹣2,2 ),则点Bˊ的坐标为(﹣5,4).【答案】见试题解答内容【解答】解:由于图形平移过程中,对应点的平移规律相同,由点A到点A′可知,点的横坐标减6,纵坐标加3,故点B′的坐标为(1﹣6,1+3),即(﹣5,4).故答案为:(﹣5,4).三.解答题(共10小题)34.(2020•德城区模拟)(1)如图1,正方形ABCD与正方形AEFG有公共的顶点A,连接DG,BE,AC,CF.①求证:DG=BE;②求的值;(2)将图1中的正方形AEFG旋转到图2的位置,当D,G,E在一条直线上,若DG=GE=3,求正方形ABCD的边长.【答案】见试题解答内容【解答】证明:(1)①∵四边形ABCD和四边形AEFG是正方形∴AD=AB,AG=AE,∠DAB=∠GAE=90°∴∠DAG=∠BAE,且AD=AB,AG=AE∴△ADG≌△ABE(SAS)∴DG=BE②如图1所示,连接AF,∵四边形ABCD和四边形AEFG是正方形∴∠CAD=∠F AG=45°,∠CDA=∠EGA=90°,CD=AD,AG=GF∴AC=AD,AF=AG,∠DAG=∠F AC∵,且∠DAG=∠F AC∴△DAG∽△CAF∴(2)如图2所示,连接BE,由①可知△ADG∽△ABE,∴DG=BE=3,由②得,∠CF A=∠DGA=180°﹣45°=135°,∴CF=6,∠CFG=90°,而∠GFE=90°,∴C、F、E共线,∵EF=AE=3,在Rt△CEA中,AC=3,∴AD=3,∴正方形的边长为3.35.(2020•庆云县模拟)如图11,在平面直角坐标系中,已知矩形OABC的顶点A在x轴上,顶点C在y 轴上,OA=8,OC=4,点P为对角线AC上一动点,过点P作PQ⊥PB,PQ交x轴于点Q.(1)tan∠ACB=;(2)在点P从点C运动到点A的过程中,的值是否发生变化?如果变化,请求出其变化范围;如果不变,请求出其值;(3)若将△QAB沿直线BQ折叠后,点A与点P重合,则PC的长为.【答案】见试题解答内容【解答】解:(1)∵四边形OABC是矩形,∴∠ABC=90°,BC=OA=8,AB=OC=4,在Rt△ABC中,tan∠ACB==,故答案为:;(2)的值不发生变化,其值为,理由:如图,过点P作PF⊥OA于F,FP的延长线交BC于E,∴PE⊥BC,四边形OFEC是矩形,∴EF=OC=4,设PE=a,则PF=EF﹣PE=4﹣a,在Rt△CEP中,tan∠ACB==,∴CE=2PE=2a,∴BE=BC﹣CE=8﹣2a=2(4﹣a),∵PQ⊥PB,∴∠BPE+∠FPQ=90°,∵∠BPE+∠PBE=90°,∴∠FPQ=∠EBP,∵∠BEP=∠PFQ=90°,∴△BEP∽△PFQ,∴=,∴,∴FQ=a,∴==;(3)如备用图,∵将△QAB沿直线BQ折叠后,点A与点P重合,∴BQ⊥AC,AD=PD=AP,在Rt△ABC中,AB=4,BC=8,根据勾股定理得,AC==4,∵∠BAC=∠DAB,∠ADB=∠ABC=90°,∴△ABC∽△ADB,∴,∴,∴AD=,∴PC=AC﹣AP=AC﹣2AD=4﹣2×=,故答案为:.36.(2020•乐陵市二模)某型号飞机的机翼形状如图,根据图示尺寸计算AC和AB的长度(精确到0.1米,≈1.41,≈1.73 ).【答案】见试题解答内容【解答】解:在Rt△CAE中,∠ACE=45°,∴AE=CE=5(m),∴AC=CE=5≈5×1.414≈7.1(m),在Rt△BFD中,∠BDF=30°,∴BF=FD•tan30°=5×≈5×≈2.89(m),∵DC=EF=3.4(m),∴AF=1.6m,则AB=2.89﹣1.6=1.29≈1.3(m),答:AC约为7.1米,BA约为1.3米.37.(2019•齐河县一模)(1)阅读理解。
最新北京中考数学真题模拟题汇编专题17:图形的变化之解答题

最新北京中考数学真题模拟题汇编专题17 图形的变化之解答题(14道题)参考答案与试题解析一.解答题(共14小题)1.(2019•门头沟区二模)如图,在等边三角形ABC中,点D为BC边上的一点,点D关于直线AB的对称点为点E,连接AD、DE,在AD上取点F,使得∠EFD=60°,射线EF与AC交于点G.(1)设∠BAD=α,求∠AGE的度数(用含α的代数式表示);(2)用等式表示线段CG与BD之间的数量关系,并证明.【答案】解:(1)∵△ABC是等边三角形,∴∠BAC=60°,∵∠BAD=α,∴∠FAG=60°﹣α,∵∠AFG=∠EFD=60°,∴∠AGE=180°﹣60°﹣(60°﹣α)=60°+α;(2)CG=2BD,理由是:如图,连接BE,过B作BP∥EG,交AC于P,则∠BPC=∠EGP,∵点D关于直线AB的对称点为点E,∴∠ABE=∠ABD=60°,∴∠EBD+∠C=180°,∴EB∥GP,∴四边形EBPG是平行四边形,∴BE=PG,∵∠DFG+∠C=120°+60°=180°,∴∠FGC+∠FDC=180°,∴∠ADB=∠BGP=∠BPC,∵AB=BC,∠ABD=∠C=60°,∴△ABD≌△BCP(AAS),∴BD=PC=BE=PG,∴CG=2BD.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,平行四边形的判定和性质,对称的性质,添加恰当的辅助线构造全等三角形是本题的关键.2.(2019•东城区二模)如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD.(1)求证:四边形AEBD是矩形;(2)连接CE交AB于点F,若∠ABE=30°,AE=2,求EF的长.【答案】(1)证明:∵AE∥BD,AE=BD,∴四边形AEBD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴∠ADB=90°,∴四边形AEBD是矩形.(2)解:∵四边形AEBD是矩形,∵∠ABE=30°,AE=2,∴BE=2,BC=4,∴EC=2,∵AE∥BC,∴△AEF∽△BCF,∴,∴EF EC.【点睛】本题考查相似三角形的判定和性质,矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(2019•东城区二模)如图,△ABC为等边三角形,点P是线段AC上一动点(点P不与A,C重合),连接BP,过点A作直线BP的垂线段,垂足为点D,将线段AD绕点A逆时针旋转60°得到线段AE,连接DE,CE.(1)求证:BD=CE;(2)延长ED交BC于点F,求证:F为BC的中点;(3)在(2)的条件下,若△ABC的边长为1,直接写出EF的最大值.【答案】证明:(1)∵将线段AD绕点A逆时针旋转60°得到线段AE,∴AD=AE,∠DAE=60°∴△ADE是等边三角形∵△ABC为等边三角形∴AB=AC,∠BAC=∠DAE=60°∴∠DAB=∠CAE,且AB=AC,AD=AE∴△ADB≌△AEC(SAS)∴BD=CE(2)如图,过点C作CG∥BP,交EF的延长线于点G,∵∠ADB=90°,∠ADE=60°∴∠BDG=30°∵CG∥BP∴∠G=∠BDG=30°,∵△ADB≌△AEC∴BD=CE,∠ADB=∠AEC=90°∴∠GEC=∠AEC﹣∠AED=30°∴∠G=∠GEC=30°∴GC=CE,∴CG=BD,且∠BDG=∠G,∠BFD=∠GFC∴△BFD≌△CFG(AAS)∴BF=FC∴点F是BC中点(3)如图,连接AF,∵△ABC是等边三角形,BF=FC∴AF⊥BC∴∠AFC=90°∴∠AFC=∠AEC=90°∴点A,点F,点C,点E四点在以AC为直径的圆上,∴EF最大为直径,即最大值为1【点睛】本题是几何变换综合题,考查了等边三角形的性质,全等三角形的判定和性质,旋转的性质,添加恰当辅助线构造全等三角形是本题的关键.4.(2019•平谷区二模)在等边三角形ABC外侧作射线AP,∠BAP=α,点B关于射线AP的对称点为点D,连接CD交AP于点E.(1)依据题意补全图形;(2)当α=20°时,∠ADC=40°;∠AEC=60°;(3)连接BE,求证:∠AEC=∠BEC;(4)当0°<α<60°时,用等式表示线段AE,CD,DE之间的数量关系,并证明.【答案】解:(1)如图,补全图形:(2)连接AD,∵三角形ABC为等边三角形,∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°,由对称可知,AD=AB,∴AD=AC,∵∠BAP=α=20°,∴∠DAB=40°,∴∠DAC=40°+60°=100°,∴∠ADC=∠ACD,∠AEC=∠ADC+∠DAE=40°+20°=60°,故答案为40,60;(3)由对称可知,∠BAE=∠DAE=α,∵AD=AB=AC,∴∠ADC,∠AEC=60°,∵∠ACB=60°,∠ACD=∠ADC=60°﹣α,∴∠BCE=α,∵∠ABC=60°,∠ABE=∠ADC=60°﹣α,∴∠BEC=60°,∴∠AEC=∠BEC;(4)当0°<α<60°时,CD=2DE+AE,证明:在CD上截取BG=BE,∵∠BEC=60°,∴△BGE是等边三角形,∴∠BGC=∠AED=120°,∵∠BCE=∠DAE=α,∴△BCG≌△DAE(AAS),∴AE=CG,∵EG=BE=DE,∴CD=2DE+CG,即CD=2DE+AE.【点睛】本题考查了轴对称,熟练运用等边三角形的性质是解题的关键.5.(2019•顺义区二模)已知:在△ABC中,∠BAC=90°,AB=AC.(1)如图1,将线段AC绕点A逆时针旋转60°得到AD,连结CD、BD,∠BAC的平分线交BD于点E,连结CE.①求证:∠AED=∠CED;②用等式表示线段AE、CE、BD之间的数量关系(直接写出结果);(2)在图2中,若将线段AC绕点A顺时针旋转60°得到AD,连结CD、BD,∠BAC的平分线交BD的延长线于点E,连结CE.请补全图形,并用等式表示线段AE、CE、BD之间的数量关系,并证明.【答案】证明:(1)①∵将线段AC绕点A逆时针旋转60°得到AD,∴AC=AD,∠DAC=60°∴∠BAD=∠BAC+∠CAD=150°,且AB=AC=AD ∴∠3=∠5=15°∵∠BAC=90°,AB=AC,AE平分∠BAC∴∠1=∠2=45°,∠ABC=∠ACB=45°又∵AE=AE,∴△ABE≌△ACE(SAS)∴∠3=∠4=15°∴∠6=∠7=30°∴∠DEC=∠6+∠7=60°∵∠AED=∠3+∠1=60°∴∠AED=∠CED②BD=2CE+AE理由如下:过点A作AH⊥BD于点H,∵∠EBC=∠ECB∴BE=CE,∵∠AED=60°,AH⊥BD∴AE=2EH∵AB=AD,AH⊥BD∴BD=2BH=2(BE+EH)=2BE+AE=2EC+AE(2)补全图形如图,2CE﹣AE=BD理由如下:如图2,以A为顶点,AE为一边作∠EAF=60°,AF交DB延长线于点F.∵∠BAC=90°,AB=AC,AE平分∠BAC∴∠BAE=∠CAE=45°,∠ABC=∠ACB=45°.∵将线段AC绕点A逆时针旋转60°得到AD,∴AC=AD,∠DAC=60°∴∠DAE=∠DAC﹣∠CAE=15°,AB=AD∴∠ABD=∠ADB,∠BAD=30°∴∠ABD=∠ADB=75°∴∠AED=∠ADB﹣∠DAE=60°∵∠EAF=60°又∵∠EAF=60°,∴∠F=60°∴△AEF是等边三角形.∴AE=AF=EF.∵AC=AD,∠CAE=∠DAF=45°,AE=AF,∴△CAE≌△DAF(SAS).∴CE=DF.∵AB=AC,∠BAE=∠CAE=45°,AE=AE,∴△BAE≌△CAE(SAS).∴BE=CE.∴BE=CE.∵DF+BE﹣EF=BD,∴2CE﹣AE=BD【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,添加恰当的辅助线构造全等三角形是本题的关键.6.(2019•石景山区二模)如图在△ABC中,∠ACB=90°,AC=BC,E为外角∠BCD平分线上一动点(不与点C重合),点E关于直线BC的对称点为F,连接BE,连接AF并延长交直线BE于点G.(1)求证:AF=BE;(2)用等式表示线段FG,EG与CE的数量关系,并证明.【答案】解:(1)如图,连接CF.∵,∠ACB=90°,CE平分∠BCD,∴∠BCE=45°,∵点E、F关于直线BC对称,∴CE=CF,∠FCB=∠BCE=45°,∴∠FCA=45°,在△FCA与△ECB中,∴△FCA≌△ECB(SAS),∴AF=BE;(2)FG,EG与CE的数量关系:GE2+GF2=2CE2,证明:∵△FCA≌△ECB,∴∠AFC=∠BEC,∵∠AFC+∠CFG=180°,∴∠CFG+∠CEG=180°,∴∠ECF+∠EGF=180°,∵∠ECF=45°+45°=90°,∴∠EGF=90°,连接EF,∴GE2+GF2=EF2,∵CE=CF,∴CE2+CF2=2CE2=EF2,∴GE2+GF2=2CE2.【点睛】本题考查了轴对称的性质与等腰直角三角形的性质,熟练运用勾股定理、三角形全等的判定与性质是解题的关键.7.(2019•朝阳区一模)如图,在Rt△ABC中,∠A=90°,AB=AC,将线段BC绕点B逆时针旋转α°(0<α<180),得到线段BD,且AD∥BC.(1)依题意补全图形;(2)求满足条件的α的值;(3)若AB=2,求AD的长.【答案】解:(1)满足条件的点D和D′如图所示.(2)作AF⊥BC于F,DE⊥BC于E.则四边形AFED是矩形.