纳米材料修饰电极在电化学分析中的应用研究进展

纳米材料修饰电极在电化学分析中的应用研究进展
纳米材料修饰电极在电化学分析中的应用研究进展

银纳米修饰电极的制备及电化学行为

银纳米修饰电极的制备及电化学行为 作者:姚爱丽, 吕桂琴, 胡长文, YAO Ai-Li, LU Gui-Qin, HU Chang-Wen 作者单位:北京理工大学理学院化学系,北京,100081 刊名: 无机化学学报 英文刊名:CHINESE JOURNAL OF INORGANIC CHEMISTRY 年,卷(期):2006,22(6) 被引用次数:12次 参考文献(16条) 1.董绍俊;车广礼;谢远武化学修饰电极 2003 2.Nada M D;David M B查看详情 2001 3.Sandmamn G;Dietz H查看详情 2000 4.高迎春;李茂国;王广凤银纳米修饰电极的制备及其对灿烂甲酚蓝的催化研究[期刊论文]-Chin J Anal Lab 2004(12) 5.Sarkar J;Pal P;Talapatra G B Adsorption of 2-aminobenzothiazole on colloidal silver particles: An experimental and theoretical surface-enhanced Raman scattering study[外文期刊] 2005(26) 6.Vukovic V V;Nedeljkovic J查看详情 1993(04) 7.Gole A;Sainkar S R查看详情 2000(05) 8.Kumar A;Mandale A B;Sastry Sequential electrostatic assembly of amine-derivatized gold and carboxylic acid-derivatized silver colloidal particles on glass substrates[外文期刊] 2000(17) 9.Cheng L;Dong S J查看详情 2000 10.周延秀;朱果逸;汪尔康查看详情 1994(03) 11.Liu Z L;Wang X D;Wu H Y查看详情[外文期刊] 2005 12.Tang Z Y;Liu S Q;Dong S J查看详情 2001 13.曹楚南;张鉴清电化学阻抗谱导论 2002 14.阮北;鲁彬;童汝亭自组装巯基环肽单层膜修饰金电极电化学行为的研究[期刊论文]-J Hebei Normal University Natural Science Edition 2003(05) 15.孙向英;翁文婷荧光性自组装双层膜的制备及其性能研究[期刊论文]-Chemical Journal of Chinese Universities 2005(06) 16.Lu M;Li X H;Yu B Z查看详情[外文期刊] 2002 本文读者也读过(2条) 1.夏立新.宫科.汪舰.康笑博.佟胜睿.刘广业.XIA Li-Xin.GONG Ke.WANG Jian.KANG Xiao-Bo.TONG Sheng-Rui. LIU Guang-Ye用简便方法组装二维模板银纳米阵列[期刊论文]-化学学报2007,65(21) 2.吕桂琴.姚爱丽.郑传明.L(U) Gui-qin.YAO Ai-li.ZHENG Chuan-ming MPA包覆的银纳米粒子修饰电极制备和电化学表征[期刊论文]-北京理工大学学报2006,26(10) 引证文献(12条) 1.王耀先.贺国旭.张秋霞.王香.胡中爱铝基氪化铝模板制备Ag纳米线及其电化学性质[期刊论文]-化工新型材料2013(1) 2.周闻云.陈艳玲.韩清.贾玉萍抗坏血酸在纳米银DNA修饰电极上的电化学行为研究[期刊论文]-分析科学学报

纳米材料的研究进展及其应用全解

纳米材料的研究进展及其应用 姓名:李若木 学号:115104000462 学院:电光院

1、纳米材料 1.1纳米材料的概念 纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型人介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著不同。 1.2纳米材料的发展 自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。

2、纳米材料:石墨烯 2.1石墨烯的概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的猫。 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。 另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。 作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。极有可能掀起一场席卷全球的颠覆性新技术新产业革命。

