双曲线性质总结及经典例题

双曲线性质总结及经典例题
双曲线性质总结及经典例题

双曲线

知识点总结

1. 双曲线的第一定义:

⑴①双曲线标准方程:.

一般方程:.

⑵①i. 焦点在x轴上:

顶点:焦点:准线方程渐近线方程:或

ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或

②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率. ④准线距

(两准线的距离). ⑤参数关系. ⑥焦点半径公式:对于双曲线方程

(分别为双曲线的左、右焦点或分别为双曲线的上下焦点)

例题分析

定义类

1,已知12(5,0),(5,0)F F -,一曲线上的动点P 到21,F F 距离之差为6,则双曲线的方程为 点拨:一要注意是否满足122||a F F <,二要注意是一支还是两支

12||||610

PF PF -=< ,P 的轨迹是双曲线的右支.其方程为

)0(116

9

2

2

>=-

x y

x

2双曲线的渐近线为x y 2

3±=,则离心率为 点拨:当焦点在x 轴上时,

2

3=a

b ,2

13=e ;当焦点在y 轴上时,

2

3=

b

a ,3

13=

e

4 设P 为双曲线112

2

2

=-

y

x 上的一点F 1、F 2是该双曲线的两个焦点,若|PF 1|:|PF 2|=3:2,则△PF 1F 2的面积为 ( )

A .36

B .12

C .312

D .24

解析:2:3||:||,13,12,121==

==PF PF c b a 由 ①

又,22||||21==-a PF PF ② 由①、②解得.4||,6||21==PF PF

,52||,52||||2

212

22

1==+F F PF PF

为21F PF ∴直角三角形,

.12462

1||||2

12121=??=

?=

∴?PF PF S F PF 故选B 。

1已知双曲线C 与双曲线

16

2

x

4

2

y

=1有公共焦点,且过点(32,2).求双曲线C 的方程.

【解题思路】运用方程思想,列关于c b a ,,的方程组

[解析] 解法一:设双曲线方程为2

2a

x -

22b

y =1.由题意易求c =25. 又双曲线过点(32,2),∴

2

2

)23(a

2

4b

=1.

又∵a 2+b 2=(25)2,∴a 2=12,b 2=8. 故所求双曲线的方程为

122

x

8

2

y

=1. 解法二:设双曲线方程为k x

-162

k

y

+42

=1,

将点(32,2)代入得k =4,所以双曲线方程为122

x

8

2

y

=1.

2.已知双曲线的渐近线方程是2

x y ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程

为 ;

[解析]设双曲线方程为λ=-224y x , 当0>λ时,化为

14

2

2

=-

λλ

y

x

,20104

52

=∴=∴λλ,

当0<λ时,化为

142

2

=--

-

λ

λy

y ,20104

52-=∴=-

∴λλ,

综上,双曲线方程为

2

2

120

5

x

y

-

=或

120

5

2

2

=-

x

y

3.以抛物线x y 382=的焦点F 为右焦点,且两条渐近线是03=±y x 的双曲线方程为___________________.

[解析] 抛物线x y 382=的焦点F 为)0,32(,设双曲线方程为λ=-2

23y x ,9)32(3

42

=∴=∴λλ,双曲线方程为

1

3

9

2

2

=-

y

x

【例1】若椭圆

()012

2

n m n

y

m

x

=+

与双曲线

2

2

1x

y

a

b

-

=)0( b a 有相同的焦点F 1,F 2,P

是两条曲线的一个交点,则|PF 1|·|PF 2|的值是 ( )

A. a m -

B.

()a m -2

1 C. 2

2

a m - D. a m -

【解析】椭圆的长半轴为()1221m PF PF m ∴+=,

双曲线的实半轴为()1222a PF PF a ∴-=±,

()

()()2

2

12121244PF PF m a PF PF m a -?=-??=-:,故选A.

【评注】严格区分椭圆与双曲线的第一定义,是破解本题的关键.

【例2】已知双曲线

127

9

2

2

=-

y

x

与点M (5,3),F 为右焦点,若双曲线上有一点P ,使PM

PF

2

1+

最小,则P 点的坐标为

【分析】待求式中的

1

2

是什么?是双曲线离心率的

倒数.由此可知,解本题须用双曲线的第二定义.