∴AF=DE,∠DEB=90°,∵AB=AC,∠BAC=90°,AF⊥BC,∴BF=CF,∴AF BC,∵BC=BD,AF=DE,∴DE BD,∴∠DBE=30°,∴∠D′BC=120°+30°=150°,∴满足条件的α的值为30°或150°.(3)由题意AB=AC=2,∴BC=2,∴AF=BF=DE,∴BE DE,∴AD,AD′=2().【点睛】本题考查旋转变换,等腰直角三角形的性质等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题.,属于中考常考题型.8.(2019•石景山区一模)如图,在等边△ABC中,D为边AC的延长线上一点(CD<AC),平移线段BC,使点C移动到点D,得到线段ED,M为ED的中点,过点M作ED的垂线,交BC于点F,交AC于点G.(1)依题意补全图形;(2)求证:AG=CD;(3)连接DF并延长交AB于点H,用等式表示线段AH与CG的数量关系,并证明.【答案】解:(1)补全的图形如图1所示.(2)证明:∵△ABC是等边三角形,∴AB=BC=CA.∠ABC=∠BCA=∠CAB=60°.由平移可知ED∥BC,ED=BC.∴∠ADE=∠ACB=60°.∵∠GMD=90°,如图1,∴DG=2DM=DE.∵DE=BC=AC,∴DG=AC.∴AG=CD.(3)线段AH与CG的数量关系:AH=CG.证明:如图2,连接BE,EF.∵ED=BC,ED∥BC,∴四边形BEDC是平行四边形.∴BE=CD,∠CBE=∠ADE=∠ABC.∵GM垂直平分ED,∴EF=DF.∴∠DEF=∠EDF.∵ED∥BC,∴∠BFE=∠DEF,∠BFH=∠EDF.∴∠BFE=∠BFH.∵BF=BF,∴△BEF≌△BHF(ASA).∴BE=BH=CD=AG.∵AB=AC,∴AH=CG.【点睛】本题考查平移变换、等边三角形的性质、三角形全等的性质和判定、平行四边形的判定和性质等知识,解题的关键灵活应用所学知识解决问题,正确作出辅助线构造全等三角形是解题的关键,属于中考常考题型.9.(2019•西城区一模)如图,在△ABC中,∠ABC=90°,BA=BC.将线段AB绕点A逆时针旋转90°得到线段AD,E是边BC上的一动点,连接DE交AC于点F,连接BF.(1)求证:FB=FD;(2)点H在边BC上,且BH=CE,连接AH交BF于点N.①判断AH与BF的位置关系,并证明你的结论;②连接CN.若AB=2,请直接写出线段CN长度的最小值.【答案】(1)证明:如图1中,∵BA=BC,∠ABC=90°,∴∠BAC=∠ACB=45°,∵线段AB绕点A逆时针旋转90°得到线段AD,∴∠BAD=90°,BA=AD,∴∠FAD=∠FAB=45°,∵AF=AF,∴△FAD≌△FAB(SAS),∴BF=DF.(2)①解:结论:AH⊥BF.理由:如图2中,连接CD.∵∠ABC+∠BAD=180°,∴AD∥BC,∵AD=AB=BC,∴四边形ABCD是平行四边形,∵∠ABC=90°,∴四边形ABCD是矩形,∵AB=BC,∴四边形ABCD是正方形,∵BA=CD,∠ABH=∠DCE,BH=CE,∴△ABH≌△DCE(SAS),∴∠BAH=∠CDE,∵∠FCD=∠FCB=45°,CF=CF,CD=CB,∴△CFD≌△CFB(SAS),∴∠CDF=∠CBF,∴∠BAH=∠CBF,∵∠CBF+∠ABF=90°,∴∠BAH+∠ABF=90°,∴∠ANB=90°,∴AH⊥BF.②如图3中,取AB的中点O,连接ON,OC.∵∠ANB=90°,AO=OB,∴ON AB=1,在Rt△OBC中,OC,∵CN≥OC﹣ON,∴CN1,∴CN的最小值为1.【点睛】本题属于几何变换综合题,考查了正方形的判定和性质,全等三角形的判断和性质,三角形的三边关系等知识,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.10.(2019•平谷区一模)在△ABC中,∠ABC=120°,线段AC绕点A逆时针旋转60°得到线段AD,连接CD,BD交AC于P.(1)若∠BAC=α,直接写出∠BCD的度数(用含α的代数式表示);(2)求AB,BC,BD之间的数量关系;(3)当α=30°时,直接写出AC,BD的关系.【答案】解:(1)∵线段AC绕点A逆时针旋转60°得到线段AD,∴△ACD是等边三角形,∴∠ACD=60°,∵∠ABC=120°,∴∠BAC+∠BCA=60°,∴∠BCD=∠ACD+∠BCA=60°+60°﹣α=120°﹣α,即∠BCD=120°﹣α.(2)BD=AB+BC.如图1,延长BA使AE=BC,连接DE.由(1)知△ADC是等边三角形,∴AD=CD.∵∠DAB+∠DCB=∠DAB+∠DAE=180°,∴∠DCB=∠DAE.∴△ADE≌△CDB(SAS).∴BD=BE.∴BD=AB+BC.(3)如图2,AC,BD的数量关系是:;位置关系是:AC⊥BD于点P.理由如下:∵∠BAC=30°,∠ABC=120°,∴∠ACB=30°,∴AB=BC,∵AD=DC,∴BD垂直平分AC,∴∠ABD=60°,∠DAB=90°,∴,∴.【点睛】本题考查的是图形旋转的性质及等边三角形的判定与性质,熟知旋转前、后的图形全等是解答此题的关键.11.(2019•通州区一模)如图,在等边△ABC中,点D是线段BC上一点.作射线AD,点B关于射线AD的对称点为E.连接CE并延长,交射线AD于点F.(1)设∠BAF=α,用α表示∠BCF的度数;(2)用等式表示线段AF、CF、EF之间的数量关系,并证明.【答案】解:(1)连接AE.∵点B关于射线AD的对称点为E,∴AE=AB,∠BAF=∠EAF=α,∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠EAC=60°﹣2α,AE=AC,∴[180°﹣(60°﹣2α)]=60°+α,∴∠BCF=∠ACE﹣∠ACB=60°+α﹣60°=α.(2)结论:AF=EF+CF.证明:如图,作∠FCG=60°交AD于点G,连接BF.∵∠BAF=∠BCF=α,∠ADB=∠CDF,∴∠ABC=∠AFC=60°,∴△FCG是等边三角形,∴GF=FC,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°,∴∠ACG=∠BCF=α,在△ACG和△BCF中,,∴△ACG≌△BCF.∴AG=BF,∵点B关于射线AD的对称点为E,∴BF=EF,∴AF﹣AG=GF,∴AF=EF+CF.【点睛】本题考查作图﹣轴对称变换,全等三角形的判定和性质,等边三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.12.(2019•门头沟区一模)如图,∠AOB=90°,OC为∠AOB的平分线,点P为OC上一个动点,过点P 作射线PE交OA于点E.以点P为旋转中心,将射线PE沿逆时针方向旋转90°,交OB于点F.(1)根据题意补全图1,并证明PE=PF;(2)如图1,如果点E在OA边上,用等式表示线段OE,OP和OF之间的数量关系,并证明;(3)如图2,如果点E在OA边的反向延长线上,直接写出线段OE,OP和OF之间的数量关系.【答案】解:(1)补全图形(如图1);理由:如图1中,作PQ⊥PO交OB于Q∴∠OPQ=∠EPF=90°∴∠EPO=∠FPQ,又∵OC平分∠AOB,∠AOB=90°,∴∠EOP=∠POB=45°,又∵∠POQ+∠OQP=90°,∴∠PQO=45°,∴∠POE=∠PQF=∠POQ,∴PO=PQ.∴△EPO≌△FPQ(ASA),∴PE=PF,(2)结论:线段OE,OP和OF之间的数量关系是OF+OE OP.理由:如图1中,∵△EPO≌△FPQ,∴OE=FQ.又∵OQ=OF+FQ=OF+OE,又∵OQ OP,∴OF+OE OP.(3)结论:线段OE,OP和OF之间的数量关系是OF﹣OE OP.理由:如图1中,作PQ⊥PO交OB于Q∴∠OPQ=∠EPF=90°∴∠EPO=∠FPQ,又∵OC平分∠AOB,∠AOB=90°,∴∠AOP=∠POB=45°,又∵∠POQ+∠OQP=90°,∴∠PQO=45°,∴∠POA=∠PQO=∠POQ=45°,∴PO=PQ,∠POE=∠PQE=135°,∴△EPO≌△FPQ(ASA),∴PE=PF,OE=FQ.又∵OQ=OF﹣FQ=OF﹣OE,又∵OQ OP,∴OF﹣OE OP.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.13.(2019•延庆区一模)在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+3a﹣2(a≠0)的对称轴与x轴交于点A,将点A向右平移3个单位长度,向上平移2个单位长度,得到点B.(1)求抛物线的对称轴及点B的坐标;(2)若抛物线与线段AB有公共点,结合函数图象,求a的取值范围.【答案】解:(1)抛物线的对称轴为直线x2,∴点A的坐标为(2,0).∵将点A向右平移3个单位长度,向上平移2个单位长度,得到点B,∴点B的坐标为(2+3,0+2),即(5,2).(2)分a>0和a<0两种情况考虑:①当a>0时,如图1所示.∴25a﹣20a+3a﹣2≥2,∴a;②当a<0时,如图2所示.∵y=ax2﹣4ax+3a﹣2=a(x﹣2)2﹣a﹣2,∴,∴a≤﹣2.综上所述:a的取值范围为a或a≤﹣2.【点睛】本题考查了坐标与图形的变化﹣平移:掌握点平移的坐标规律和二次函数的性质以及二次函数图象上点的坐标特征,解题的关键是:(1)利用二次函数的性质,求出点A的坐标;(2)分a>0和a<0两种情况,利用数形结合找出关于a的一元一次不等式(或一元一次不等式组).14.(2019•北京模拟)在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°①如图1,∠DCB=60°②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2)如图3,若点P在线段CB的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP绕点D 逆时针旋转2α得到线段DF,连结BF,请直接写出DE.BF、BP三者的数量关系(不需证明)【答案】解:(1)①∵∠A=30°,∠ACB=90°,∴∠B=60°,∵AD=DB,∴CD=AD=DB,∴△CDB是等边三角形,∴∠DCB=60°.②补全图形如图2,结论:CP=BF.理由如下:∵∠ACB=90°,D是AB的中点,DE⊥BC,∠A=α,∴DC=DB=AD,DE∥AC,∴∠A=∠ACD=α,∠EDB=∠A=α,BC=2CE,∴∠BDC=∠A+∠ACD=2α,∵∠PDF=2α,∴∠FDB=∠CDP=2α﹣∠PDB,∵线段DP绕点D逆时针旋转2α得到线段DF,∴DP=DF,在△DCP和△DBF中,∴△DCP≌△DBF(SAS),∴CP=BF,CP=BF.(2)结论:BF﹣BP=2DE•tanα.理由:如图3,∵∠ACB=90°,D是AB的中点,DE⊥BC,∠A=α,∴DC=DB=AD,DE∥AC,∴∠A=∠ACD=α,∠EDB=∠A=α,BC=2CE,∴∠BDC=∠A+∠ACD=2α,∵∠PDF=2α,∴∠FDB=∠CDP=2α+∠PDB,∵线段DP绕点D逆时针旋转2α得到线段DF,∴DP=DF,在△DCP和△DBF中,∴△DCP≌△DBF(SAS),∴CP=BF,而CP=BC+BP,∴BF﹣BP=BC,在Rt△CDE中,∠DEC=90°,∴tan∠DCE,∴CE=DE tanα,∴BC=2CE=2DE tanα,即BF﹣BP=2DE tanα.【点睛】本题考查了三角形外角性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP≌△DBF是解此题的关键,综合性比较强,证明过程类似.。
(6)2018-2020年北京中考数学复习各地区模拟试题分类(6)——一次函数参考答案
②点 B 的纵坐标表示的实际意义是乙槽内液面恰好与圆柱形铁块顶端相平(或铁块的高度);
故答案为:乙;乙槽内液面恰好与圆柱形铁块顶端相平(或铁块的高度);
16.【解答】解:∵直线 y=x 沿 y 轴向上平移 2 个单位长度,
∴所得直线的函数关系式为:y=x+2.
则 A(0,2),B(2,0),
∴AB=2 2,
即货车出发 3.9 小时后,轿车追上货车,故选项 C 错误,
故选:B.
13.【解答】解:由图象可得,
活动中心与小宇家相距 22 千米,故选项 A 正确,
小宇在活动中心活动时间为 3﹣1=2 小时,故选项 B 正确,
他从活动中心返家时,步行用了(22﹣20)÷5=0.4 小时,故选项 C 正确,
小宇返回家的时间为:0.4+0.4=0.8 小时,因为 0.8<1,则小宇可以再 12 点之前回到家,故选项 D 错误,
此选项正确;
其中所有的正确结论是:①④;
故选:A.
11.【解答】解:甲的速度=
420 6
=70
米/分,故
A
正确,不符合题意;
设乙的速度为 x 米/分.则有,660+24x﹣70×24=420,
解得 x=60,故 B 正确,本选项不符合题意,
70×30=2100,故选项 C 正确,不符合题意,
24×60=1440 米,乙距离景点 1440 米,故 D 错误,
故重物为 5kg 时弹簧总长 L 是 25cm,
故选:B.