纳米材料修饰电极

A highly sensitive hydrogen peroxide amperometric sensor based onMnO2-modi?ed vertically aligned multiwalled carbon nanotubes,Analytica Chimica Acta,2010 MnO2-多臂碳纳米管 Cu电极 Gold nanoparticles mediate the assembly of manganese dioxide nanoparticles for H2O2 amperometric sensing,Electrochimica Acta,2010 MnO2–AuNP/ GCE H2O2电流传感 器 A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide Nanocomposite,Talanta,2010 GO/MnO2/ GCE(氧化 石墨烯) H2O2电流传感 器 Electrochemical investigation of MnO2 electrode material for supercapacitors,ScienceDirect,2011 MnO2泡沫镍电极MnO2电活性物 质作为超级电容 材料 Facile synthesis of novel MnO2 hierarchical nanostructures and their application to nitrite sensing,Sensors and Actuators B: Chemical,2009 MnO2/QPVP-Os/GCE (联吡啶锇取代的聚乙 烯吡啶) 亚硝酸盐传感器 Preparation of MnO2/graphene composite as electrode material for supercapacitors,J Mater Sci ,2011 MnO2/grapheme(石墨 烯) 超级电容器 Hydrogen peroxide sensor based on glassy carbon electrode modified with β-manganese dioxide nanorods,Microchim Acta (2011) β-MnO nanorods/GCE 。 H2O2电化学传 感器 Mn3O4 Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries,American Chemical Societ,2010 Mn3O4/RGO(还原石墨 电极) 锂离子电池阳极 材料 Non-enzymatic electrochemical CuO nano?owers sensor for hydrogen peroxide detection,Talanta,2010 CuO/Cu箔H2O2电流传感 器(无酶) Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing,Sensors and Actuators B: Chemical,2010 CuO以碳为基底做成电 极 葡萄糖传感器 (无酶) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modi?ed carbon nanotube electrode,Biosensors and Bioelectronics,2010 CuO/MWCNTs/Cu电极葡萄糖传感器 (无酶) An improved sensitivity nonenzymatic glucose biosensor based on a CuxO modi?ed electrode,Biosensors and Bioelectronics,2010 CuxO/Cu箔葡萄糖传感器 (无酶) Synthesis of CuO nanoflower and its application as a H2O2 sensor,Bull. Mater. Sci,2010 CuO NFS/Nafion-Au电 极 H2O2电流传感 器(无酶)

羧基化多壁碳纳米管修饰电极循环伏安法测定过氧化氢

羧基化多壁碳纳米管修饰电极循环伏安法测 定过氧化氢 【摘要】目的:研究用羧基化多壁碳纳米管修饰电极伏安法测定过氧化氢的浓度。方法:采用涂布法制成羧基化多壁碳纳米管修饰电极;在pH=7.0 KH2PO4-Na2HPO4缓冲溶液中,采用该修饰电极伏安法测定H2O2。结果:该修饰电极对H2O2有着显著的电催化作用,与裸玻碳电极相比,其灵敏度大大提高,在 1.2×10-6~1.0×10-3 mol/L 浓度范围内,过氧化氢的氧化峰电流与其浓度呈良好的线性关系,检测限为3.1×10-7 mol/L,将该修饰电极用于医用过氧化氢的测定,相对平均偏差为1.2%,平均回收率为97.6%,结果满意。结论:该修饰电极响应快,灵敏度高,稳定性好,寿命长,适合于具有电活性生物分子的测定。 【关键词】碳纳米管学修饰电极伏安法过氧化氢 Abstract: Objective: To study a quantitative method for determination of hydrogen peroxide (H2O2) by voltammetry with multi-wall carbon nanotubes functionalized with carboxylic group modified electrode (CME). Method: The CME was fabricated, which based on the immobilization of multi-wall carbon nanotubes functionalized with carboxylic group. In a medium of KH2PO4-Na2HPO4 buffer solution with pH=7.0,the CME was