【解析】双曲线的右焦点F (6,0),离心率2e =,

右准线为3

2l x =:.作M N l ⊥于N ,交双曲线右支于P ,

连FP ,则122

P F e P N P N P N P F ==?=

.此时

PM

13752

2

5

P F P M

P N

M N

+=+==-

=为最小.

127

9

2

2

=-

y

x

中,令3y =,得2

122 3.x

x x =?=±∴ 0,取23x =.所求P 点的坐

标为233(,).

【例3】过点(1,3)且渐近线为x y 2

=的双曲线方程是

【解析】设所求双曲线为

()2

2

14

x

y k

-=

点(1,3)代入:13594

4

k =-=-.代入(1):

2

2

2

2

35414

4

3535

x

y

x

y -=-

?

-

=即为所求.

【评注】在双曲线222

2

1x y a

b

-

=中,令

222

2

00x y x y a

b

a

b

-

=?

±

=即为其渐近线.根据这一点,可

以简洁地设待求双曲线为

222

2

x y k a

b

-

=,而无须考虑其实、虚轴的位置.

【例7】直线l 过双曲线

12

22

2=-

b

y a

x 的右焦点,斜率k =2.若l 与双曲线的两个交点分别在左右两支上,

则双曲线的离心率e 的范围是 ( )

A .e >

2 B.1

3 C.15

【解析】如图设直线l 的倾斜角为α,双曲线渐近线

m 的倾斜角为β.显然。当β>α时直线l 与双曲线的两 个交点分别在左右两支上.由

X Y O

F (6,0)M (5,3)P N

P ′

N ′

X =

32

X

Y

O

F

2

2

2

2tan tan 245b c a e a a

βαβα->?>?>?

>?>.

∵双曲线中1e >,故取e >5.选D. 【例8】设P 为双曲线2

2

112

y

x -

=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,

则12PF F △的面积为( )

A .63

B .12

C.123 D .24

【解析】双曲线的实、虚半轴和半焦距分别是:

1,23,13a b c ===

.设;

12123,2.22, 2.PF r PF r PF PF a r ==-==∴=

于是22

2

1212

126, 4.52PF PF PF PF F F ==+== ,

故知△PF 1F 2是直角三角形,∠F 1P F 2=90°.

∴1

2

121164122

2

P F F S P F P F ?=

?=

??=.选B.

【例9】双曲线122=-y x 的一弦中点为(2,1),则此弦所在的直线方程为

( )

A. 12-=x y

B. 22-=x y

C. 32-=x y

D. 32+=x y 【解析】设弦的两端分别为()()1,12,2,A x y B x y .则有: ()()222222

111212121222

121222

101x y y y x x x x y y x x y y x y ?-=-+?---=?=?-+-=?. ∵弦中点为(2,1),∴121242

x x y y +=??+=?.故直线的斜率1

212

12122y y x x k x x y y -+===-+. 则所求直线方程为:()12223y x y x -=-?=-,故选C.

【例10】在双曲线12

2

2

=-

y

x 上,是否存在被点M (1,1)平分的弦?如果存在,求弦所在的直线

方程;如不存在,请说明理由.

如果不问情由地利用“设而不求”的手段,会有如下解法:

【错解】假定存在符合条件的弦AB ,其两端分别为:A (x 1,y 1),B (x 2,y 2).那么:

X

Y

O

F 1

F 2

P 2r

()()()()()22

111212

121222221112

011212

x y x x x x y y y y x y ?-=???-+--+=??-=??.

∵M (1,1)为弦AB 的中点, ∴()()()121212121212

2022

AB x x y y x x y y k y y x x +=?----=∴=

=?

+=-?代入1:2,

故存在符合条件的直线AB ,其方程为:()12121y x y x -=-=-,即. 这个结论对不对呢?我们只须注意如下两点就够了: 其一:将点M (1,1)代入方程12

2

2

=-

y

x ,发现左式=1-

112

2

=

<1,故点M (1,1)在双曲线

的外部;其二:所求直线AB 的斜率2A B k =,而双曲线的渐近线为2y x =±.这里22 ,说明所求直线不可能与双曲线相交,当然所得结论也是荒唐的.