3.【解答】解:①观察图形可知,方式一每月主叫时间为 300 分钟时,月使用费为 88 元,题干原来的说法
是正确的;
②当 x≥200 时,设方式二的一次函数解析式为 y=kx+b,依题意有
湖南中考数学复习各地区2018-2020年模拟试题分类(长沙专版)(9)——图形的变化(含解析)
湖南中考数学复习各地区2018-2020年模拟试题分类(长沙专版)(9)——图形的变化一.选择题(共19小题)1.(2020•天心区模拟)在平面直角坐标系中,将点(﹣2,3)先向右平移4个单位长度,再向下平移2个单位长度,得到的点的坐标为( )A .(2,5)B .(﹣6,5)C .(2,1)D .(﹣6,1)2.(2020•雨花区模拟)Rt △ABC ,已知∠C =90,∠B =50°,点D 在边BC 上,BD =2CD (如图).把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m =( )A .80B .80或120C .60或120D .80或1003.(2020•雨花区校级模拟)如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P ,F是CD 上一点,连接AF 分别交BD ,DE 于点M ,N ,且AF ⊥DE ,连接PN ,则以下结论中:①F 为CD 的中点;①3AM =2DE ;①tan ∠EAF =34;①PN =2√6515;①△PMN ∽△DPE ,正确的结论个数是( ) A .1 B .2 C .3 D .44.(2020•长沙模拟)如图,正方形ABCD 中,以BC 为边向正方形内部作等边△BCE .连接AE .DE ,连接BD 交CE 于F ,下列结论:①∠AED =150°;①△DEF ∽△BAE ;①tan ∠ECD =DD DD ;①△BEC 的面积:△BFC 的面积=(√3+1):2,其中正确的结论有( )个.A .4B .3C .2D .15.(2020•长沙模拟)如图,在平面直角坐标系中,Rt △ABC 的三个顶点的坐标分别为A (1,1),B (4,3),C (4,1),如果将Rt △ABC 绕点C 按顺时针方向旋转90°得到Rt △A ′B ′C ′,那么点A 的对应点A '的坐标是( )A .(3,3)B .(3,4)C .(4,3)D .(4,4) 6.(2020•岳麓区模拟)在△ABC 中,AD 是BC 边上的高,∠C =45°,sin B =13,AD =1.则△ABC 的面积为( )A .1+2√2B .1+√102C .1+2√22D .2√2−17.(2019•开福区校级三模)如图,△ABC 中,∠BAC =45°,∠ACB =30°,将△ABC 绕点A 顺时针旋转得到△AB 1C 1,当点C 1、B 1、C 三点共线时,旋转角为α,连接BB 1,交AC 于点D ,下面结论:①△AC 1C 为等腰三角形;①△AB 1D ∽△BCD ;①α=135°;①CA =CB 1;①DD D 1D =√6−√22中,正确结论的个数是( )A .2个B .3个C .4个D .5个8.(2019•滨海新区一模)如图,点O 是等边三角形ABC 内的一点,∠BOC =150°,将△BCO 绕点C 按顺时针旋转60°得到△ACD ,则下列结论不正确的是( )A .BO =ADB .∠DOC =60° C .OD ⊥AD D .OD ∥AB9.(2019•雨花区校级二模)如图,考古队在A 处测得古塔BC 顶端C 的仰角为45°,斜坡AD 长10米,坡度i =3:4,BD 长12米,请问古塔BC 的高度为( )米.A .25.5B .26C .28.5D .20.510.(2019•开福区校级模拟)如图,某建筑物AC 直立于水平地面,BC =9m ,∠B =30°,要建造楼梯,使每级台阶高度不超过20cm ,那么此楼梯至少要建( )级(最后一级不足20cm 时,按一级计算,√3≈1.732)A .27B .26C .25D .2411.(2020•岳麓区校级二模)如图,AB 为①O 的直径,点P 为AB 延长线上的一点,过点P 作①O 的切线PE ,切点为M ,过A 、B 两点分别作PE 的垂线AC 、BD ,垂足分别为C 、D ,连接AM ,则下列结论正确的个数是( )①AM 平分∠CAB ;①AM 2=AC •AB ;①若AB =4,∠APE =30°,则DD̂的长为D 3; ①若AC =3,BD =1,则有DD =DD =√3.A .1B .2C .3D .412.(2020•雨花区校级一模)在平面直角坐标系中,将点(﹣4,3)向右平移2个单位,再向下平移2个单位后,得到的点的坐标为( )A .(﹣6,1)B .(﹣2,1)C .(﹣6,5)D .(﹣2,5)13.(2020•岳麓区校级模拟)如图,点P 是矩形ABCD 内一点,连接P A 、PB 、PC 、PD ,已知AB =3,BC=4,设△P AB 、△PBC 、△PCD 、△PDA 的面积分别为S 1、S 2、S 3、S 4,以下判断:①P A +PB +PC +PD 的最小值为10;①若△P AB ≌△PCD ,则△P AD ≌△PBC ;①若S 1=S 2,则S 3=S 4;①若△P AB ∽△PDA ,则P A =2.4.其中正确的是( )A .①①①B .①①①C .①①D .①①①①14.(2020•雨花区校级一模)如图,直线a ∥b ∥c ,则下列结论不正确的为( )A .DD DD =DD DDB .DD DD =DD DDC .DD DD =DD DD D .DD DD =DD DD15.(2020•岳麓区校级模拟)已知某几何体的三视图如图所示,则这个几何体是( )A .B .C .D .16.(2020•长沙模拟)“五一”期间,小明和妈妈到某景区游玩,小明想利用所学的数学知识,估测景区里的观景塔DE 的高度.他从点D 处的观景塔出来走到点A 处.沿着斜坡AB 从A 点走了8米到达B 点,此时回望观景塔,更显气势宏伟.在B 点观察到观景塔顶端的仰角为45°且AB ⊥BE ,再往前走到C 处,观察到观景塔顶端的仰角30°,测得BC 之间的水平距离BC =10米,则观景塔的高度DE 约为( )米.(√2=1.41,√3=1.73)A .14B .15C .19D .2017.(2020•天心区校级模拟)把△ABC 各顶点的横坐标都乘以﹣1,纵坐标都不变,所得图形是下列答案中的( ) A . B .C .D .18.(2019•长沙模拟)如图,AC ⊥BC ,AC =BC ,D 是BC 上一点,连接AD ,与∠ACB 的平分线交于点E ,连接BE ,若S △ACE =67,S △BDE =314,则AC =( ) A .12 B .1 C .32 D .219.(2019•岳麓区校级三模)如图,以原点O 为位似中心,把△ABO 缩小为原来的12后得到△A 'B 'O ,若B点坐标为(4,﹣5),则B '的坐标为( )A .( 2,﹣2.5)B .(﹣2,2.5)C .( 2,﹣2.5)或 (﹣2,2.5)D .( 2,2.5)或 (﹣2,2.5)二.填空题(共12小题)20.(2020•岳麓区校级二模)在平面直角坐标系中,将点A (﹣2,3)向右平移4个单位长度,再向下平移2个单位长度,那么平移后对应的点A ′的坐标是 .21.(2020•雨花区校级一模)如图,△ABC 中,∠BAC =45°,∠ACB =30°,将△ABC 绕点A 顺时针旋转得到△A 1B 1C 1,当C ,B 1,C 1三点共线时,旋转角为α,连接BB 1,交于AC 于点D ,下面结论: ①△AC 1C 为等腰三角形;①CA =CB 1;①α=135°;①△AB 1D ∽△ACB 1;①DD D 1D =√6−√22中,正确的结论的序号为 .22.(2020•望城区模拟)如图,在矩形ABCD 中,AB =3,BC =4,点E 为射线CB 上一动点(不与点C 重合),将△CDE 沿DE 所在直线折叠,点C 落在点C ′处,连接AC ′,当△AC ′D 为直角三角形时,CE 的长为 .23.(2020•雨花区校级模拟)如图,正△ABC 的边长为4,过点B 的直线l ⊥AB ,且△ABC 与△A ′BC ′关于直线l 对称,D 为线段BC ′上一动点,则AD +CD 的最小值是 .24.(2020•望城区模拟)如图,△ABC 中,以点B 为圆心,任意长为半径作弧,分别交AB ,BC 于E 、F点,分别以点E 、F 为圆心,以大于12EF 的长为半径作弧,两弧交于点G ,做射线BG ,交AC 于点D ,过点D 作DH ∥BC 交AB 于点H .已知HD =3,BC =7,则AH 的长为 .25.(2020•岳麓区校级模拟)我国魏晋时期数学家刘徽编撰的最早一部测量数学著作《海岛算经》中有一题:今有望海岛,立两表齐高三丈,前后相去千步,令后表与前表参相直.从前表却行一百二十三步,人目着地,取望岛峰,与表末参合.从后表却行一百二十七步,人目着地,取望岛峰,亦与表末参合.问岛高几何?译文:今要测量海岛上一座山峰AH 的高度,在B 处和D 处竖立标杆BC 和DE ,标杆的高都是3丈,B 和D 两处相隔1000步(1丈=10尺,1步=6尺),并且AH ,CB 和DE 在同一平面内.从标杆BC 后退123步的F 处可以看到顶峰A 和标杆顶端C 在同一直线上;从标杆ED 后退127步的G 处可以看到顶峰A 和标杆顶端E 在同一直线上.则山峰AH 的高度是 .26.(2020•开福区校级三模)如图,为测量某物体AB 的高度,在D 点测得A 点的仰角为30°,朝物体AB方向前进20m 到达点C ,再次测得A 点的仰角为60°,则物体的高度为 m .27.(2020•天心区校级模拟)如图,在平行四边形ABCD 中,AF 交DC 于E ,交BC 的延长线于F ,若DD DD =13,AD =4厘米,则CF = 厘米.28.(2019•岳麓区校级二模)如图,矩形AOBC 的边OA ,OB 分别在x 轴,y 轴上,点C 的坐标为(﹣2,4),将△ABC 沿AB 所在直线对折后,点C 落在点D 处,则点D 的坐标为 .29.(2020•雨花区模拟)如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF ,下列结论:①∠BAE =30°;①△ABE ∽△AEF ;①CD =3CF ;①S △ABE =4S △ECF .其中正确的有 (填序号).30.(2020•雨花区校级模拟)如图,在△ABC 中,AB =AC ,sin B =45,延长BC 至点D ,使CD :AC =1:3,则tan ∠CAD = .31.(2020•天心区校级模拟)如图,在矩形ABCD 中,AB =4,BC =3,点P 、Q 分别为直线AB 、BC 上的动点,且PD ⊥PQ ,当△PDQ 为等腰三角形时,则AP 的长为 .三.解答题(共9小题)32.(2020•雨花区模拟)在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学测量树的高度时,发现树的影子有一部分0.2米落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是4.62米”;小强说:“要是没有台阶遮挡的话,树的影子长度肯定比4.62米要长”.(1)你认为小玲和小强的说法对吗?(2)请根据小玲和小强的测量数据计算树的高度;(3)要是没有台阶遮挡的话,树的影子长度是多少?33.(2019•岳麓区校级二模)今年“五一”假期,某教学活动小组组织一次登山活动,他们从山脚下A点出发沿斜坡AB到达B点,再从B点沿斜坡BC到达山顶C点,路线如图所示,斜坡AB的长为200√13米,斜坡BC的长为200√2米,坡度是1:1,已知A点海拔121米,C点海拔721米(1)求B点的海拔;(2)求斜坡AB的坡度;(3)为了方便上下山,若在A到C之间架设一条钢缆,求钢缆AC的长度.34.(2018•雨花区模拟)如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,G在BC上移动,P是线段DF的中点,连接PG,PC.(1)求∠DBF的大小;(2)证明:DB∥PG;(3)若∠BEF=60°,求PG:PC的值.35.(2018•长沙模拟)某校九年级数学兴趣小组的同学进行社会实践活动时,象利用所学的解直角三角形的知识测量某大楼高度,如图所示,大楼AB的正前方有一斜坡CD,坡长CD=4米,坡角∠DCE=30°,他们先在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°(1)求斜坡CD的高度DE;(2)求楼AB的高度(结果保留根号).36.(2020•岳麓区校级二模)如图,热气球的探测器显示,从热气球底部A处看一栋高楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球A处与高楼的水平距离为120m.(1)求∠ABC的角度;(2)这栋高楼有多高?(结果保留根号)37.(2020•岳麓区校级三模)如图是长沙九龙仓国际金融中心,位于长沙市黄兴路与解放路交汇处的东北角,投资160亿元人民币,总建筑面积达98万平方米,其主楼BC是目前湖南省第一高楼,大楼顶部有一发射塔AB,已知和BC处于同一水平面上有一高楼DE,其高度为332米,在楼DE底端D点测得A 的仰角为71.5°,在高楼DE的顶端E点测得B的仰角为37°,B,E之间的距离为200米.(1)求九龙仓国际金融中心主楼BC的高度(精确到1米);(2)求发射塔AB的高度(精确到1米);(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin71.5°≈0.95,cos71.5°≈0.32,tan71.5°≈3.00)38.(2020•雨花区校级一模)如图,AB为①O的直径,点C、D在①O上,AC=3,BC=4,且AC=AD,弦CD交直径AB于点E.(1)求证:△ACE∽△ABC;(2)求弦CD的长.39.(2020•长沙模拟)如图,四边形ABCD中,AD∥BC,AB=CD,BD平分∠ABC,BD⊥DC.(1)求出sin∠DBC的值;(2)若AD=2,把∠BOC绕点O顺时针旋转θ(0°≤θ≤60°),交AB于点M,交BC于点N(如图),求证:四边形OMBN的面积为一个定值,并求出这个定值.40.(2020•长沙模拟)如图,某货船以24海里/时的速度将一批货物从A处运往正东方向的M处,在点A 处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上.(1)求∠ACB的度数;(2)已知在C岛周围9海里的区域内有暗礁,若继续向正东方向航行,该货船有无触礁危险?试说明理由.(参考:√2≈1414、√3≈1.732)湖南中考数学复习各地区2018-2020年模拟试题分类(长沙专版)(9)——图形的变化参考答案与试题解析一.选择题(共19小题)1.【答案】C【解答】解:将点P(﹣2,3)向右平移4个单位长度,再向下平移2个单位长度所得到的点坐标为(﹣2+4,3﹣2),即(2,1),故选:C.2.【答案】B【解答】解:当把△ABC绕着点D逆时针旋转m(0<m<180)度后,点B恰好落在AB边上的B′点位置,如图1,∴∠BDB′=m,DB′=DB,∴∠1=∠B=50°,∴∠BDB′=180°﹣∠1﹣∠B=80°,即m=80°;当把△ABC绕着点D逆时针旋转m(0<m<180)度后,点B恰好落在AC边上的B′点位置,如图2,∴∠BDB′=m,DB′=DB,∵BD=2CD,∴DB′=2CD,∴∠CB′D=30°,则∠B′DC=60°,∴∠BDB′=180°﹣∠B′DC=120°,即m=120°,综上所述,m的值为80°或120°.故选:B.3.