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

化学修饰电极

化学修饰电极 化学修饰电极是20世纪70年代中期发展起来的一门新兴的、也是目前最活跃的电化学和电分析化学的前沿领域。化学修饰电极是在电极表面进行分子设计,将具有优良化学性质的分子、离子、聚合物设计固定在电极表面,使电极具有某种特定的化学和电化学性质。化学修饰电极扩展了电化学的研究领域,目前已应用于生命、环境、能源、分析、电子以及材料学等诸多方面。 一、研究修饰电极的实验方法:目前,主要应用电化学和光谱学的方法研究修饰电极,从而验证功能分子或基团已进入电极表面,电极的结构如何,修饰后电极的电活性、化学反应活性如何,电荷在修饰膜中如何传递等。 1、电化学方法:通过测量化学反应体系的电流、电量、电极电位和电解时间等之间的函数关系来进行研究的,用简单的仪器设备便能 1,2获得有关的电极过程动力学的参数。常用的方法有循环伏安法, 3,45-8微分脉冲伏安法,常规脉冲伏安法,计时电流法,计时库仑法,计时电位法以及交流伏安法和旋转圆盘电极法。 2、光谱法:能够在分子水平上研究电极表面结构的微观特性,如数量,空间,与电极材料成键的类型,平均分子构象,表面粗糙度对结构的影响,聚合物的溶胀,离子含量,隧沟大小,聚合物结构中的流动性等,这些对于修饰电极的应用是十分重要的。研究化学修饰电极的常 9-11用表面分析方法有X光电子能谱,XPS,、俄歇电子能谱,AES,12- 1415,161718-20、反射光谱(Vis-UV, 红外反射光谱)、扫描电镜 (SEM)、 1 光声及光热光谱等。 二、化学修饰电极的分类:一般分为吸附型、共价键合型、聚合

物型三大类。 1、吸附型:用吸附的方法可制备单分中层,也可以制备多分子层修饰电极。将修饰物质吸附在电极上主要通过四种方法进行:平衡吸附型,静电吸附型,LB膜吸附型,涂层型。 21-25平衡吸附型:在电解液中加入修饰物质,它们就会在电极表面形成热力学吸附平衡。强吸附性物质,如高级醇类、硫醇类、生物碱等 -3-5在电解液中以10~10mol/L低浓度存在时,有时能生成完整的吸附单分子层,一般则形成不完全的单分子层。这种吸附式可逆的,与浓度、电解液组成、电极电位等都有关。这种方法直接、简单,但修饰物质有限,修饰量一般也较少,因此,在应用上有一定的限制。 26-30静电吸附型:电解液中离子能以静电引力在电极表面集聚,形成 -1多分子层,一般需要在10~10mol/L的高浓度溶液中,也可能在低浓度溶液中。静电吸附在热力学上不可逆的。过去在电化学体系中所谓支持电解质的影响,其本质可能就是其离子在电极表面的静电吸附,起到了修饰电极的作用。 31-35LB膜吸附型:将不溶于水的表面活性物质在水面上铺展成单分子膜,LB膜,后,将亲水基伸向水相,而疏水基伸向气相。当该膜与电极接触时,若电极表面是亲水性的,则表明活性物质的亲水基向电极表面排列,若电极表面是疏水性的,则逆向排列。这时,加一定的表面压,并依靠成膜分子本身的自组织能力,得到高度的分子有序排 2 列,最后,把它转移到电极表面,得到LB膜吸附型修饰电极。LB膜修饰电极 一般只有一个或几个单分子层厚,电子或物质的传输容易,加上修饰分子的紧密排列,活性中心密度大,所以此类电极的电化学相应信号也较大。LB膜较牢固,电 极可望有较长的寿命。另外,由于修饰分子在电极表面有序排列而能产生用一般方

纳米铂

纳米铂-L半胱氨酸修饰玻碳电极对 对苯二酚的检测研究 姓名:陈盼盼学号:201004034032 班级:化学一、文献综述 化学工业对人类社会和物质文明做出了重大贡献,人们在享受现代科学与技术给人们带来巨大的便利和快乐的同时,也逐渐意识到人类未来面临的巨大生存危机和困难。20世纪,人们逐步认识化学品的不当生产和使用会对人的健康、社区环境、生态环境产生危害性。据统计,世界每年生产的人工合成有毒化合物约50万种,共400万t,所有这些物质,近一半留在大气江河、湖、海内,另外每年还有将近18万t的铅和磷,3000万t的汞和各种有毒重金属流入水体内,200万t石油流进海洋。中国化学工业排放的废水、废气和固体废物分别占全国工业排放总量的22.5%、7.82%和5.93%,造成环境严重恶化,直接危害人类,又破坏生物圈,长期的影响着人类的生存。 对苯二酚,又名氢醌.化学名1,4-苯二酚,英文名 1,4-Dihydroxybenzene ; Hydroquinone。对苯二酚为白色针状结晶,分子式C6H4(OH)2,分子量110.11,比重1.332,熔点172℃,沸点286℃,闪点165℃,溶于水、乙醇及乙醚,微溶于苯。可燃。自燃点516℃。长期接触对二苯酚蒸气、粉尘或烟雾可刺激皮肤、粘膜,并引起眼的水晶体混浊。操作现场空气中最高容许浓度2mg/m3。 对苯二酚是一种重要的化工原料且应用广泛【1】主要用于显影剂、蒽醌染料、偶氮染料、合成氨助溶剂、橡胶防老剂、阻聚剂、涂料和