问题出在解题过程中忽视了直线与双曲线有公共点的条件.

【正解】在上述解法的基础上应当加以验证.由

()()2

2222

1221224302221y x x x x x y x ?-=??--=?-+=?

?=-?

这里16240?=- ,故方程(2)无实根,也就是所求直线不合条件.

此外,上述解法还疏忽了一点:只有当12x x ≠时才可能求出k=2.若12120x x y ===,必有y .说明这时直线与双曲线只有一个公共点,仍不符合题设条件.

结论;不存在符合题设条件的直线.

课堂展示: 1. 如果双曲线

2

42

2y

x -=1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离

是( ) (A)

3

64

(B)

3

62 (C)6

2

(D)3

2

2. 已知双曲线C ∶

222

2

1(x y a a

b

-=>0,b >0),以C 的右焦点为圆心且与C 的渐近线相切的

圆的半径是 (A )a

(B)b

(C)ab

(D)22b a +

3. 以双曲线

2

2

1916

x

y

-=的右焦点为圆心,且与其渐近线相切的圆的方程是( )

A .221090x y x +-+=

B .2210160x y x +-+=

C .2210160x y x +++=

D .221090x y x +++=

4. 以双曲线222x y -=的右焦点为圆心,且与其右准线相切的圆的方程是( ) A.22430x y x +--= B.22430x y x +-+= C.22450x y x ++-= D.22450x y x +++=

5. 若双曲线

222

2

1x y a

b

-

=(a >0,b >0)上横坐标为

32

a 的点到右焦点的距离大于它到左准

线的距离,则双曲线离心率的取值范围是( ) A.(1,2)

B.(2,+∞)

C.(1,5)

D. (5,+∞)

6. 若双曲线

12

22

2=-b

y a

x 的两个焦点到一条准线的距离之比为3:2那么则双曲线的离心

率是( )

(A )3 (B )5 (C )3 (D )5 7. 过双曲线

222

2

1(0,0)x y a b a

b

-

=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的

两条渐近线的交点分别为,B C .若12

A B B C

=

,则双曲线的离心率是 ( )

A .2

B .3

C .5

D .10 8. 已知双曲线

)0(12

2

22

>=-

b b

y x

的左、右焦点分别是1F 、2F ,其一条渐近线方程为

x y =,点),3(0y P 在双曲线上.则12PF PF ?

=( )

A. -12

B. -2

C. 0

D. 4 1.双曲线

2

2

125

144

x

y

-

=上的一点P 到左焦点的距离为9,则P 到右准线的距离是___

2.双曲线两准线把两焦点连线段三等分,求e. 3. 双曲线的

12

22

2=-

b

y a

x (a >0,b >)0渐近线与一条准线围成的三角形的面积

是 . 4.若双曲线

)

0,0( 12

22

2>>=-

b a b

y a

x ,在右支上有一点P ,且P 到左焦点1F 与P 到右焦点2

F

的距离之比为4:3,求P 点的横坐标。

1.已知双曲线2

22

2b

y a

x -

= 1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于A ,△OAF

面积为2

2

a

(O 为原点),则两条渐近线夹角为( ) A .30°

B .45°

C .60°

D .90°

2.已知双曲线的离心率为2,准线方程为2y x =-,焦点F(2,0),求双曲线标准方程 3.求渐近线方程是4x 03=±y ,准线方程是5y 016=±的双曲线方程

3.解答题 (1)判断方程

13

92

2

=--

-k y

k

x

所表示的曲线。

(5).双曲线2x 2-y 2=k 的焦距是6,求k 的值.