【答案】D【解答】解:①∵正方形ABCD的边长为2,点E是BC的中点,∴AB=BC=CD=AD=2,∠ABC=∠C=∠ADF=90°,CE=BE=1,∵AF⊥DE,∴∠DAF+∠ADN=∠ADN+∠CDE=90°,∴∠DAN=∠EDC,在△ADF与△DCE中,{DDD =∠D DD =DD DDDD =DDDD,∴△ADF ≌△DCE (ASA ),∴DF =CE =1,AF =DE ,∴DF =CF .故①正确;①∵AB ∥DF ,∴△ABM ∽△FDM ,∴DD DD =DD DD =21, ∴DD DD =23. ∴DD DD =23,即3AM =2DE .故①正确;①由勾股定理可知:AF =DE =AE =√12+22=√5,∵12×AD ×DF =12×AF ×DN ,∴DN =2√55, ∴EN =3√55,AN =√DD 2−DD 2=4√55, ∴tan ∠EAF =DD DD =34,故①正确, ①作PH ⊥AN 于H .∵BE ∥AD ,∴DD DD =DD DD =2, ∴P A =2√53, ∵PH ∥EN ,∴DD DD =DD DD =23, ∴AH =8√515,HN =4√515,∴PN =√DD 2+DD 2=2√6515, 故①正确,①∵PN ≠DN ,∴∠DPN ≠∠PDE ,∴△PMN 与△DPE 不相似,故①错误.故选:D .4.【答案】A【解答】解:∵△BEC 为等边三角形∴∠EBC =∠BCE =∠ECB =60°,AB =EB =EC =BC =DC∵四边形ABCD 为正方形∴∠ABE =∠ECD =90°﹣60°=30°∴在△ABE 和△DCE 中,AB =DC∠ABE =∠ECDBE =EC∴△ABE ≌△DCE (SAS )∴∠AEB =∠DEC =180°−30°2=75° ∴∠AED =360°﹣60°﹣75°×2=150°故①正确由①知AE =ED∴∠EAD =∠EDA =15°∴∠EDF =45°﹣15°=30°∴∠EDF =∠ABE由①知∠AEB =∠DEC ,∴△DEF ~△BAE故①正确过点F 作FM ⊥DC 交于M ,如图设DM =x ,则FM =x ,DF =√2x∵∠FCD =30°∴MC =√3x则在Rt △DBC 中,BD =√2⋅(√3+1)D∴BF =BD ﹣DF =√2⋅(√3+1)D −√2D则DD DD =√2D √2(√3+1−1)D=√33 ∵tan ∠ECD =tan30°=√33∴tan ∠ECD =DD DD 故①正确如图过点E 作EH ⊥BC 交于H ,过F 作FG ⊥BC 交于G ,得由①知MC =√3D ,MC =FG∴FG =√3D∵BC =DC =(√3+1)x∴BH =√3+12D∵∠EBC =60°∴EH =√3⋅√3+12x , ∴D △DDDD △DDD =12⋅DD ⋅DD 12⋅DD ⋅DD =DD DD =√3⋅√3+12D √3D =√3+12 故①正确故选:A .5.【答案】D【解答】解:旋转后的Rt△A′B′C′如图所示,观察图象可知A′(4,4).故选:D.6.【答案】C【解答】解:在Rt△ABD中,∵sin B=DDDD=13,又∵AD=1,∴AB=3,∵BD2=AB2﹣AD2,∴BD=√32−12=2√2.在Rt△ADC中,∵∠C=45°,∴CD=AD=1.∴BC=BD+DC=2√2+1,∴S△ABC=12•BC•AD=12×(2√2+1)×1=1+2√22,故选:C.7.【答案】C【解答】解:∵将△ABC绕点A顺时针旋转得到△AB1C1,∴△ABC≌△AB1C1,∴AC1=AC,∴△AC1C为等腰三角形;故①正确;∴AC1=AC,∴∠C1=∠ACC1=30°,∴∠C1AC=120°,∴∠B1AB=120°,∵AB1=AB,∴∠AB1B=30°=∠ACB,∵∠ADB1=∠BDC,∴△AB1D∽△BCD;故①正确;∵旋转角为α,∴α=120°,故①错误;∵∠C1AB1=∠BAC=45°,∴∠B1AC=75°,∵∠AB1C1=∠BAC=105°,∴∠AB1C=75°,∴∠B1AC=∠AB1C,∴CA=CB1;故①正确;过B点作BE⊥AC于E,∵∠BAC=45°,∠ACB=30°,∴AE=BE=√22AB,CE=√3BE,∴CE =√62AB ,∴CB 1=AC =AE +CE =(√22+√62)AB ∴DDD 1D =√6−√22;故①正确; 故选:C .8.【答案】D【解答】解:由旋转的性质得,BO =AD ,CD =CO ,∠ACD =∠BCO ,∠ADC =∠BOC =150°, ∵∠ACB =60°,∴∠DCO =60°,∴△OCD 为等边三角形,∴∠DOC =60°,故A ,B 正确;∵∠ODC =60°,∠ADC =∠BOC =150°,∴∠ADO =90°,∴OD ⊥AD ,故C 正确;故选:D .9.【答案】B【解答】解:如图,过点A 作AE ⊥BC 于点E ,过点A 作AF ⊥BD ,交BD 延长线于点F ,由i =3:4,可设AF =3x ,DF =4x ,∵AD =10,∴9x 2+16x 2=100,解得:x =2(负值舍去),则AF =BE =6,DF =8,∴AE =DF +BD =8+12=20,∵∠CAE =45°,∴CE =AE =20,则BC =CE +BE =20+6=26,故选:B .10.【答案】B【解答】解:所有台阶高度和为AC 的长.设此楼梯至少要建x 阶,可得tan30°=20D 900=√33,所以 x =15√3≈26(阶).故选:B .11.【答案】C【解答】解:连接OM ,∵PE 为①O 的切线,∴OM ⊥PC ,∵AC ⊥PC ,∴OM ∥AC ,∴∠CAM =∠AMO ,∵OA =OM ,∠OAM =∠AMO ,∴∠CAM =∠OAM ,即AM 平分∠CAB ,故①正确;∵AB 为①O 的直径,∴∠AMB =90°,∵∠CAM =∠MAB ,∠ACM =∠AMB ,∴△ACM ∽△AMB ,∴DD DD =DD DD ,∴AM 2=AC •AB ,故①正确;∵∠APE =30°,∴∠MOP =∠OMP ﹣∠APE =90°﹣30°=60°,∵AB =4,∴OB =2,∴DD ̂的长为60⋅D ×2180=2D 3,故①错误;∵BD ⊥PC ,AC ⊥PC ,∴BD ∥AC ,∴DD DD=DD DD =13, ∴PB =13P A , ∴PB =12AB ,BD =12OM , ∴PB =OB =OA ,∴在Rt △OMP 中,OM =2BD =2,∴OP =4,∴∠OPM =30°,∴PM =2√3,∴CM =DM =DP =√3,故①正确.故选:C .12.【答案】B【解答】解:将点A (﹣4,3)先向右平移2个单位,再向下平移2个单位,得到B 点的坐标是(﹣4+2,3﹣2),即(﹣2,1),故选:B .13.【答案】D【解答】解:①当点P 是矩形ABCD 两对角线的交点时,P A +PB +PC +PD 的值最小,根据勾股定理得,AC =BD =5,所以P A +PB +PC +PD 的最小值为10,故①正确;①若△P AB ≌△PCD ,则P A =PC ,PB =PD ,所以P 在线段AC 、BD 的垂直平分线上,即P 是矩形ABCD 两对角线的交点,所以△P AD ≌△PBC ,故①正确;①如图,若S 1=S 2,过点P 作PH ⊥BC 于H ,HP 的延长线交AD 于G ,则PG ⊥AD .∴四边形ABHG 是矩形,∴GH =AB ,∴S 2+S 4=12AD •PG +12BC •PH =12BC •(PH +PG )=12BC •GH =12BC •AB ,过点P 作PM ⊥AB 于M ,MP 的延长线交CD 于N ,同理S 1+S 3=12BC •AB , ∴S 1+S 3=S 2+S 4,则S 3=S 4,故①正确;①若△P AB ~△PDA ,则∠P AB =∠PDA ,∠P AB +∠P AD =∠PDA +∠P AD =90°,∠APD =180°﹣(∠PDA +∠P AD )=90°,同理可得∠APB =90°,那么∠BPD =180°,B 、P 、D 三点共线,P A 是直角△BAD 斜边上的高,根据面积公式可得P A =2.4,故①正确.故选:D .14.【答案】见试题解答内容【解答】解:A 、∵a ∥b ∥c ,∴DD DD=DD DD ,本选项结论正确,不符合题意; B 、∵a ∥b ∥c , ∴DD DD=DD DD ,本选项结论正确,不符合题意; C 、∵a ∥b ∥c , ∴DD DD =DD DD ,本选项结论正确,不符合题意;D 、连接AF ,交BE 于H ,∵b ∥c ,∴△ABH ∽△ACF ,∴DD DD =DD DD ≠DD DD ,本选项结论不正确,符合题意;故选:D .15.【答案】D【解答】解:由三视图可知,这个几何体是.故选:D.16.【答案】C【解答】解:作BF⊥DE于F,AH⊥BF于H,∵∠EBF=45°,∴∠ABH=45°,∴AH=BH=8×√22=4√2,在Rt△ECF中,tan∠ECF=DD DD,则CF=√3EF,在Rt△EBF中,∠EBF=45°,∴BF=EF,由题意得,√3EF﹣EF=10,解得,EF=5√3+5,则DE=EF+DF=5√3+5+4√2≈19,故选:C.17.【答案】A【解答】解:根据轴对称的性质,知将△ABC的三个顶点的横坐标乘以﹣1,就是把横坐标变成相反数,纵坐标不变,因而是把三角形的三个顶点以y轴为对称轴进行轴对称变换.所得图形与原图形关于y轴对称.故选:A.18.【答案】D【解答】解:过点E作AC,BC的垂线,垂足分别为F,G,设BC=4x,则AC=4x,∵CE是∠ACB的平分线,EF⊥AC,EG⊥BC,∴EF=EG,又S△ACE=67,S△BDE=314,∴BD=14AC=x,∴CD=3x,∵四边形EFCG是正方形,∴EF =FC ,∵EF ∥CD ,∴△AEF ∽△ADC ,∴DD DD =DD DD ,即DD 3D =4D −DD 4D , 解得,EF =127D , 则12×4x ×127x =67, 解得,x =12, 则AC =4x =2,故选:D .19.【答案】C【解答】解:以原点O 为位似中心,把△ABO 缩小为原来的12后得到△A 'B 'O ,若B 点坐标为(4,﹣5), 则B '的坐标为(4×12,﹣5×12)或(﹣4×12,5×12),即( 2,﹣2.5)或 (﹣2,2.5), 故选:C .二.填空题(共12小题)20.【答案】见试题解答内容【解答】解:将点A (﹣2,3)向右平移4个单位长度,再向下平移2个单位长度,那么平移后对应的点A ′的坐标是(﹣2+4,3﹣2),即(2,1),故答案为(2,1).21.【答案】见试题解答内容【解答】解:由旋转的性质可知AC 1=AC ,∴△AC 1C 为等腰三角形,即①正确;∵∠ACB =30°,∴∠C 1=∠ACB 1=30°,又∵B 1AC 1=∠BAC =45°,∴∠AB 1C =75°,∴∠CAB 1=180°﹣75°﹣30°=75°,∴CA =CB 1;∴①正确;∵∠CAC 1=∠CAB 1+∠B 1AC 1=120°,∴旋转角α=120°,故①错误;∵∠BAC =45°,∴∠BAB 1=45°+75°=120°,∵AB =AB 1,∴∠AB 1B =∠ABD =30°,在△AB 1D 与△BCD 中,∵∠ABD =∠ACB 1,∠AB 1D =∠BCD =30°,∴△AB 1D ∽△ACB 1,即①正确;在△ABD 与△B 1CD 中,∵∠ABD =∠ACB 1,∠ADB =∠CDB 1,∴△ABD ∽△B 1CD ,∴DDD 1D =DDD 1D ,如图,过点D 作DM ⊥B 1C ,设DM=x,则B1M=x,B1D=√2x,DC=2x,DC=2x,CM=√3x,∴AC=B1C=(√3+1)x,∴AD=AC﹣CD=(√3−1)x,∴DDD1D =DDD1D=√3−√2D=√6−√22,即①正确.故答案为:①①①①.22.【答案】见试题解答内容【解答】解:∵四边形ABCD是矩形,∴∠B=∠C=90°,AD=BC=4,CD=AB=3,由折叠的性质得:C'D=CD=3,C'E=CE,∠DC'E=∠C=90°,设CE=C'E=x,当△AC′D为直角三角形时,则∠AC'D=90°,∴∠AC'D+∠DC'E=180°,∴A、C'、E三点共线,分两种情况:①点E在线段CB上时,如图1所示:则∠DC'E=∠C=90°,∴∠AC'D=90°,∴AC'=√DD2−D′D2=√4−3=√7,在Rt△ABE中,BE=4﹣x,AE=x+√7,由勾股定理得:(4﹣x)2+32=(x+√7)2,解得:x=4−√7,∴CE=4−√7;①点E在线段CB的延长线上时,如图2所示:则∠DC'E=∠C=90°,∴AC'=√DD2−D′D2=√42−32=√7,在Rt △ABE 中,BE =x ﹣4,AE =x −√7,由勾股定理得:(x ﹣4)2+32=(x −√7)2,解得:x =4+√7,∴CE =4+√7;综上所述,当△AC ′D 为直角三角形时,CE 的长为4−√7或4+√7;故答案为:4−√7或4+√7.23.【答案】见试题解答内容【解答】解:连接CC ′,如图所示.∵△ABC 、△A ′BC ′均为正三角形,∴∠ABC =∠A ′=60°,A ′B =BC =A ′C ′,∴A ′C ′∥BC ,∴四边形A ′BCC ′为菱形,∴点C 关于BC '对称的点是A ',∴当点D 与点B 重合时,AD +CD 取最小值,此时AD +CD =4+4=8.故答案为:824.【答案】见试题解答内容【解答】解:由题意可知射线BG 是∠ABC 的平分线,∴∠ABD =∠CBD而DH ∥BC∴∠HDB =∠CBD∴∠ABD =∠HDB∴HB =HD =3又∵DH ∥BC∴△AHD ∽△ABC∴DD DD =DD DD 即:DD DD +3=37 得AH =94故答案为94.25.【答案】见试题解答内容【解答】解:由题意,得,AH ⊥HG ,CB ⊥HG ,∴∠AHF =90°,∠CBF =90°,∴∠AHF =∠CBF ,∵∠AFB =∠CFB ,∴△CBF ∽△AHF ,∴DD DD =DD DD , 同理可得 DD DD =DD DD ,∵BF =123,BD =1000,DG =127,∴HF =HB +123,HG =HB +1000+127=HB +1127,∴3DD =123DD +123,3DD =127DD +1127, 解得HB =30750,HA =753丈=1255步,故答案为:1255步.26.【答案】见试题解答内容【解答】解:设AB =x ,在Rt △ADB 中,BD =AB cot ∠ADB =√3x ,在Rt △ACB 中,BC =AB cot ∠ACB =√33x ,则√3x −√33x =20,解得:x =10√3,即物体的高度为10√3m .故答案为:10√3.27.【答案】见试题解答内容【解答】解:∵平行四边形ABCD∴CD ∥AB∴∠FEC =∠F AB ,∠FCE =∠FBA∴△FEC ∽△F AB∴EC :AB =FE :AF =1:3∵AF =EF +AE∴FE :AE =1:2∵AD ∥BC∴∠EAD =∠ECF ,∠EDA =∠ECF∴△ADE ∽△FCE∴CF :AD =FE :EA∵AD =4∴CF =228.【答案】见试题解答内容【解答】解:作DF ⊥x 轴于F ,如图所示:则DF ∥OB ,∵四边形AOBC 是矩形,点C 的坐标为(﹣2,4),∴AC =OB =4,OA =2,AC ∥OB ,∴∠BAC =∠ABO ,由折叠的性质得:∠BAD =∠BAC ,AD =AC =4,∴∠BAD =∠ABO ,∴AE =BE ,设AE =BE =x ,则OE =4﹣x ,在Rt △AOE 中,由勾股定理得:22+(4﹣x )2=x 2,解得:x =2.5,∴AE =2.5,OE =1.5,∵DF ∥OB ,∴△AOE ∽△AFD ,∴DD DD =DD DD =DD DD ,即1.5DD =2DD =2.54, 解得:FD =125,AF =165,∴OF =AF ﹣OA =65,∴点D 的坐标为(65,125);故答案为:(65,125). 