香精的稳定剂、抗氧剂等。对苯二酚因具有毒性,而且在自然条件下,不易降解,对人体环境有较大的危害, 因此受到人们的普遍关注,但其微量不容易不检测出来,因而需要更加灵敏的方法来检测目前,微量对二苯酚的测定方法有荧光谱法【2】、薄层色谱法【3】高效液相色谱法【4】动力学光度法【5】因为对苯二酚具有电学活性,可用电化学方法测定其含量,因此用选择性好、灵敏度有高的化学修饰电极测量对对苯二酚已有报道【6-7】,但是因为修饰过程复杂,干扰过多,灵敏度等问题。所以要设计更好的修饰方法来对微量对苯二酚的检测。 玻碳电极,是电化学研究中使用最为频繁的碳材料基础电极【8】。它的表面具有多变的性质,极易受实验条件的影响而发生变化。玻碳电极在应用与电化学研究时,在每次试验前需要对电极进行前处理,以改善其电化学相应信号的重现性【8】。目前,世界上几乎所有的实验室,对玻碳电极最为常采用的的前处理程序都是先在Al2O3磨料浆中打磨电极,随后在超声水浴中清洗。但这样的处理方法再重现性上不尽人意。因次,在这里我们要进行电化学活化以此来满足电分析实验室所需的各种高要求,各种有效的电化学活化方法均采用一个叫高阳极极化电位。电化学活化既可以在酸性、中性溶液中【9】也可以在碱性溶液中【10】,动力学研究表明活化电极的电子传导性质的改善可能以表面的亲水性【11】、清洁度【12】、含氧基团【13】等因素有关。 纳米材料具有表面效应【14】、体积效应【15】和介电限域效应登

纳米材料的发展及研究现状

纳米材料的发展及研究现状 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。 纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。 纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单

元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基

碳纳米管在电化学中的应用

碳纳米管在电化学中的应用 【摘要】对碳纳米管修饰电极的制备方法、应用以及碳纳米管修饰电极的发展趋势作比较全面的综述。 【关键词】碳纳米管;化学修饰电极 Application of the Carbon nanotube in electrochemistry Abstract The methods of preparation, applications and developing trends of carbon nanotube modified electrodes in the field of electrochemistry were reviewed. Key words Electrochemistry Carbon nanotube modified electrodes 碳纳米管,又名巴基管(buckytube),是1991年由日本科学家饭岛澄男(Sumio Iijima)在高分辨透射电镜(HRTEM)下发现的一种针状的管形碳单质。它以特有的力学、电学和化学性质,以及独特的准一维管状分子结构和在未来高科技领域中所具有的潜在应用价值,迅速成为化学、物理及材料科学等领域的研究热点。目前,碳纳米管在理论计算、制备和纯化生长机理、光谱表征、物理化学性质以及在力学电学、化学和材料学等领域的应用研究方兴未艾,在一些方面已取得重大突破。碳纳米管(CNT)的发现,开辟碳家族的又一同素异形体和纳米材料研究的新领域。 由于CNT具有良好的导电性、催化活性和较大的比表面积,可使过电位大大降低及对部分氧化还原蛋白质能产生直接电子转移现象,因此被广泛用于修饰电极的研究。碳纳米管在作为电极用于化学反应时能促进电子转移。碳纳米管的电化学和电催化行为研究已有不少报道。 1碳纳米管的分类 CNT属于富勒碳系,管状无缝中空,具有完整的分子结构,由碳六元环构成的类石墨平面卷曲而成,其中每个碳原子通过sp2杂化与周围3个碳原子发生完全键合,各单层管的顶端有五边形或七边形参与封闭。CNT的径向尺寸为纳米量级,轴向尺寸为微米量级,具有较大的长径比。由单层石墨片卷积而成的称为单壁碳纳米管(SWNT),制备时管径可控,一般在1~6 nm之间,当管径>6 nm后CNT 结构不稳定,易塌陷。SWNT轴向长度可达几百纳米甚至几个微米。由两层以上柱状碳管同轴卷积而成的称为多壁碳纳米管(MWNT),层间距约为0.34 nm。