双曲线考点与题型归纳

双曲线考点与题型归纳 一、基础知识 1.双曲线的定义 平面内到两个定点F1,F2的距离的差的绝对值等于常数2a?(2a<|F1F2|)的点P的轨迹叫做双曲线?.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.?当|PF1|-|PF2|=2a(2a<|F1F2|)时,点P的轨迹为靠近F2的双曲线的一支. 当|PF1|-|PF2|=-2a(2a<|F1F2|)时,点P的轨迹为靠近F1的双曲线的一支. ?若2a=2c,则轨迹是以F1,F2为端点的两条射线;若2a>2c,则轨迹不存在;若2a =0,则轨迹是线段F1F2的垂直平分线. 2.双曲线的标准方程 (1)中心在坐标原点,焦点在x轴上的双曲线的 标准方程为x2 a2-y2 b2=1(a>0,b>0). (2)中心在坐标原点,焦点在y轴上的双曲线的 标准方程为y2 a2-x2 b2=1(a>0,b>0).3.双曲线的几何性质

二、常用结论 (1)过双曲线的一个焦点且与实轴垂直的弦的长为2b 2 a ,也叫通径. (2)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2 b 2=t (t ≠0). (3)双曲线的焦点到其渐近线的距离为b . (4)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a . 考点一 双曲线的标准方程 [典例] (1)(2018·石家庄摸底)已知双曲线过点(2,3),渐近线方程为y =±3x ,则该双曲线的标准方程是( ) A.7x 216-y 2 12=1 B.y 23-x 2 2=1 C .x 2- y 2 3 =1 D.3y 223-x 2 23 =1 (2)(2018·天津高考)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于 x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( ) A.x 24-y 2 12=1 B.x 212-y 2 4=1 C.x 23-y 2 9 =1 D.x 29-y 2 3 =1 [解析] (1)法一:当双曲线的焦点在x 轴上时,设双曲线的标准方程是x 2a 2-y 2 b 2=1(a >0, b >0),由题意得??? 4a 2-9 b 2 =1,b a = 3, 解得? ???? a =1, b =3,所以该双曲线的标准方程为x 2 -y 2 3 =1; 当双曲线的焦点在y 轴上时,设双曲线的标准方程是y 2a 2-x 2 b 2=1(a >0,b >0),由题意得

双曲线题型归纳含(答案)

三、典型例题选讲 (一)考查双曲线的概念 例1 设P 是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方程为023=-y x ,1F 、2F 分别是双曲线的左、右焦点.若3||1=PF ,则=||2PF ( ) A .1或5 B .6 C .7 D .9 分析:根据标准方程写出渐近线方程,两个方程对比求出a 的值,利用双曲线的定义求出 2||PF 的值. 解:Θ双曲线19222=-y a x 渐近线方程为y =x a 3 ±,由已知渐近线为023=-y x , 122,||||||4a PF PF ∴=±∴-=,||4||12PF PF +±=∴. 12||3, ||0PF PF =>Q ,7||2=∴PF . 故选C . 归纳小结:本题考查双曲线的定义及双曲线的渐近线方程的表示法. (二)基本量求解 例2(2009山东理)设双曲线12222=-b y a x 的一条渐近线与抛物线2 1y x =+只有一个公共点, 则双曲线的离心率为( ) A . 4 5 B .5 C .25 D .5 解析:双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y x a y x ? =? ??=+?,消去y ,得 210b x x a - +=有唯一解,所以△=2()40b a -=, 所以2b a =,2221()5c a b b e a a a +===+=,故选D .

归纳小结:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念、基本方法和基本技能. 例3(2009全国Ⅰ理)设双曲线22221x y a b -=(a >0,b >0)的渐近线与抛物线y =x 2 +1相 切,则该双曲线的离心率等于( )A.3 B.2 C.5 D.6 解析:设切点00(,)P x y ,则切线的斜率为 0'0|2x x y x ==.由题意有 00 2y x x =.又有2001y x =+,联立两式解得:2201,2,1()5b b x e a a =∴ ==+=. 因此选C . 例4(2009江西)设1F 和2F 为双曲线22 221x y a b -=(0,0a b >>)的两个焦点,若12F F ,, (0,2)P b 是正三角形的三个顶点,则双曲线的离心率为( ) A . 32 B .2 C .5 2 D .3 解析:由3tan 6 2c b π = =2222 344()c b c a ==-,则2c e a ==,故选B . 归纳小结:注意等边三角形及双曲线的几何特征,从而得出3 tan 6 2c b π = =体现数形结合思想的应用. (三)求曲线的方程