29.【答案】见试题解答内容【解答】解:∵四边形ABCD 是正方形,∴∠B =∠C =90°,AB =BC =CD ,∵AE ⊥EF ,∴∠AEF =∠B =90°,∴∠BAE +∠AEB =90°,∠AEB +FEC =90°,∴∠BAE =∠CEF ,∴△BAE ∽△CEF ,∴DD DD =DD DD ,∵BE =CE =12BC , ∴D △DDDD △DDD=(DD DD )2=4, ∴S △ABE =4S △ECF ,故①正确;∴CF =12EC =14CD ,∴CD =4CF ,故①错误;∴tan ∠BAE =DD DD =12,∴∠BAE ≠30°,故①错误;设CF =a ,则BE =CE =2a ,AB =CD =AD =4a ,DF =3a ,∴AE =2√5a ,EF =√5a ,AF =5a ,∴DD DD =√5D √5D =2√55,DD DD =√5D =2√55, ∴DDDD =DDDD ,∴△ABE ∽△AEF ,故①正确.∴①与①正确.故答案为:①①.30.【答案】见试题解答内容【解答】解:过点D 作DE ⊥AC ,与AC 的延长线交于点E ,∵AB =AC ,∴∠B =∠ACB ,∵∠DCE =∠ACB ,∴∠DCE =∠B ,∵sin B =45,∴DDD ∠DDD =DD DD =45, 不妨设DE =4x ,则CD =5x ,∴DD =√DD 2−DD 2=3D ,∵CD :AC =1:3,∴AC =3CD =15x ,∴AE =AC +CE =18x ,∴tan ∠CAD =DD DD =4D 18D =29, 故答案为2931.【答案】见试题解答内容【解答】解:当P 点在边AB 上,如图1,∵四边形ABCD 为矩形,∴AD =BC =3,∠A =∠B =90°,∵PD ⊥PQ ,∴∠DPQ =90°,∵∠APD +∠ADP =90°,∠APD +∠BPQ =90°,∴∠ADP =∠BPQ ,∴Rt △ADP ∽Rt △BPQ ,∴DD DD =DD DD =1,∴PB =AD =3,∴AP =AB ﹣PB =4﹣3=1.当P 点在AB 的延长线上时,如图2,同样方法得到Rt △ADP ∽Rt △BPQ ,∴DD DD =DD DD =1,∴PB =AD =3,∴AP =AB +PB =4+3=7.综上所述,AP 的长度为1或7.故答案为1或7.三.解答题(共9小题)32.【答案】见试题解答内容【解答】解:(1)小玲的说法不对,小强的说法对,理由如下(2)可得;(2)根据题意画出图形,如图所示,根据平行投影可知:DD DD =10.6,DE =0.3, ∴EH =0.3×0.6=0.18,∵四边形DGFH 是平行四边形,∴FH =DG =0.2,∵AE =4.42,∴AF =AE +EH +FH =4.42+0.18+0.2=4.8,∵DD DD =10.6, ∴AB =4.80.6=8(米). 答:树的高度为8米.(3)由(2)可知:AF =4.8(米),答:树的影子长度是4.8米.33.【答案】见试题解答内容【解答】解:(1)作CD ⊥AM 于点D ,作BE ⊥CD 于点E ,作BF ⊥AM 于点F ,连接AC , ∵斜坡BC 的长为200√2米,坡度是1:1,∴BE =CE =200米,∵A 点海拔121米,C 点海拔721米,∴CD =600米,∴BF =400米,∵121+400=521(米),∴点B 的海拔是521米;(2)∵斜坡AB 的长为200√13米,BF =400米,∴AF =√(200√13)2−4002=600米,∴BF :AF =400:600=2:3,即斜坡AB 的坡度是2:3;(3)∵CD =600米,AD =AF +FD =AF +BE =600+200=800(米),∴AC =√6002+8002=1000米,即钢缆AC 的长度是1000米.34.【答案】见试题解答内容【解答】解:(1)在菱形ABCD 和菱形BEFG 中,∵∠DBC =12∠ABC ,∠FBG =12∠EBG ,∵∠ABC +∠EBG =180°,∴∠DBF =∠DBC +∠FBG =90°;(2)如图,延长GP 交DC 于点H ,∵P 是线段DF 的中点,∴FP =DP ,由题意可知DC ∥GF ,∴∠GFP =∠HDP ,∵∠GPF =∠HPD ,∴△GFP ≌△HDP (ASA ),∴GP =HP ,GF =HD ,∵四边形ABCD 是菱形,∴CD =CB ,∴CG =CH ,∴DD DD =DD DD =1,∵∠HCG =∠DCB ,∴△CHG ∽△CDB ,∴∠CGP =∠CBD ,∴DB ∥PG ;(3)∵CG =CH ,∴△CHG 是等腰三角形,∴PG ⊥PC ,(三线合一)又∵∠ABC =∠BEF =60°,∴∠GCP =12DBCD =60°,∴DD DD =√3.35.【答案】见试题解答内容【解答】解:(1)如图,作DH ⊥AB 于H ,CM ⊥DH 于M .在Rt △CDE 中,∵∠DEC =90°,∠DCE =30°,CD =4米,∴DE =12CD =2(米),CE =2√3(米).(2)在Rt △DHB 中,∵∠BDH =45°,∴BH =DH ,设BH =DH =x 米,则MH =AC =(x ﹣2√3)米,在Rt △ACB 中,∵∠ACB =60°,∴AB =√3AC ,∴x +2=√3(x ﹣2√3),∴x=4(√3+1),∴AB=4(√3+1)+2=(4√3+6)米.36.【答案】(1)60°;(2)160√3m.【解答】解:(1)过点A作AD⊥BC,垂足为D.∵∠BAD=30°,∴∠ABC=90°﹣30°=60°;(2)在Rt△ABD中,∵∠BAD=30°,AD=120m,∴BD=AD•tan30°=120×√33=40√3m,在Rt△ACD中,∵∠CAD=60°,AD=120m,∴CD=AD•tan60°=120×√3=120√3m,∴BC=BD+CD=40√3+120√3=160√3(m).37.【答案】见试题解答内容【解答】解:(1)过点E作EF⊥AC于点F,则四边形EFCD为矩形,∴DE=CF=332米,∵∠BEF=37°,BE=200米,∴BF=BE•sin37°=200×0.60=120米,∴BC=BF+CF=120+332=452米,答:九龙仓国际金融中心主楼BC的高度为452米;(2)∵BE=200米,∠BEF=37°,∴EF=BE•cos37°=200×0.80=160米,∴DC=160米,在Rt△ADC中,∵tan∠ADC=DD DD,∴AC=160×3.00=480,∴AB=AC﹣BC=480﹣452=28米,故发射塔AB的高度为28米.38.【答案】见试题解答内容【解答】解:(1)∵AC =AD ,AB 是①O 的直径,∴CD ⊥AB ,∴∠AEC =90°,∵AB 是①O 的直径,∴∠ACB =90°,∴∠ACE +∠BAC =∠BAC +∠B =90°,∴∠ACE =∠B ,∴△ACE ∽△ABC .(2)由(1)可知:DD DD =DD DD ,∴AC 2=AE •AB ,∵AC =3,BC =4,∴由勾股定理可知:AB =5,∴AE =95,∴由勾股定理可知:CE =125, ∴由垂径定理可知:CD =2CE =245. 39.【答案】见试题解答内容【解答】解:(1)∵四边形ABCD 中,AD ∥BC ,AB =CD ,∴四边形ABCD 是等腰梯形,∴∠ABC =∠DCB ,∵BD 平分∠ABC ,∴∠DBC =12∠ABC =12∠DCB ,∵BD ⊥CD ,∴∠DBC +∠DCB =90°,∴∠DBC =30°,∴sin ∠DBC =12;(2)∵AD ∥BC ,∴∠ADB =∠DBC =30°,∴∠ADB =∠ABD =30°,∴AB =AD =2,∵AC =BD ,AB =CD ,BC =BC ,∴△ABC ≌△DCB (SSS )∴∠BCA =∠DBC =30°,∠BAC =90°,∴OB =OC ,∵把∠BOC 绕点O 顺时针旋转θ(0°≤θ≤60°),交AB 于点M ,交BC 于点N , ∴∠MON =∠BOC ,∴∠BOM =∠CON ,且OB =OC ,∠ABO =∠OCB ,∴△ONC ≌△OMB (ASA )∴S △ONC =S △OMB ,∴S 四边形OMBN =S △BOC =12OC •AB =12OB ×AB =12×2×2DDD30°=4√33. 40.【答案】见试题解答内容【解答】解:(1)由题意得,∠CAB =30°,∠CBM =60°,∴∠ACB =∠CBM ﹣∠CAB =30°;(2)作CD ⊥AB 于D ,∵∠ACB =∠CAB ,∴BC =AB =24×12=12,在Rt △CBD 中,CD =BC ×sin ∠CBD =6√3≈10.393,∵10.392>9,∴继续向正东方向航行,该货船无触礁危险.。
北京2018年中考数学复习专题突破9图形变换
专题突破(九) 图形变换 名师说中考: 本专题通常与“平移、轴对称、旋转”这三种全等变换相结合,这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的便于论证的基本图形.用运动、变化的观点看待几何图形,通过几何变换移动线段(角)的位置是解决这些问题的有效手段.常见问题类型及解题思路如下: 一、证明线段之间的数量关系:当问题中有45°角出现时,线段之间的关系往往同“2”相关,当问题中有30°或60°角出现时,线段之间的关系往往同“3”相关.尤其是要猜想的结论或者要证明的结论与2或3相关时,就要想方设法构造含45°,30°或60°的直角三角形,然后再通过适当的代换来实现目标. 二、证明角与角之间的数量关系:一般情况下证明角等(或不等)往往转化为证明在一个三角形中的边相等(或不等),即等边对等角,大边对大角,小边对小角,或者利用三角形的外角与内角间的关系,三角形的内角和定理等.
A组·真题体验 1.[2017·北京]如图Z9-1,在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M. (1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示). (2)用等式表示线段MB与PQ之间的数量关系,并证明.
图Z9-1 2.[2016·北京]在等边△ABC中, (1)如图Z9-2①,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数; (2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM. ①依题意将图②补全; ②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM.小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法: 想法1:要证明PA=PM,只需证△APM是等边三角形. 想法2:在BA上取一点N,使得BN=BP,要证PA=PM,只需证△ANP≌△PCM. 想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK. „„ 请你参考上面的想法,帮助小茹证明PA=PM.(一种方法即可) 图Z9-2
2018-2020年北京中考数学复习各地区模拟试题分类(8)——二次函数
北京中考数学复习各地区模拟试题分类(8)二次函数 一.选择题(共2小题) 1.(2020•丰台区模拟)使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单
位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一
壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )
A.18° B.36° C.41° D.58° 2.(2020•海淀区校级一模)黄山市某塑料玩具生产公司,为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,经过调研预测,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=﹣n2+14n﹣24,则没有盈利的月份为( )
A.2月和12月 B.2月至12月 C.1月 D.1月、2月和12月 二.填空题(共5小题) 3.(2020•丰台区一模)已知函数y=kx2+(2k+1)x+1(k为实数). (1)对于任意实数k,函数图象一定经过点(﹣2,﹣1)和点 ; (2)对于任意正实数k,当x>m时,y随着x的增大而增大,写出一个满足题意的m的值为 . 4.(2020•朝阳区校级模拟)如图,在平面直角坐标系xOy中,点A(﹣2,﹣2),B(0,3),C(3,3),D(4,﹣2),y是关于x的二次函数,抛物线y1经过点A、B、C,抛物线y2经过点B、C、D,抛物线y3经过点A、B、D,抛物线y4经过点A、C、D.下列判断: ①四条抛物线的开口方向均向下; ①当x<0时,至少有一条抛物线表达式中的y均随x的增大而减小; ①抛物线y1的顶点在抛物线y2顶点的上方; ①抛物线y4与y轴的交点在点B的上方. 所有正确结论的序号为 .
5.(2019•西城区校级模拟)请你写出一个二次函数,其图象满足条件:①开口向上:①与y轴的交点坐标为(0,2).此二次函数的解析式可以是 . 6.(2019•海淀区校级模拟)请写出一个开口向上,并且对称轴为直线x=1的抛物线的表达式y= 7.(2018•西城区二模)在平面直角坐标系xOy中,将抛物线y=3(x+2)2﹣1平移后得到抛物线y=3x2+2.请你写出一种平移方法.答: . 三.解答题(共31小题) 8.(2020•昌平区二模)在平面直角坐标系xOy中,抛物线y=﹣x2+mx+3与x轴交于点A和点B(点A在点B的左侧). (1)若抛物线的对称轴是直线x=1,求出点A和点B的坐标,并画出此时函数的图象; (2)当已知点P(m,2),Q(﹣m,2m﹣1).若抛物线与线段PQ恰有一个公共点,结合函数图象,求m的取值范围.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2020年北京中考数学复习各地区模拟试题分类(12)——图形的变化一.选择题(共5小题)1.(2020•丰台区三模)如图,在平面直角坐标系xOy 中,已知点A (2,1),点B (3,﹣1).平移线段AB ,使点A 落在点A 1(﹣2,2)处,则点B 的对应点B 1的坐标为( )A .(﹣1,﹣1)B .(﹣1,0)C .(1,0)D .(3,0)2.(2020•海淀区一模)如图,在平面直角坐标系xOy 中,AB ,CD ,EF ,GH 是正方形OPQR 边上的线段,点M 在其中某条线段上,若射线OM 与x 轴正半轴的夹角为α,且sin α>cos α,则点M 所在的线段可以是( )A .AB 和CD B .AB 和EFC .CD 和GH D .EF 和GH3.(2020•海淀区校级模拟)已知∠P AQ =36°,点B 为射线AQ 上一固定点,按以下步骤作图: ①分别以A ,B 为圆心,大于12AB 的长为半径画弧,相交于两点M ,N ;②作直线MN 交射线AP 于点D ,连接BD ;③以B 为圆心,BA 长为半径画弧,交射线AP 于点 C .根据以上作图过程及所作图形,下列结论中错误的是( )A .∠CDB =72° B .△ADB ∽△ABC C .CD :AD =2:1 D .∠ABC =3∠ACB4.(2020•延庆区一模)下列各组图形中,△A 'B 'C '与△ABC 成中心对称的是( ) A . B .C .D .5.(2019•石景山区一模)如图,在平面直角坐标系xOy 中,△AOB 可以看作是由△OCD 经过两次图形的变化(平移、轴对称、旋转)得到的,这个变化过程不可能是( )A .先平移,再轴对称B .先轴对称,再旋转C .