纳米材料研究进展

2011年第4期甘肃石油和化工2011年12月 纳米材料研究进展 李彦菊1,高飞2 (1.河北科技大学化学与制药工程学院,河北石家庄050018; 2.中核第四研究设计工程有限公司,河北石家庄050000) 摘要:纳米材料具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。综述了纳米材料 的分类、特性以及应用领域。 关键词:纳米材料;功能材料;复合材料 1前言 纳米(nm)是一个极小的长度单位,1nm=10-9m。当物质到纳米尺度以后,大约是在1~100nm 这个范围空间,物质的性能就会发生突变,呈现出特殊性能。这种既具有不同于原来组成的原子、分子,也不同于宏观物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。纳米技术正是利用纳米粒子这些特性实现其在各行各业中的特殊应用[1,2]。纳米技术和纳米材料的科学价值和应用前景已逐步被人们所认识,纳米科学与技术被认为是21世纪的三大科技之一。目前世界各国都对纳米材料和纳米科技高度重视,纷纷在基础研究和应用研究领域对其进行前瞻性的部署,旨在占领战略制高点,提升未来10~20年在国际上的竞争地位。我国政府对纳米科技十分重视,先进的纳米产业正在蓬勃发展[3,4]。 2纳米材料的分类 以“纳米”来命名的材料是在20世纪80年代,它作为一种材料的定义把纳米颗粒限制到1~100nm[5]。在纳米材料发展初期,纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。广义而言,纳米材料是指在3维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。如果按维数[6],纳米材料的基本单元可以分为3类:①0维,指在空间3维尺度均在纳米尺度,如纳米尺度颗粒,原子团簇等;②1维,指在空间有两维处于纳米尺度,如纳米丝、纳米棒、纳米管等; ③2维,指在3维空间中有1维在纳米尺度,如超薄膜、多层膜、超晶格等。按化学组成可分为:纳米金属、纳米晶体、纳米陶瓷、纳米玻璃、纳米高分子和纳米复合材料[7,8]。按材料物性可分为:纳米半导体、纳米磁性材料、纳米非线性光学材料、纳米铁电体、纳米超导材料、纳米热电材料等。按应用可分为纳米电子材料、纳米光电子材料、纳米生物医用材料、纳米敏感材料、纳米储能材料等。纳米材料大部分都是人工制备的,属于人工材料,但是自然界中早就存在纳米微粒和纳米固体。例如天体的陨石碎片,人体和兽类的牙齿都是由纳米微粒构成的[9,10]。 3纳米材料的特性[11,12] 3.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面体 收稿日期:2011-07-05 作者简介:李彦菊(1981-),女,河北廊坊人,硕士,已发表论文10余篇,其中SCI2篇。主要从事纳米材料的研究工作。8