双曲线专题经典练习及答案详解

双曲线专题 一、学习目标: 1.理解双曲线的定义; 2.熟悉双曲线的简单几何性质; 3.能根据双曲线的定义和几何性质解决简单实际题目. 二、知识点梳理 定 义 1、到两个定点1F 与2F 的距离之差的绝对值等于定长(小于 2 1F F )的点的轨迹 2、到定点F 与到定直线l 的距离之比等于常数()1>e e e (>1)的点的轨迹 标准方程 -2 2a x 22 b y =1()0,0>>b a -22a y 22 b x =1()0,0>>b a 图 形 性质 范围 a x ≥或a x -≤,R y ∈ R x ∈,a y ≥或a y -≤ 对称性 对称轴: 坐标轴 ;对称中心: 原点 渐近线 x a b y ± = x b a y ± = 顶点 坐标 ()0,1a A -,()0,2a A ()b B -,01,()b B ,02 ()a A -,01,()a A ,02()0,1b B -,()0,2b B 焦点 ()0,1c F -,()0,2c F ()c F -,01,()c F ,02 轴 实轴21A A 的长为a 2 虚轴21B B 的长为b 2 离心率 1>= a c e ,其中22b a c += 准线 准线方程是c a x 2 ±= 准线方程是c a y 2 ±= 三、课堂练习

1.椭圆x 24+y 2a 2=1与双曲线x 2a -y 2 2=1有相同的焦点,则a 的值是( ) A.1 2 B .1或-2 C .1或1 2 D .1 2.已知F 是双曲线x 24-y 2 12=1的左焦点,点A (1,4),P 是双曲线右支上的动点,则|PF |+|P A |的最小值为________. 3.已知F 1,F 2分别为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1||PF 2|=( ) A .2 B .4 C .6 D .8 4.已知双曲线的两个焦点F 1(-10,0),F 2(10,0),M 是此双曲线上的一点,且MF 1→·MF 2→=0,|MF 1→|·|MF 2→|=2,则该双曲线的方程是( ) A.x 29-y 2 =1 B .x 2-y 29=1 C.x 23-y 2 7=1 D.x 27-y 2 3=1 5.若F 1,F 2是双曲线8x 2-y 2=8的两焦点,点P 在该双曲线上,且△PF 1F 2是等腰三角形,则△PF 1F 2的周长为________. 6.已知双曲线x 26-y 2 3=1的焦点为F 1,F 2,点M 在双曲线上,且MF 1⊥x 轴,则F 1到直线F 2M 的距离为( ) A.365 B.566 C.65 D.56

高中数学双曲线经典例题

高中数学双曲线经典例题 一、双曲线定义及标准方程 1.已知两圆C1:(x+4)2+y2=2,C2:(x﹣4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是() A.x=0 B. C.D. 2、求适合下列条件的双曲线的标准方程: (1)焦点在 x轴上,虚轴长为12,离心率为; (2)顶点间的距离为6,渐近线方程为. 3、与双曲线有相同的焦点,且过点的双曲线的标准方程是

4、求焦点在坐标轴上,且经过点A(,﹣2)和B(﹣2,)两点的双曲线的标准方程. 5、已知P是双曲线=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为. 二、离心率 1、已知点F1、F2分别是双曲线的两个焦点,P为该双曲线上一点,若△PF1F2为等腰直角三角形,则该双曲线的离心率为. 2、设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为. 3、双曲线的焦距为2c,直线l过点(a,0) 和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l 的距离之和.则双曲线的离心率e的取值范围是() A. B.C.D. 3、焦点三角形

1、设P是双曲线x2﹣=1的右支上的动点,F为双曲线的右焦点,已知A(3,1),则|PA|+|PF|的最小值为. 2、.已知F1,F2分别是双曲线3x2﹣5y2=75的左右焦点,P是双曲线上的一点,且∠F1PF2=120°,求△F1PF2的面积. 3、已知双曲线焦点在y轴上,F1,F2为其焦点,焦距为10,焦距是实轴长的2倍.求: (1)双曲线的渐近线方程; (2)若P为双曲线上一点,且满足∠F1PF2=60°,求△PF1F2的面积. 4、直线与双曲线的位置关系 已知过点P(1,1)的直线L与双曲线只有一个公共点,则直线L的斜率k= ____ 5、综合题型