先旋转,再平移D .先轴对称,再平移二.填空题(共13小题)6.(2020•海淀区校级模拟)如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF .有下列结论:①∠BAE =30°;②射线FE 是∠AFC 的角平分线;③AE 2=AD •AF ;④AF =AB +CF .其中正确结论为是 .(填写所有正确结论的序号)7.(2020•海淀区校级模拟)如图,已知∠MON =120°,点A ,B 分别在OM ,ON 上,且OA =OB =a ,将射线OM 绕点O 逆时针旋转得到OM ′,旋转角为α(0°<α<120°且a ≠60°),作点A 关于直线OM ′的对称点C ,画直线BC 交于OM ′与点D ,连接AC ,AD .有下列结论:①∠BDO +∠ACD =90°;②∠ACB 的大小不会随着α的变化而变化;③当α=30°时,四边形OADC 为菱形;④△ACD 面积的最大值为√3a 2.其中正确的是 .(把你认为正确结论的序号都填上)8.(2020•丰台区模拟)如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,E 是OB 的中点,连接AE并延长交BC 于点F .若△BEF 的面积为1,则△AED 的面积为 .9.(2020•丰台区模拟)如图,在▱ABCD 中,点E 在DA 的延长线上,且AE =13AD ,连接CE 交BD 于点F ,则EE EE 的值是 .10.(2020•昌平区模拟)为了测量校园水平地面上一棵不可攀爬的树的高度,小文同学做了如下的探索:根据物理学中光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在合适的位置,刚好能在镜子里看到树梢顶点,此时小文与平面镜的水平距离为2.0米,树的底部与平面镜的水平距离为8.0米,若小文的眼睛与地面的距离为1.6米,则树的高度约为 米(注:反射角等于入射角).11.(2020•西城区校级模拟)太阳能光伏发电是一种清洁、安全、便利、高效的新兴能源,因而逐渐被推广使用.如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,支撑角钢EF 长为290√33cm ,AB 的倾斜角为30°,BE =CA =50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,FE ⊥AB 于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为 30cm ,点A 到地面的垂直距离为50cm ,则支撑角钢CD 的长度是 cm ,AB 的长度是 cm .12.(2019•海淀区二模)如图,在△ABC 中,P ,Q 分别为AB ,AC 的中点.若S △APQ =1,则S四边形PBCQ= .13.(2019•丰台区一模)如图,将△ABC 沿BC 所在的直线平移得到△DEF ,如果AB =7,GC =2,DF =5,那么GE = .14.(2019•怀柔区一模)如图,在△ABC 中,DE ∥AB ,DE 分别与AC ,BC 交于D ,E 两点.若△ABC 与△DEC 的周长比为3:2,AC =6,则DC = .15.(2019•海淀区一模)如图,在矩形ABCD中,E是边CD的延长线上一点,连接BE交边AD于点F,若AB=4,BC=6,DE=2,则AF的长为.16.(2019•海淀区校级三模)如图,在平面直角坐标系xOy中,点A的坐标为A(3,0),等腰直角三角形ABC的边AB在x轴的正半轴上,∠ABC=90°,点B在点A的右侧,点C在第一象限,将△ABC绕点A逆时针旋转75°,如果点C的对应点E恰好落在y轴的正半轴上,那么边AB的长为.17.(2019•怀柔区模拟)如图所示,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE =1:3,则S△BDE:S四边形DECA的值为.18.(2019•海淀区校级模拟)如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C的坐标为(﹣1,1),若把此“QQ”笑脸向右平移3个单位长度后,则与右眼B对应的点的坐标是.三.解答题(共24小题)19.(2020•怀柔区模拟)在等腰直角三角形ABC中,∠ACB=90°,P是BC上的一动点(不与B,C重合),射线AP绕点A顺时针旋转45°,得到射线AQ,过点C作CE垂直AB,交AB与点D,交射线AQ于点E,连接PE.(1)依题意补全图形;(2)求∠APE的度数;(3)用等式表示线段PE ,DE ,AC 三条线段之间的数量关系,并证明.20.(2020•石景山区二模)在△ABC 中,AB =AC ,D 是边BC 上的一点(不与点B 重合),边BC 上点E在点D 的右边且∠DAE =12∠BAC ,点D 关于直线AE 的对称点为F ,连接CF . (1)如图1,①依题意补全图1;②求证:CF =BD .(2)如图2,∠BAC =90°,用等式表示线段DE ,CE ,CF 之间的数量关系,并证明.21.(2020•门头沟区一模)在△ABC 中,∠ACB =90°,∠CAB =30°,点D 在AB 上,连接CD ,并将CD绕点D 逆时针旋转60°得到DE ,连接AE .(1)如图1,当点D 为AB 中点时,直接写出DE 与AE 长度之间的数量关系;(2)如图2,当点D 在线段AB 上时,①根据题意补全图2;②猜想DE 与AE 长度之间的数量关系,并证明.22.(2020•东城区校级模拟)如图1,在△ABC 中,∠ACB =90°,AC =BC ,点D 是射线CB 上一点,连接AD ,过D 作DE ⊥AD 交射线AB 于点E ,以A 为旋转中心,将线段AD 绕点A 逆时针旋转90°得线段AF ,过点F 作FG ⊥AF 交AC 的延长线于点G ,连接EG .(1)如图1,点D 在CB 上.①依题意补全图1;②猜想DE 、EG 、FG 之间的数量关系并证明;(2)如图2,点D 在CB 的延长线上.请直接写出DE 、EG 、FG 之间的数量关系为 .23.(2020•东城区模拟)如图,△ABC中,AB=AC,∠BAC<60°,将线段AB绕点A逆时针旋转60°得到点D,点E与点D关于直线BC对称,连接CD,CE,DE.(1)依题意补全图形;(2)判断△CDE的形状,并证明;(3)请问在直线CE上是否存在点P,使得P A﹣PB=CD成立?若存在,请用文字描述出点P的准确位置,并画图证明;若不存在,请说明理由.24.(2020•朝阳区校级模拟)已知等边△ABC,点D为BC上一点,连接AD.(1)若点E是AC上一点,且CE=BD,连接BE,BE与AD的交点为点P,在图(1)中根据题意补全图形,直接写出∠APE的大小;(2)将AD绕点A逆时针旋转120°,得到AF,连接BF交AC于点Q,在图(2)中根据题意补全图形,用等式表示线段AQ和CD的数量关系,并证明.25.(2019•海淀区校级模拟)在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段P A绕点P顺时针旋转2α得到线段PQ.(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图2中,点P不与点B,M重合,线段CQ的延长线于射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围.26.(2019•东城区二模)如图,△ABC为等边三角形,点P是线段AC上一动点(点P不与A,C重合),连接BP,过点A作直线BP的垂线段,垂足为点D,将线段AD绕点A逆时针旋转60°得到线段AE,连接DE,CE.(1)求证:BD=CE;(2)延长ED交BC于点F,求证:F为BC的中点;(3)在(2)的条件下,若△ABC的边长为1,直接写出EF的最大值.27.(2019•顺义区二模)已知:在△ABC中,∠BAC=90°,AB=AC.(1)如图1,将线段AC绕点A逆时针旋转60°得到AD,连结CD、BD,∠BAC的平分线交BD于点E,连结CE.①求证:∠AED=∠CED;②用等式表示线段AE、CE、BD之间的数量关系(直接写出结果);(2)在图2中,若将线段AC绕点A顺时针旋转60°得到AD,连结CD、BD,∠BAC的平分线交BD 的延长线于点E,连结CE.请补全图形,并用等式表示线段AE、CE、BD之间的数量关系,并证明.28.(2018•昌平区二模)如图,在△ABC中,AB=AC>BC,BD是AC边上的高,点C关于直线BD的对称点为点E,连接BE.(1)①依题意补全图形;②若∠BAC=α,求∠DBE的大小(用含α的式子表示);(2)若DE=2AE,点F是BE中点,连接AF,BD=4,求AF的长.29.(2018•门头沟区一模)如图,在△ABC中,AB=AC,∠A=2α,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.(1)∠EDB=°(用含α的式子表示)(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转180°﹣2α,与AC边交于点N.①根据条件补全图形;②写出DM与DN的数量关系并证明;③用等式表示线段BM、CN与BC之间的数量关系,(用含α的锐角三角函数表示)并写出解题思路.30.(2018•丰台区一模)如图,Rt△ABC中,∠ACB=90°,CA=CB,过点C在△ABC外作射线CE,且∠BCE=α,点B关于CE的对称点为点D,连接AD,BD,CD,其中AD,BD分别交射线CE于点M,N.(1)依题意补全图形;(2)当α=30°时,直接写出∠CMA的度数;(3)当0°<α<45°时,用等式表示线段AM,CN之间的数量关系,并证明.31.(2018•房山区一模)如图,已知Rt△ABC中,∠C=90°,∠BAC=30°,点D为边BC上的点,连接AD,∠BAD=α,点D关于AB的对称点为E,点E关于AC的对称点为G,线段EG交AB于点F,连接AE,DE,DG,AG.(1)依题意补全图形;(2)求∠AGE的度数(用含α的式子表示);(3)用等式表示线段EG与EF,AF之间的数量关系,并说明理由.32.(2018•朝阳区模拟)在平面直角坐标系xOy中,△ABC的顶点分别为A(1,1),B(2,4),C(4,2).(1)画出△ABC关于原点O对称的△A1B1C1;(2)点C关于x轴的对称点C2的坐标为;(3)点C2向左平移m个单位后,落在△A1B1C1内部,写出一个满足条件的m的值:.33.(2020•丰台区三模)如图,在△ABC中,∠BAC=30°,AB=AC,将线段AC绕点A逆时针旋转α°(0<α<180),得到线段AD,连接BD,交AC于点P.(1)当α=90°时,①依题意补全图形;②求证:PD=2PB;(2)写出一个α的值,使得PD=√3PB成立,并证明.34.(2020•顺义区二模)已知:如图,AB是⊙O的直径,△ABC内接于⊙O.点D在⊙O上,AD平分∠CAB交BC于点E,DF是⊙O的切线,交AC的延长线于点F.(1)求证:DF⊥AF;(2)若⊙O的半径是5,AD=8,求DF的长.35.(2020•平谷区一模)△ABC中,AB=BC,∠ABC=90°,将线段AB绕点A逆时针旋转α(0°<α<90°)得到线段AD.作射线BD,点C关于射线BD的对称点为点E.连接AE,CE.(1)依题意补全图形;(2)若α=20°,直接写出∠AEC的度数;(3)写出一个α的值,使AE=√2时,线段CE的长为√3−1,并证明.36.(2020•海淀区校级模拟)如图,在△ABP中,∠ABP=60°,90°<∠APB<120°,过点A的直线l 垂直于线段BP所在的直线.设点B,P关于直线l的对称点分别为点B′,P′(1)在图中画出△ABP关于直线l对称的三角形△AB′P′.(2)若∠BAP=α,求∠AP′B的度数.(用α表示)(3)若点P′关于直线AB′的对称点为M,连接AM,PM.请写出P A、PM之间的数量关系和位置关系,并证明你的结论.37.(2020•昌平区模拟)如图,在梯形ABCD中,AB∥DC,AD=BC=5,AB=10,CD=4,连接并延长BD到E,使DE=BD,作EF⊥AB,交BA的延长线于点F.(1)求tan∠ABD的值;(2)求AF的长.38.(2019•门头沟区二模)如图,在等边三角形ABC中,点D为BC边上的一点,点D关于直线AB的对称点为点E,连接AD、DE,在AD上取点F,使得∠EFD=60°,射线EF与AC交于点G.(1)设∠BAD=α,求∠AGE的度数(用含α的代数式表示);(2)用等式表示线段CG与BD之间的数量关系,并证明.39.(2019•平谷区二模)在等边三角形ABC外侧作射线AP,∠BAP=α,点B关于射线AP的对称点为点D,连接CD交AP于点E.(1)依据题意补全图形;(2)当α=20°时,∠ADC=°;∠AEC=°;(3)连接BE,求证:∠AEC=∠BEC;(4)当0°<α<60°时,用等式表示线段AE,CD,DE之间的数量关系,并证明.40.(2019•石景山区二模)如图在△ABC中,∠ACB=90°,AC=BC,E为外角∠BCD平分线上一动点(不与点C重合),点E关于直线BC的对称点为F,连接BE,连接AF并延长交直线BE于点G.(1)求证:AF=BE;(2)用等式表示线段FG,EG与CE的数量关系,并证明.41.(2019•朝阳区一模)如图,在Rt△ABC中,∠A=90°,AB=AC,将线段BC绕点B逆时针旋转α°(0<α<180),得到线段BD,且AD∥BC.(1)依题意补全图形;(2)求满足条件的α的值;(3)若AB=2,求AD的长.42.(2019•通州区一模)如图,在等边△ABC中,点D是线段BC上一点.作射线AD,点B关于射线AD 的对称点为E.连接CE并延长,交射线AD于点F.(1)设∠BAF=α,用α表示∠BCF的度数;(2)用等式表示线段AF、CF、EF之间的数量关系,并证明.2018-2020年北京中考数学复习各地区模拟试题分类(12)——图形的变化参考答案与试题解析一.选择题(共5小题)1.【解答】解:如图,B1(﹣1,0),故选:B.2.【解答】解:如图,当点M在线段AB上时,连接OM.∵sinα=EEEE,cosα=EEEE,OP>PM,∴xinα<cosα,同法可证,点M在CD上时,sinα<cosα,如图,当点M在EF上时,作MJ⊥OP于J.∵sinα=EEEE,cosα=EEEE,OJ<MJ,∴sinα>cosα,同法可证,点M在GH上时,sinα>cosα,故选:D.3.【解答】解:由作图可知,MN垂直平分AB,AB=BC,∵MN垂直平分AB,∴DA=DB,∴∠A=∠DBA,∵∠P AQ=36°,∴∠CDB=∠A+∠DBA=72°,故A正确;∵AB=BC,∴∠A=∠ACB,又∵∠A=∠A,∴△ADB ∽△ABC ,故B 正确;∵∠A =∠ACB =36°,∴∠ABC =180°﹣∠A ﹣∠ACB =108°,∴∠ABC =3∠ACB ,故D 正确;∵∠ABD =36°,∠ABC =108°,∴∠CBD =∠ABC ﹣∠ABD =72°,∴∠CBD =∠CDB =72°,∴CD =BC ,∵∠A =∠ACB =36°,∴AB =BC ,∴CD =AB ,∵AD +DB >AB ,AD =DB ,∴2AD >AB ,∴2AD >CD ,故C 错误.故选:C .4.【解答】解:A 、是平移变换图形,故本选项错误;B 、是轴对称图形,故本选项错误;C 、是旋转变换图形,故本选项错误;D 、是中心对称图形,故本选项正确.故选:D .5.【解答】解:将△ABO 沿y 轴向左翻折,再沿y 轴向下平移3个单位长度得到△OCD ,或先沿y 轴向下平移3个单位长度,再沿y 轴向左翻折得到△OCD ,或先将△ABO 沿x 轴向下翻折,再旋转得出△OCD 故选:C .二.填空题(共13小题)6.