基于石墨烯的化学修饰电极的制备及应用

基于石墨烯的化学修饰电极的制备及应用 世界上有这么种物质,它透明,有韧性,它极其坚硬,防水,它存量丰富,经济实惠并且它的电阻率是世界上已知物质中最小的。它就是石墨烯,一种拥有完美性能的材料,科学家和企业家都为之着迷。[1] 1.1石墨烯 石墨烯(Graphere)是由碳原子组成的单层二维六角晶格结构的碳质新型纳米材料,具有极高的机械强度、极大的比表面积、优异的导电性能、很高的层内载流子迁移速率、优异的导电能力、良好的生物亲和性、近乎完美的量子隧道效应、几乎从不消失的室温铁磁性等一系列优良的特殊性质。自从英国曼彻斯特大学的两位科学家Andre Geim和Konstantin Novoselov因在石墨烯研究领域的卓越研究而被授予了2010年的诺贝尔奖,由此,石墨烯逐渐成为当今自然科学的热点领域之一。[2] 1.2 石墨烯的制备 目前实验室制备石墨烯的方法主要有微机械剥离法、化学气相沉淀法、碳化热热解的外延生长法、氧化石墨还原法、石墨插层法、溶剂热法、芳香偶联法、电化学法、碳纳米管转换法和液相剥离法等。 1.2.1微机械剥离法 2010年诺贝尔奖得主使用胶带粘贴制备石墨烯的方法便是属于微机械剥离法。其原理 便是石墨中的碳原子呈层状结构,层间以范德华力结合,原子间作用力相对化学键来说比较弱,故可以施加外力即可将石墨烯从石墨表面撕扯下来。 其特点便是简单,但该方法耗时长产物少、过程不可控,不可能用于石墨大规模制备。 1.2.2化学气相沉淀法 化学气相沉淀法是一种本质上属于原子范畴的气态传质过程,主要原理是将碳氢化合物吸附于具有催化活性的反应基片上,在相当高的温度下使得碳氢化合物在催化条件上脱氢而在基底上形成石墨烯。 该方法简单易行,能获得表面积较大的石墨烯,但反应不可控,且难以与固体基底剥离。1.2.3碳化热热解的外延生长法 该方法原理是通过加热SiC单晶表面使得Si发生脱附而在原有表面形成单层石墨烯。 其形成的石墨烯厚度可控且洁净无杂质,但仍然难以制备大面积的石墨烯、并且仪器设备要求及成本都很高。 1.2.4氧化还原石墨法 氧化还原石墨法首先用强氧化剂处理天然鳞片石墨使得石墨边缘附近带上环氧基、羧基、羟基等亲水基团而成为氧化石墨,进一步通过水相超声等方法剥离氧化石墨,最后用还原剂还原氧化石墨烯而得到石墨烯的过程。 这种方法操作方便,条件易于实现,且能满足石墨烯工业化产量的要求,但存在制备所得的石墨烯层数不可靠控、带有一定量杂质基团等缺陷。 1.2.5微波法 即为在微波条件下进行氧化还原制得石墨烯的过程。 该方法具有反应速度快、条件温和、设备要求简单的优点,但还原程度不易控制。 1.2.6溶剂热法

金属纳米材料研究进展

高等物理化学 学生姓名:聂荣健 学号:…………….. 学院:化工学院 专业:应用化学 指导教师:………….

金属氧化物纳米材料研究进展 应用化学专业聂荣健学号:……指导老师:…… 摘要:综述了近年来金属氧化物纳米材料水热合成方法的研究进展,简要阐述了金属氧化物纳米材料的应用,对其今后的研究发展方向进行了展望。 关键词: 纳米材料水热合成金属氧化物

Research progress of metal oxide nanomaterials Name Rongjian Nie Abstract: This article reviews the recent progress in hydrothermal synthesis of metal oxide nanomaterials. The application progress of metal oxide nanomaterials is briefly describrd.The future research directions are prospected. Keywords: nanomaterials; hydrothermal; metal oxides ;