椭圆双曲线抛物线典型例题

椭圆典型例题 一、已知椭圆焦点的位置,求椭圆的标准方程。 例1:已知椭圆的焦点是F 1(0,-1)、F 2(0,1),P 是椭圆上一点,并且PF 1+PF 2=2F 1F 2,求椭圆的标准方程。 解:由PF 1+PF 2=2F 1F 2=2×2=4,得2a =4.又c =1,所以b 2=3. 所以椭圆的标准方程是y 24+x 2 3=1. 2.已知椭圆的两个焦点为F 1(-1,0),F 2(1,0),且2a =10,求椭圆的标准方程. 解:由椭圆定义知c =1,∴b =52 -1=24.∴椭圆的标准方程为x 225+y 2 24 =1. 二、未知椭圆焦点的位置,求椭圆的标准方程。 例:1. 椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11 42 2=+y x ; (2)当()02, A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为: 116 42 2=+y x ; 三、椭圆的焦点位置由其它方程间接给出,求椭圆的标准方程。 例.求过点(-3,2)且与椭圆x 29+y 2 4 =1有相同焦点的椭圆的标准方程. 解:因为c 2 =9-4=5,所以设所求椭圆的标准方程为x 2a 2+y 2a 2-5=1.由点(-3,2)在椭圆上知9 a 2+ 4a 2 -5 =1,所以a 2 =15.所以所求椭圆的标准方程为x 215+y 2 10 =1. 四、与直线相结合的问题,求椭圆的标准方程。 例: 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程. 解:由题意,设椭圆方程为12 22=+y a x , 由?????=+=-+1012 22y a x y x ,得()0212 22=-+x a x a , ∴222112a a x x x M +=+=,2 11 1a x y M M +=-=, 41 12===a x y k M M OM Θ,∴42=a , ∴14 22 =+y x 为所求. 五、求椭圆的离心率问题。 例1 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 解:31222??=c a c Θ ∴223a c =,∴333 1-=e .

双曲线经典例题讲解

第一部分 双曲线相关知识点讲解 一.双曲线的定义及双曲线的标准方程: 1 双曲线定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨 迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点. 要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|,这两点与椭圆的定义有本质的不同. 当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支; 当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线; 当2a >|F 1F 2|时,动点轨迹不存在. 2.双曲线的标准方程:12222=-b y a x 和122 22=-b x a y (a >0,b >0).这里222a c b -=,其中 |1F 2F |=2c.要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同. 3.双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. 二.双曲线的外部: (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 三.双曲线的方程与渐近线方程的关系 (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ, 焦点在y 轴上). 四.双曲线的简单几何性质 22 a x -22b y =1(a >0,b >0) ⑴围:|x |≥a ,y ∈R

双曲线-题型归纳-含答案

三、典型例题选讲 (一)考查双曲线的概念 例1 设P 是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方 程为023=-y x ,1F 、2F 分别是双曲线的左、右焦点.若3||1=PF ,则= ||2PF ( ) A .1或5 B .6 C .7 D .9 分析:根据标准方程写出渐近线方程,两个方程对比求出a 的值,利用双曲线的定义求出2||PF 的值. 解:Θ双曲线 1922 2=-y a x 渐近线方程为x a 3 ±,由已知渐近线为023=-y x , 122,||||||4a PF PF ∴=±∴-=,||4||12PF PF +±=∴. 12||3, ||0PF PF =>Q ,7||2=∴PF . 故选C . 归纳小结:本题考查双曲线的定义及双曲线的渐近线方程的表示法. (二)基本量求解 例2(2009 山东理)设双曲线122 22=-b y a x 的一条渐近线与抛物线 21y x =+只有一个公共点,则双曲线的离心率为( ) A .45 B .5 C . 2 5 D .5