【解答】解:∵在正方形ABCD 中,E 是BC 的中点,∴AB =BC ,BE =12AB ,∴tan A =EE EE =12,∵tan30°=√33,∴∠BAE ≠30°,故①错误;∵∠B =∠C =90°,AE ⊥EF ,∴∠BAE +∠BEA =90°,∠BEA +∠CEF =90°,∴∠BAE =∠CEF ,∴△ABE ∽△ECF ,∵AB =2BE =2CE ,∴EC =2CF ,设CF =a ,则EC =BE =2a ,AB =4a ,∴AE =2√5a ,EF =√5a ,tan ∠CFE =2,∴tan ∠AFE =EE EE =2, ∴∠AFE =∠CFE ,即射线FE 是∠AFC 的角平分线,故②正确;∵四边形ABCD 是正方形,∴∠B =∠C =90°,AB =BC =CD ,∵AE ⊥EF ,∴∠AEF =∠B =90°,∴∠BAE +∠AEB =90°,∠AEB +FEC =90°,∴∠BAE =∠CEF ,∴△BAE ∽△CEF ,∴EE EE =EE EE ,∵BE =CE ,∴EE EE=EE EE , ∵∠B =∠AEF =90°, ∴△ABE ∽△AEF , ∴EE EE =EE EE ,∴AE 2=AD •AF ;故③正确;作EG ⊥AF 于点G ,∵FE 平分∠AFC ,∠C =90°,∴EG =EC ,∴EG =EB ,∵∠B =∠AGE =90°,在Rt △ABE 和Rt △AGE 中{EE =EE EE =EE , ∴Rt △ABE ≌Rt △AGE (HL ),∴AB =AG ,又∵CF =GF ,AF =AG +GF ,∴AF =AB +CF ,故④正确,由上可得,②③④正确,故答案为:②③④.7.【解答】解:①∵A 、C 关于直线OM '对称,∴OM '是AC 的垂直平分线,∴CD =AD ,∠BDO +∠ACD =90°.故①正确;②连接OC ,由①知:OM '是AC 的垂直平分线,∴OC =OA ,∴OA =OB =OC ,以O 为圆心,以OA 为半径作⊙O ,交AO 的延长线于E ,连接BE ,则A 、B 、C 都在⊙O 上, ∵∠MON =120°,∴∠BOE =60°,∵OB =OE ,∴△OBE 是等边三角形,∴∠E =60°,∵A 、C 、B 、E 四点共圆,∴∠ACD =∠E =60°,∴∠ACB =120°是定值,故②正确;③当α=30°时,即∠AOD =∠COD =30°,∴∠AOC =60°,∴△AOC 是等边三角形,∴∠OAC =60°,OC =OA =AC ,由①得:CD =AD ,∴∠CAD =∠ACD =∠CDA =60°,∴△ACD 是等边三角形,∴AC =AD =CD ,∴OC =OA =AD =CD ,∴四边形OADC 为菱形;故③正确;④∵CD =AD ,∠ACD =60°,∴△ACD 是等边三角形,当AC 最大时,△ACD 的面积最大,∵AC 是⊙O 的弦,当AC 为直径时最大,此时AC =2a ,S △ACD =√34×(2a )2=√3a 2;故④正确,所以本题结论正确的有:①②③④故答案为:①②③④.8.【解答】解:∵四边形ABCD 是正方形,∴OB =OD ,AD ∥BC ,∴△BEF ∽△DEA ,∴EE EE=EE EE , ∵E 是OB 的中点, ∴EE EE =13, ∴EE EE =13, ∴E △EEE E △EEE =EE EE =13, ∵△BEF 的面积为1,∴△AEB 的面积为3,∵EE EE =13, ∴E △EEEE △EEE =13, ∴△AED 的面积为9,故答案为:9.9.【解答】解:∵四边形ABCD 是平行四边形,∴AD ∥BC .AD =BC ,设AD =3a ,则AE =a ,∵DE ∥BC ,∴△EDF ∽△CBF ,∴EE EE =EE EE =4E 3E =43 故答案为43.10.【解答】解:根据题意得:△CED ∽△AEB ,∴EE EE =EE EE ,∵DE =2.0米,BE =8.0米,CD =1.6米, ∴AB =EE ⋅EE EE =1.6×82=6.4(米), 则树的高度约为6.4米,故答案为:6.411.【解答】解:过A 作AG ⊥CD 于G ,则∠CAG =30°,在Rt △ACG 中,CG =AC sin30°=50×12=25,∵GD =50﹣30=20,∴CD =CG +GD =25+20=45,即支撑角钢CD 的长度是45cm .连接FD 并延长与BA 的延长线交于H ,则∠H =30°,在Rt △CDH 中,CH =2CD =90,∴AH =CH ﹣AC =90﹣50=40,∵在Rt △EFH 中,EH =EE EEE30°=290√33√33=290, ∴AE =EH ﹣AH =290﹣40=250,∴AB =AE +BE =250+50=300,即AB 的长度是300cm .故答案为45,300.12.【解答】解:∵P ,Q 分别为AB ,AC 的中点,∴PQ ∥BC ,PQ =12BC , ∴△APQ ∽△ABC ,∴E △EEEE △EEE =(12)2=14, ∵S △APQ =1,∴S △ABC =4,∴S 四边形PBCQ =S △ABC ﹣S △APQ =3,故答案为3.13.【解答】解:∵△DEF 由△ABC 平移而成,∴AB =DE =7,BE =CF ,AC ∥DF ,∴△EGC ∽△EDF .∴EEEE =EEEE .∵AB =7,GC =2,DF =5,∴EE 7=25. ∴GE =145.故答案是:145.14.【解答】解:∵ED ∥AB ,∴△CDE ∽△CAB ,∴EE EE =△EEE 的周长△EEE 的周长=23, ∵AC =6,∴CD =4,故答案为4.15.【解答】解:∵四边形ABCD 是矩形,∴BC =AD =6,AB ∥CE ,设AF =x ,则DF =6﹣x ,∵AB ∥DE ,∴△ABF ∽△DEF ,∴EE EE =EE EE ,∴42=E 6−E , ∴x =4,∴AF =4.故答案为416.【解答】解:∵A (3,0),∴OA =3,∵∠BAC =45°,∠CAE =75°,∴∠EAO =180°﹣75°﹣45°=60°,∵∠AOB =90°,∴∠ABO =30°,∴AB =2OA =6,∴AC =AE =6,∵AB =BC ,∴AB =6•cos45°=3√2.故答案为3√2.17.【解答】解:∵S △BDE :S △CDE =1:3,∴BE :EC =1:3,∵DE ∥AC ,∴△BED ∽△BCA ,∴S △BDE :S △BCA =(EE EE )2=1:16,∴S △BDE :S 四边形DECA =1:15,故答案为:1:15.18.【解答】解:如图,根据左眼A 的坐标是(﹣2,3),建立直角坐标系,∵右眼B 的坐标为(0,3),∴向右平移3个单位后,右眼的坐标为(3,3).故答案为:(3,3)三.解答题(共24小题)19.【解答】解:(1)补全图形,如图,(2)∵△ABC 是等腰直角三角形,∴∠BAC =45°,∵∠EAP =45°,∴∠EAD =∠CAP ,又∵∠EDA =∠ACP =90°,∴△ADE ∽△ACP ,∴EE EE =EE EE ,由旋转知,∠P AE =∠CAD =45°,∴△APE ∽△ACD ,∴∠APE =∠ACD ,∵AC =BC ,∠ACB =90°,∴∠CAD =45°,∵CE ⊥AB ,∴∠ADC =90°,∴∠ACD =45°,∴∠EP A =45°;(3)2PE 2=2DE 2+AC 2.证明:由(2)可知,∠P AE =∠EP A =45°,∴∠AEP =90°,AE =PE ,∴AP =√2PE ,∴△AEP 是等腰直角三角形,在Rt △APC 中,根据勾股定理得,AP 2=PC 2+AC 2 由(2)知,∠ADC =90°,∠BAC =45°,∴AC =√2AD ,由(2)知,△ADE ∽△ACP ,∴EE EE =EE EE =√2,∴EE =√2EE ,∴(√2EE )2=(√2EE )2+EE 2,即2PE 2=2DE 2+AC 2.20.【解答】解:(1)①依题意补全图形,如图1;②证明:连接AF ,如图1,∵∠3=12EEEE ,∴∠3=∠1+∠2.∵点F与点D关于直线AE对称,∴AF=AD,∠F AE=∠3=∠1+∠2.∴∠4=∠F AE﹣∠2=(∠1+∠2)﹣∠2=∠1.又∵AC=AB,∴△ACF≌△ABD(SAS),∴CF=BD;(2)线段DE,CE,CF之间的数量关系是DE2=CE2+CF2.证明:连接F A,FE,如图2,∵AB=AC,∠BAC=90°,∴∠1=∠2=45°,由(1)②,可得FE=DE,∠3=∠2=45°,∴∠FCE=90°,在Rt△FCE中,由勾股定理,得FE2=CE2+CF2,∴DE2=CE2+CF2.21.【解答】解:(1)结论:DE=AE.理由:如图1中,∵∠ACB=90°,∠BAC=30°,∴AB=2BC,∠B=60°,∵AD=DB,∴CD=AD=DB,∴△CDB是等边三角形,∴∠CDB=60°,∵DC=DE,∠CDE=60°,∴∠ADE=180°﹣∠ED﹣∠CDB=60°,∵DA=DC,DC=DE,∴AD=DE,∴△ADE是等边三角形,∴DE=AE.(2)①图形如图2所示:②如图2﹣1中,结论:DE=AE.理由:取AB的中点F,连接CE,CF,EF.∵∠ACB=90°,AF=BF,∴CF=AF=BF,∵∠B=60°,∴△BCF是等边三角形,∵DC=DE,∠CDE=60°,∴△ECD是等边三角形,∴∠1+∠2=∠2+∠3=60°,CE=CD,CF=CB,∴∠1=∠3,∴△ECF≌△DCB(SAS),∴∠5=∠B=60°,∵∠6=60°,∴∠4=∠5=60°,∵EF=EF,F A=FC,∴△EF A≌△EFC(SAS),∴AE=EC,∵EC=ED,∴AE=ED.22.【解答】解:(1)①补全图形如图1所示,②FG=EG+DE,理由:过点A作AH⊥AB交FG于H,∴∠BAH=90°,由旋转知,AD=AF,∠DAF=90°=∠BAH,∴∠DAE=∠F AH,∵DE⊥AD,FG⊥AF,∴∠ADE=∠AFH=90°,∴△ADE≌△AFH(ASA),∴DE=FH,AE=AH,∵在△ABC中,∠ACB=90°,AC=BC,∴∠CAB=45°,∵∠BAH=90°,∴∠HAG=45°=∠CAB,∵AG=AG,∴△AGE≌△AGH(SAS),∴EG=HG,∴FG=HG+FH=EG+DE;(2)如图2,过点A作AH⊥AB交GF的延长线于H,同(1)的方法得,△ADE≌△AFH(ASA),∴DE=FH,AE=AH,同(1)的方法得,△AGE≌△AGH(SAS),∴EG=HG,∴EG=FG+FH=FG+DE,故答案为:EG=FG+DE.23.【解答】解:(1)补全图形如图1.(2)△CDE为等边三角形,证明如下:延长BC与DE交于F,∵AB=AC,∴∠ABC=∠ACB,①∵线段AB绕点A逆时针旋转60°得到点D,∴AD=AB=AC,∠BAD=60°,∴∠ACD=∠ADC,②∵四边形ABCD中,∠BAD+∠ABC+∠BCD+∠CDA=360°.∴∠ABC+∠ACB+∠ACD+∠ADC=300°,③∴由①②③,得∠ACB+∠ACD=150°,即∠BCD=150°,∴∠DCF=180°﹣∠BCD=30°,∵点E与点D关于直线BC对称,∴∠ECF=∠DCF=30°,DC=CE,∴∠DCE=60°.∴△DCE是等边三角形;(3)存在,作AG⊥BC于G,直线EC与AG的交点即为点P,证明:延长AG与DC交于点Q,连接QB,BD,由(2)可知,∠PCD=180°﹣∠DCE=120°,∠PCQ=∠DCE=60°,∠PCG=∠FCE=30°,∴∠CPG=90°﹣∠PCG=60°,∴∠PQC=∠CPQ=∠PCQ=60°,∴△PCQ为等边三角形,∴PC=CQ,∠APC=120°﹣∠PCD,①∵AG⊥BC,AC=AB,∴AG垂直平分BC,∴PB=PC=QB=QC,∴四边形PBQC 是菱形,∴PB =QC ,∠PBQ =∠PCQ =60°,②∵QB =QC ,∴∠QBC =∠QCB ,∴∠ABQ =∠ACQ ,∵AB =AD ,∠BAD =60°,∴△ABD 为等边三角形,∴∠ABD =60°=∠PCQ ,∴∠ABQ ﹣∠ABD =∠ACQ ﹣∠PCQ ,∴∠DBQ =∠ACP ,③∴由①②③得△ACP ≌△DBQ (AAS ),∴AP =DQ .∵CQ =PB ,∴AP =DQ =DC +CQ =DC +PB .即P A ﹣PB =CD 成立.24.【解答】(1)补全图形图1, 证明:在△ABD 和△BEC 中,{EE =EEEEEE =EE =60°EE =EE∴△ABD ≌△BEC (SAS )∴∠BAD =∠CBE .∵∠APE 是△ABP 的一个外角,∴∠APE =∠BAD +∠ABP =∠CBE +∠ABP =∠ABC =60°;(2)补全图形图2,EE =12EE ,证明:在△ABD 和△BEC 中,{EE =EEEEEE =EE =60°EE =EE∴△ABD ≌△BEC (SAS )∴∠BAD =∠CBE ,∵∠APE 是△ABP 的一个外角,∴∠APE =∠BAD +∠ABP =∠CBE +∠ABP =∠ABC =60°.∵AF 是由AD 绕点A 逆时针旋转120°得到,∴AF =AD ,∠DAF =120°.∵∠APE =60°,∴∠APE +∠DAF =180°.∴AF ∥BE ,∴∠1=∠F ,∵△ABD ≌△BEC ,∴AD =BE .∴AF =BE .在△AQF 和△EQB 中,{∠1=∠EEEEE =EEEE EE =EE△AQF ≌△EQB (AAS ),∴AQ =QE ,∴EE =12EE , ∵AE =AC ﹣CE ,CD =BC ﹣BD ,且AC =BC ,CE =BD .∴AE =CD ,∴EE=12 EE.25.【解答】解:(1)∵BA=BC,∠BAC=60°,M是AC的中点,∴BM⊥AC,AM=MC,∵将线段P A绕点P顺时针旋转2α得到线段PQ,∴AM=MQ,∠AMQ=120°,∴CM=MQ,∠CMQ=60°,∴△CMQ是等边三角形,∴∠ACQ=60°,∴∠CDB=30°;(2)如图2,连接PC,AD,∵AB=BC,M是AC的中点,∴BM⊥AC,即BD为AC的垂直平分线,∴AD=CD,AP=PC,PD=PD,在△APD与△CPD中,∵{EE=EE EE=EE EE=EE,∴△APD≌△CPD(SSS),∴∠ADB=∠CDB,∠P AD=∠PCD,又∵PQ=P A,∴PQ=PC,∠ADC=2∠1,∠4=∠PCQ=∠P AD,∴∠P AD+∠PQD=∠4+∠PQD=180°,∴∠APQ+∠ADC=360°﹣(∠P AD+∠PQD)=180°,∴∠ADC=180°﹣∠APQ=180°﹣2α,∴2∠CDB=180°﹣2α,∴∠CDB=90°﹣α;(3)∵∠CDB=90°﹣α,且PQ=QD,∴∠P AD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,∵点P不与点B,M重合,∴∠BAD>∠P AD>∠MAD,∵点P在线段BM上运动,∠P AD最大为2α,∠P AD最小等于α,∴2α>180°﹣2α>α,∴45°<α<60°.26.【解答】证明:(1)∵将线段AD绕点A逆时针旋转60°得到线段AE,∴AD=AE,∠DAE=60°∴△ADE是等边三角形∵△ABC为等边三角形∴AB=AC,∠BAC=∠DAE=60°∴∠DAB=∠CAE,且AB=AC,AD=AE∴△ADB≌△AEC(SAS)∴BD=CE(2)如图,过点C作CG∥BP,交EF的延长线于点G,∵∠ADB=90°,∠ADE=60°∴∠BDG=30°∵CG∥BP∴∠G=∠BDG=30°,∵△ADB≌△AEC∴BD=CE,∠ADB=∠AEC=90°∴∠GEC=∠AEC﹣∠AED=30°∴∠G=∠GEC=30°∴GC=CE,∴CG=BD,且∠BDG=∠G,∠BFD=∠GFC∴△BFD≌△CFG(AAS)∴BF=FC∴点F是BC中点(3)如图,连接AF,∵△ABC是等边三角形,BF=FC∴AF⊥BC∴∠AFC=90°∴∠AFC=∠AEC=90°∴点A,点F,点C,点E四点在以AC为直径的圆上,∴EF最大为直径,即最大值为127.