引言 纳米材料是纳米科学中的一个重要的研究发展方向,近年来已在许多科学领域引起了广泛的重视,成为材料科学研究的热点。作为纳米材料的一个方面,金属氧化物纳米材料在现代工业、国防和高技术发展中充当着重要的角色。 1.纳米材料简介 1.1 纳米材料概述 纳米是长度的度量单位,1纳米=10-9米,1纳米大约为10个氢原子并排起来的长度,仅仅相当于一根头发丝直径的0.1%。纳米材料则是在纳米量级(lnm-100nm)内调控物质结构所制成的具有特殊功能的新材料,其三维尺寸中至少有一维小于100nm,且性质不同于一般的块体材料。 纳米材料是指在三维尺度上至少存在一维处于纳米量级或者由它们作为基本单元所构成的材料,一般将纳米材料分为零维、一维以及二维纳米材料: (1)零维纳米材料,是指在空间三维尺度上都处于纳米量级的纳米材料,如纳米球,纳米颗粒等; (2)一维纳米材料,是指在空间三维尺度上只有两维处于纳米量级,而第三维处于宏观量级的纳米材料,比如纳米棒、纳米管、纳米线/丝等; (3)二维纳米材料,是指在空间三维尺度上只有一维处于纳米量级,而其他两维处于宏观量级的纳米材料,比如纳米片,纳米薄膜等。 1.2纳米粒子基本效应的研究 纳米粒子是尺寸为1-100nm的超细粒子。纳米粒子的表面原子与总原子数之比随着粒径的减小而急剧增大,显示出强烈的体积效应(即小尺寸效应)、量子尺寸效应、表面效应和宏观量子隧道效应。 1.2.1 量子尺寸效应[1] 当粒子尺寸达到纳米量级时,金属费米能级附近的电子能级由准连续变为分立能级的现象称为量子尺寸效应。能带理论表明:金属纳米粒子所包含的原子数有限,能级间距发生分裂。当此能级间隔大于热能、磁能、静电能、静磁能、光子能量或超导态的凝聚能时,纳米粒子的磁、光、声、热、电及超导电性与宏观物体有显著的不同。 1.2.2 体积效应[2] 由于粒子尺寸变小所引起的宏观物理性质的变化称为体积效应。当纳米粒子的尺寸与德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米粒子的表面层附近原子密度减小,导致声、光、电、磁、热力学等特性呈现新的体积效应。例如:磁有序态向磁无序态、超导相向正常相的转变;光吸收显著增加;声子谱发生改变;强磁性纳米粒子(Fe-Co合金,氧化铁等)尺寸为单磁畴临界尺寸时具有很高的矫顽力;纳米粒子的熔点远远低于块状金属;等离子体共振频率随颗粒尺寸改变[3]。 1.2.3 表面效应[4] 表面效应是指纳米粒子的表面原子数与总原子数之比随着粒径减小而急剧增大后引起的性质上改变。随着粒径减小,表面原子数迅速增加,粒子的表面张力和表面能增加。原子配位不足以及高的表面能使原子表面有很高的化学活性,极不稳定,很容易与其他原子结合,这就是活性的原因。表面原子的活性引起了纳米粒子表面输运和构型的变化,也引起了表面原子自旋构象和电子能谱的变化。

碳基纳米复合材料修饰电极的制备及其在药物分析中的应用

碳基纳米复合材料修饰电极的制备及其在药物分析中的应用药物分析是分析化学中的一个重要分支,随着药学的发展逐渐成为一门独立的学科。现代药物分析无论是分析领域,还是分析技术都己经大大拓展。 电化学分析作为分析技术的一种,在药物分析领域中有着日益广泛的应用。而各种微电极、修饰电极、电化学传感器的问世,由于其具有灵敏度高、响应快、选择性好、操作简单等优点,为电化学分析在药物分析中的应用注入了新的活力。 随着工作者对电化学分析的研究日益深入,电化学分析在科研、生产中的应用越来越广泛,并且在新药研发以及药品生产等方面扮演着重要的角色。本论文主要研究了新型碳基纳米材料复合修饰电极的制备,探索了不同药物在修饰电极上的电化学行为和电极反应机理,从而建立了一系列灵敏、简单、准确的药物定量分析方法。 主要内容归纳如下:1、通过电化学方法将金属氧化物四氧化三钴 (Co3O4)/石墨烯(GR)纳米材料电沉积在玻碳电极表面上,制备了一种新型的纳米复合电极(Co3O4/GR/GCE),成功地被用于测定异烟肼。通过扫描电镜对此修饰电极的表面形貌进行了表征,Co3O4纳米粒子和GR能够很好地修饰在玻碳电极表面。 采用差分脉冲法(DPV)优化了异烟肼的测定条件,在最佳条件下,线性关系范围为0.5160μM,最低检出限为0.17μM(S/N=3),实际药物和血清中的回收率良好,相对标准偏差均小于5%。该方法方便可行,结果满意,重复性好,实用性强。 实验表明,相比于裸电极,此修饰电极获得了更好的电化学性能,可显著提高

纳米材料国内外研究进展

纳米材料国内外研究进展 一、前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)[1]。自20世纪80年代初, 德国科学家 Gleiter[2]提出“纳米晶体材料”的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料已引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1~100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)[3]。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域。 二、国内外研究现状 1984年德国科学家Gleiter首先制成了金属纳米材料, 同年在柏林召开了第二届国际纳米粒子和等离子簇会议, 使纳米材料成为世界性的热点之一;1990年在美国巴尔的摩召开的第一届NST会议, 标志着纳米科技的正式诞生;l994年在德国斯图加特举行的第二届NST会议,表明纳米材料已成为材料科学和凝聚态物理等领域的焦点。近年来,世界各国先后对纳米材料给予了极大的关注,对纳米材料的结构与性能、制备技术以及应用前景进行了广泛而深入的研究,并纷纷将其列人近期高科技开发项目。2004年度纳米科技研发预算近8.5亿美元,2005年预算已达到10亿美元,而且在美国该年度预算的优先选择领域中,纳米名列第二位。现在美国对纳米技术的投资约占世界总量的二分之一[4]。 自70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料, 至今已有 30多年的历史, 但真正成为材料科学和凝聚态物理研究的前沿热点是在 80年代中期以后。因此 ,从其研究的内涵和特点来看大致可划分为三个阶段[5]。 第一阶段(1990年以前)主要是在实验室探索,用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。 第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复

磁性纳米材料的研究进展

磁性纳米材料的研究进展 Progress of magnetic nanoparticles 李恒谦﹡贾雪珂李艳周康佳 (合肥工业大学,安徽宣城) (Hefei University of Technology, Xuancheng, Anhui, China) 摘要:纳米技术是近年来发展起来的一个覆盖面极广、多学科交叉的科学领域。而磁性纳米材料因其优异的磁学性能,也逐渐发挥出越来越大的作用。随着科学工作者在制备、应用领域的拓展逐渐深入,也使得纳米材料的外形、尺寸的控制日趋完善。因此,磁性纳米材料在机械、电子、化学和生物学等领域有着广泛的应用前景。文章综述磁性纳米材料的制备方法、性能及其近年来在不同领域的应用状况。 关键词:磁性;纳米;制备;性能;应用 Abstract: Nanotechnology is developed in recent years as a kind of science with wide coverage and multidisciplinary. Magnetic nanoparticles also play an increasing role due to its excellent magnetic properties.As scientists research take them deeper along the aspects of synthesis and application.the control of shape and dimensions of magnetic nanoparticles has become more mature.Therefore, magnetic nanoparticles have wide application propects in machinery, electronics, chemistry, biology, etc. In this paper,the synthesis method is discussed, the character is mentioned and the application of magnetic nanoparticles is summarized. Keywords:magnetic;nanoparticles;synthesis;character; application 1.引言 磁性纳米材料的特性不同于常规的磁性材料,其原因是关联于与磁相关的特征物理长度恰好处于纳米量级,例如:磁单畴尺寸,超顺磁性临界尺寸,交换作用长度,以及电子平均自由路程等大致处于1-100nm量级,当磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学性质。 纳米表征技术是高新材料基础理论研究与实际应用交叉融合的技术。对我国高新材料产业的发展有着重要的推动作用,其在全国更广泛的推广应用,能加速我国高新材料研究的进程,为我国高新技术产业的发展作出更大的贡献。在纳米表征技术下,磁性纳米材料的应用日显勃勃生机。例如磁性材料与信息化、自动化、机电一体化、国防,国民经济的方方面面紧密相关,磁记录材料至今仍是信息工业的主体。 磁性纳米材料的应用可谓涉及到各个领域。在机械,电子,光学,磁学,化学和生物学领域有着广泛的应用前景。纳米科学技术的诞生将对人类社会产生深远的影响。并有可能从根本上解决人类面临的许多问题。特别是能源,人类健康和环境保护等重大问题。下一世纪初的主要任务是依据纳米材料各种新颖的物理和化学特性设计出顺应世纪的各种新型的材料和器件,通过纳米材料科学技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品。已出现可喜的苗头,具备了形成下一世纪经济新增长点的基础。磁性纳米材料将成为纳米材料科学领域一个大放异彩的明星,在新材料,能源,信息,生物医学等各个领域发挥举足轻重的作用。 2.制备 在人们所熟知的大量磁性材料中,由于不能同时满足高饱和磁化强度和稳定性高的要求,饱和磁化强度高但稳定性低的材料应用在一定程度上受到了限制。目前可选作磁性微粒的仅有少数几种,主要为金属氧化物,如三氧化二铁(Fe2O3)、MFe2O4(M为Co,Mn,Ni)、四氧化三铁(Fe3O4),二元和三元合金,如金属铁、钴、镍及其铁钴合金、镍铁合金,以及钕

相关文档
最新文档