【解答】证明:(1)①∵将线段AC绕点A逆时针旋转60°得到AD,∴AC=AD,∠DAC=60°∴∠BAD=∠BAC+∠CAD=150°,且AB=AC=AD∴∠3=∠5=15°∵∠BAC=90°,AB=AC,AE平分∠BAC∴∠1=∠2=45°,∠ABC=∠ACB=45°又∵AE=AE,∴△ABE≌△ACE(SAS)∴∠3=∠4=15°∴∠6=∠7=30°∴∠DEC=∠6+∠7=60°∵∠AED=∠3+∠1=60°∴∠AED=∠CED②BD=2CE+AE理由如下:过点A作AH⊥BD于点H,∵∠EBC=∠ECB∴BE=CE,∵∠AED=60°,AH⊥BD∴AE=2EH∵AB=AD,AH⊥BD∴BD=2BH=2(BE+EH)=2BE+AE=2EC+AE(2)补全图形如图,2CE﹣AE=BD理由如下:如图2,以A为顶点,AE为一边作∠EAF=60°,AF交DB延长线于点F.∵∠BAC=90°,AB=AC,AE平分∠BAC∴∠BAE=∠CAE=45°,∠ABC=∠ACB=45°.∵将线段AC绕点A逆时针旋转60°得到AD,∴AC=AD,∠DAC=60°∴∠DAE=∠DAC﹣∠CAE=15°,AB=AD∴∠ABD=∠ADB,∠BAD=30°∴∠ABD=∠ADB=75°∴∠AED=∠ADB﹣∠DAE=60°∵∠EAF=60°又∵∠EAF=60°,∴∠F=60°∴△AEF是等边三角形.∴AE=AF=EF.∵AC=AD,∠CAE=∠DAF=45°,AE=AF,∴△CAE≌△DAF(SAS).∴CE=DF.∵AB=AC,∠BAE=∠CAE=45°,AE=AE,∴△BAE≌△CAE(SAS).∴BE=CE.∴BE=CE.∵DF+BE﹣EF=BD,∴2CE﹣AE=BD28.【解答】(1)解:①如图.②∵AB=AC,∠BAC=α,∴∠ABC=∠ACB=90°−12 E.∵点C关于直线BD的对称点为点E,BD是AC边上的高.∴BD⊥CE,CD=DE.∴BE=BC.∴∠BEC=∠ACB=90°−12 E.∴∠DBE=12 E;(2)作FG⊥AC于G,∵BD⊥CE,∴FG∥BD∵点F是BE中点,∴EG=DG.∴EE=12 EE,∵DE=2AE,∴AE=EG=DG,设AE=EG=DG=x,则CD=DE=2x,AC=5x,∴AB=AC=5x.∴BD=4x.∵BD=4,∴x=1,∴AG=2.∵EE=12EE=2,∴AF=2√2.29.【解答】解:(1)∵AB=AC,∴∠B=∠C=12(180°﹣∠A)=90°﹣α,而DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣∠B=90°﹣(90°﹣α)=α;故答案为α;(2)①如图,连接AD,②DM =DN .理由如下:∵AB =AC ,BD =DC∴DA 平分∠BAC ,∵DE ⊥AB 于点E ,DF ⊥AC 于点F ,∴DE =DF ,∠MED =∠NFD =90°,∵∠A =2α∴∠EDF =180°﹣2α,∵∠MDN =180°﹣2α,∴∠MDE =∠NDF ,在△MDE 和△NDF 中{∠EEE =∠EEEEE =EE EEEE =EEEE,∴△MDE ≌△NDF ,∴DM =DN ;③数量关系:BM +CN =BC •sin α.证明思路为:先由△MDE ≌△NDF 可得EM =FN ,再证明△BDE ≌△CDF 得BE =CF ,所以BM +CN =BE +EM +CF ﹣FN =2BE ,接着在Rt △BDE 可得BE =BD sin α,从而有BM +CN =BC •sin α.30.【解答】解:(1)如图.(2)∵∠1=∠2=30°,∠4=90°,∴∠ACD =150°,∵CA =CB =CD ,∴∠3=∠CAD =15°,∴∠5=∠2+∠3=45°,即∠AMC =45°.(3)结论:AM =√2CN .理由:作AG ⊥EC 于G .∵点B 、D 关于CE 对称,∴CE 是BD 的垂直平分线,∴CB =CD ,∴∠1=∠2=α,∵CA =CB ,∴CA =CD ,∴∠3=∠CAD ,∵∠4=90°,∴∠3=12(180°﹣∠ACD )=12(180°﹣90°﹣α﹣α)=45°﹣α,∴∠5=∠2+∠3=α+45°﹣α=45°,∵∠4=90°,CE 是BD 的垂直平分线,∴∠1+∠7=90°,∠1+∠6=90°,∴∠1=∠6,∵AG ⊥EC ,∴∠G =∠8=90°,在△BCN 和△CAG 中,{∠8=∠EE7=E6EE =EE,∴△BCN ≌△CAG ,∴CN =BG ,∵Rt △AGM 中,∠G =90°,∠5=45°,∴AM =√2AG ,∴AM =√2CN .31.【解答】解:(1)如图如图所示:(2)由轴对称性可知,AB 为ED 的垂直平分线,AC 为EG 的垂直平分线. ∴AE =AG =AD ,∴∠AEG =∠AGE ,∠BAE =∠BAD =α,∴∠EAC =∠BAC +∠BAE =30°+α,∴∠EAG =2∠EAC =60°+2α,∴∠AGE =12(180°−EEEE )=60°﹣α,或:∠AGE =∠AEG =90°﹣∠EAC =90°﹣(∠BAC +∠EAB )=90°﹣(30°+α)=60°﹣α.(3)结论:EG =2EF +AF .法1:设AC 交EG 于点H .∵∠BAC=30°,∠AHF=90°,∴FH=12 EE,∴EH=EF+FH=EF+12 EE,又∵点E,G关于AC对称,∴EG=2EH,∴EG=2(EF+12EE)=2EF+AF,法2:在FG上截取NG=EF,连接AN.又∵AE=AG,∴∠AEG=∠AGE∴△AEF≌△AGN∴AF=AN∵∠EAF=α,∠AEG=60°﹣α∴∠AFN=60°,∴△AFN为等边三角形,∴AF=FN,∴EG=EF+FN+NG=2EF+AF.32.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)点C2的坐标为:(4,﹣2).故答案为:(4,﹣2);(3)答案不唯一.如:6.33.【解答】解:(1)当α=90°时,①如图即为补全的图形;②证明:∵∠BAC=30°,AB=AC,根据题意可知:AC=AD,∴AD =AB ,∴∠ABD =∠ADB ,∵∠CAD =90°,∴∠DAB =120°,∴∠ABD =∠D =∠BAC =30°,∴AP =BP ,在Rt △APD 中,∠ADB =30°,∴PD =2AP ,∴PD =2PB ;(2)当α=60(或120°)时,PD =√3PB 成立,情况1,如图所示:当α=60°时,过点D 作DF ⊥AC 于点F ,过点B 作BE ⊥AC 于点E ,∴DF ∥BE ,∴△DFP ∽△BEP ,∴EE EE =EE EE ,在Rt △ABE 中,∠BAC =30°,∴AC =AB =2BE ,在Rt △ADF 中,∠CAD =60°,∴AD =2√33DF , ∵AD =AC =AB ,∴2BE =2√33DE ,∴√3BE =DF ,∴PD =√3PB .情况2,如图所示:当α=120°时,过点D 作DF ⊥AC 于点F ,过点B 作BE ⊥AC 于点E ,∴DF ∥BE ,∴△DFP ∽△BEP ,∴EE EE =EE EE ,在Rt △ABE 中,∠BAC =30°,∴AC =AB =2BE ,在Rt △ADF 中,∠F AD =60°,∴AD =2√33DF , ∵AD =AC =AB ,∴2BE =2√33DE , ∴√3BE =DF ,∴PD =√3PB .34.【解答】(1)证明:连接OD .∵DF 是⊙O 的切线,∴OD ⊥DF ,∴∠ODF =90°.∵AD 平分∠CAB ,∴∠CAD =∠DAB .又∵OA =OD ,∴∠DAB =∠ADO .∴∠CAD =∠ADO .∴AF ∥OD .∴∠F +∠ODF =180°.∴∠F =180°﹣∠ODF =90°.∴DF ⊥AF .(2)解:连接DB .∵AB 是直径,⊙O 的半径是5,AD =8,∴∠ADB =90°,AB =10.∴BD =6.∵∠F =∠ADB =90°,∠F AD =∠DAB ,∴△F AD ∽△DAB .∴EE EE =EE EE .∴EE =EE ⋅EE EE =8×610=245. 35.【解答】解:(1)如图1,(2)∠AEC=135°,证明:连接AC、BE,如图2,由题意,BC=BE=BA,∴∠BCE=∠BEC,∠BAE=∠BEA,∵∠BCE+∠BEC+∠BAE+∠BEA+∠ABC=360°∵∠ABC=90°,∴2(∠BEC+∠BEA)=270°,∴∠BEC+∠BEA=135°,即∠AEC=135°,(3)α=30°,证明:过A作AG⊥CE于G,∵∠AEC=135°,∴∠AEG=45°,∵AE=√2,∴AG=GE=1,当α=30°时,则∠ABD=75°,∵∠ABC=90°,∴∠CBF=15°,∴∠EBC=30°,∵BC=BE,∴∠BCG=75°,∵∠BCA=45°,∴∠ACG=30°,∴EE=√3,∴EE=√3−1.36.【解答】解:(1)图形如图1所示:(2)解:如图1中,设直线l交PP′于C,∵P′,P关于直线l对称,过点A的直线l垂直于线段BP所在的直线,∴AC⊥PP′,CP=CP′,∴AP=AP′,∴∠APP′=∠AP′B,又∵在△ABP中,∠B=60°,∠BAP=α,∴∠AP′B=∠APP′=∠B+∠BAP=60°+α.(3)如图2中,结论:P A=PM,P A与PM所成锐角为60°.理由:设直线l交PP′于C,AB交MP′于D.∵B,B′关于直线l对称∴AC⊥BB′,CB=CB′,∴AB=AB′,∵∠B=60°,∴∠B=∠B′=60°,在△AP′B′中∠2=∠B′+∠3=60°+∠3,又∵∠2=60°+α,∴∠3=α,∵P′,M关于AB′对称,∴AB′⊥P′M,DP′=DM,∴AP′=AM,∴∠4=∠3=α,∵∠5=α,∴∠4=∠5,∴∠P AM=∠P AB′+∠4=∠P AB′+∠5=∠BAB′,∵AB =AB ′,∠B =60°,∴△BAB ′为等边三角形,∴∠BAB ′=∠P AM =60°,又∵由(2)得AP =AP ′,AP ′=AM ,∴AP =AM∴△P AM 为等边三角形∴P A =PM ,∠APM =60°,即P A =PM ,P A 与PM 所成角为60°.37.【解答】解:(1)作DM ⊥AB 于点M ,CN ⊥AB 于点N .(如图) ∵AB ∥DC ,DM ⊥AB ,CN ⊥AB ,∴∠DMN =∠CNM =∠MDC =90°,∴四边形MNCD 是矩形,∵CD =4,∴MN =CD =4,∵在梯形ABCD 中,AB ∥DC ,AD =BC =5,∴∠DAB =∠CBA ,DM =CN ,∴△ADM ≌△BCN ,又∵AB =10,∴AM =BN =12(AB ﹣MN )=12×(10﹣4)=3,∴MB =BN +MN =7.(2分)∵在Rt △AMD 中,∠AMD =90°,AD =5,AM =3,∴DM =√EE 2−EE 2=4,∴tan ∠ABD =EE EE =47.(3分)(2)∵EF ⊥AB ,∴∠F =90°,∵∠DMN =90°,∴∠F =∠DMN ,∴DM ∥EF ,∴△BDM ∽△BEF ,∵DE =BD ,∴EE EE =EE EE =12, ∴BF =2BM =14.(4分)∴AF =BF ﹣AB =14﹣10=4.(5分)38.【解答】解:(1)∵△ABC 是等边三角形,∴∠BAC =60°,∵∠BAD =α,∴∠F AG =60°﹣α,∵∠AFG =∠EFD =60°,∴∠AGE =180°﹣60°﹣(60°﹣α)=60°+α;(2)CG =2BD ,理由是:如图,连接BE ,过B 作BP ∥EG ,交AC 于P ,则∠BPC =∠EGP ,∵点D关于直线AB的对称点为点E,∴∠ABE=∠ABD=60°,∵∠C=60°,∴∠EBD+∠C=180°,∴EB∥GP,∴四边形EBPG是平行四边形,∴BE=PG,∵∠DFG+∠C=120°+60°=180°,∴∠FGC+∠FDC=180°,∴∠ADB=∠EGP=∠BPC,∵AB=BC,∠ABD=∠C=60°,∴△ABD≌△BCP(AAS),∴BD=PC=BE=PG,∴CG=2BD.39.【解答】解:(1)如图,补全图形:(2)连接AD,∵三角形ABC为等边三角形,∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°,由对称可知,AD=AB,∴AD=AC,∵∠BAP=α=20°,∴∠DAB=40°,∴∠DAC=40°+60°=100°,∴∠ADC=∠ACD=180°−100°2=40°,∠AEC=∠ADC+∠DAE=40°+20°=60°,故答案为40,60;(3)由对称可知,∠BAE=∠DAE=α,∵AD=AB=AC,∴∠ADC=180°−(60°+2E)2=60°−E,∠AEC=60°,∵∠ACB=60°,∠ACD=∠ADC=60°﹣α,∴∠BCE=α,∵∠ABC=60°,∠ABE=∠ADC=60°﹣α,∴∠BEC=60°,∴∠AEC=∠BEC;(4)当0°<α<60°时,CD=2DE+AE,证明:在CD上截取BG=BE,∵∠BEC=60°,∴△BGE是等边三角形,∴∠BGC=∠AED=120°,∵∠BCE=∠DAE=α,∴△BCG≌△DAE(AAS),∴AE=CG,∵EG=BE=DE,∴CD=2DE+CG,即CD=2DE+AE.40.【解答】解:(1)如图,连接CF.∵,∠ACB=90°,CE平分∠BCD,∴∠BCE=45°,∵点E、F关于直线BC对称,∴CE=CF,∠FCB=∠BCE=45°,∴∠FCA=45°,在△FCA与△ECB中,{EE=EE EEEE=EEEE EE=EE∴△FCA≌△ECB(SAS),∴AF=BE;(2)FG,EG与CE的数量关系:GE2+GF2=2CE2,证明:∵△FCA≌△ECB,∴∠AFC=∠BEC,∵∠AFC+∠CFG=180°,∴∠CFG+∠CEG=180°,∴∠ECF+∠EGF=180°,∵∠ECF=45°+45°=90°,∴∠EGF=90°,连接EF,∴GE2+GF2=EF2,∵CE=CF,∴CE2+CF2=2CE2=EF2,∴GE2+GF2=2CE2.41.【解答】解:(1)满足条件的点D和D′如图所示.(2)作AF⊥BC于F,DE⊥BC于E.则四边形AFED是矩形.∴AF=DE,∠DEB=90°,∵AB=AC,∠BAC=90°,AF⊥BC,∴BF=CF,∴AF=12BC,∵BC=BD,AF=DE,∴DE=12BD,∴∠DBE=30°,∴∠D′BC=120°+30°=150°,∴满足条件的α的值为30°或150°.(3)由题意AB=AC=2,∴BC=2√2,∴AF=BF=DE=√2,∴BE=√3DE=√6,∴AD=√6−√2,AD′=2√6−(√6−√2)=√6+√2.42.【解答】解:(1)连接AE.∵点B关于射线AD的对称点为E,∴AE=AB,∠BAF=∠EAF=α,∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠EAC=60°﹣2α,AE=AC,∴∠EEE=12[180°﹣(60°﹣2α)]=60°+α,∴∠BCF=∠ACE﹣∠ACB=60°+α﹣60°=α.(2)结论:AF =EF +CF .证明:如图,作∠FCG =60°交AD 于点G ,连接BF .∵∠BAF =∠BCF =α,∠ADB =∠CDF ,∴∠ABC =∠AFC =60°,∴△FCG 是等边三角形,∴GF =FC ,∵△ABC 是等边三角形,∴BC =AC ,∠ACB =60°,∴∠ACG =∠BCF =α,在△ACG 和△BCF 中,{EE =EE EEEE =EEEE EE =EE ,∴△ACG ≌△BCF .∴AG =BF ,∵点B 关于射线AD 的对称点为E ,∴BF =EF ,∴AF ﹣AG =GF ,∴AF =EF +CF .。