解析:双曲线 12 222=-b y a x 的一条渐近线为x a b y =,由方程组 21 b y x a y x ? =?? ?=+?,消去y ,得210b x x a -+=有唯一解,所以△=2()40b a -=, 所以2b a =,2221()5c a b b e a a a +===+=,故选 D . 归纳小结:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念、基本方法和基本技能. 例3(2009 全国Ⅰ理)设双曲线22 221x y a b -=(a >0,b >0)的渐 近线与抛物线2 +1相切,则该双曲线的离心率等于( )356解析:设切点00(,)P x y ,则切线的斜率为0 '0|2x x y x ==.由题意有 00 2y x x =.又有2001y x =+,联立两式解得:2201,2,1()5b b x e a a =∴==+= 因此选C . 例4(2009 江西)设1F 和2F 为双曲线22 221x y a b -=(0,0a b >>)的两个 焦点,若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为( ) A .3 2 B .2 C .52 D .3

双曲线经典练习题总结(带答案)

双曲线经典练习题总结(带答案) 一、选择题 1.以椭圆x 216+y 2 9=1的顶点为顶点,离心率为2的双曲线方程为( C ) A .x 216-y 2 48=1 B .y 29-x 2 27 =1 C .x 216-y 248=1或y 29-x 2 27=1 D .以上都不对 [解析] 当顶点为(±4,0)时,a =4,c =8,b =43,双曲线方程为x 216-y 2 48=1;当顶点为(0, ±3)时,a =3,c =6,b =33,双曲线方程为y 29-x 2 27=1. 2.双曲线2x 2-y 2=8的实轴长是( C ) A .2 B .22 C .4 D .42 [解析] 双曲线 2x 2-y 2=8 化为标准形式为x 24-y 2 8 =1,∴a =2,∴实轴长为2a =4. 3.(全国Ⅱ文,5)若a >1,则双曲线x 2a 2-y 2 =1的离心率的取值范围是( C ) A .(2,+∞) B .(2,2 ) C .(1,2) D .(1,2) [解析] 由题意得双曲线的离心率e =a 2+1 a . ∴c 2=a 2+1a 2=1+1a 2. ∵a >1,∴0<1a 2<1,∴1<1+1 a 2<2,∴10,b >0)的离心率为2,则点(4,0)到C 的渐近线的距离为( D ) A .2 B .2 C .322 D .22 [解析] 由题意,得e =c a =2,c 2=a 2+b 2,得a 2=b 2.又因为a >0,b >0,所以a =b ,渐近

高考数学-圆锥曲线-双曲线题型总结

二、双曲线 1、(21)(本小题满分14分)08天津 已知中心在原点的双曲线C的一个焦点是()0,3 1 - F,一条渐近线的方程是0 2 5= -y x. (Ⅰ)求双曲线C的方程; (Ⅱ)若以()0≠k k为斜率的直线l与双曲线C相交于两个不同的点M,N,线段MN的垂直平分线与两坐 标轴围成的三角形的面积为 2 81 ,求k的取值范围. (21)本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理运算能力.满分14分. (Ⅰ)解:设双曲线C的方程为 22 22 1 x y a b -=(0,0 a b >>).由题设得 229 a b b a ?+= ? ? = ? ? ,解得 2 2 4 5 a b ?= ? ? = ?? ,所以双曲线方程为 22 1 45 x y -=. 的方程为y kx m =+(0 k≠).点 11 (,) M x y, 22 (,) N x y的坐标满足方程组(Ⅱ)解:设直线l 22 1 45 y kx m x y =+ ? ? ? -= ?? 将①式代入②式,得 22 () 1 45 x kx m + -=,整理得222 (54)84200 k x kmx m ----=. 此方程有两个一等实根,于是2 50 4k -≠,且222 (8)4(54)(420)0 k m k m ?=-+-+>.整理得22 540 m k +->.③ 由根与系数的关系可知线段MN的中点坐标 00 (,) x y满足 12 02 4 254 x x km x k + == - , 002 5 54 m y kx m k =+= - . 从而线段MN的垂直平分线方程为 22 514 () 5454 m km y x k k k -=-- -- . 此直线与x轴,y轴的交点坐标分别为 2 9 (,0) 54 km k - , 2 9 (0,) 54 m k - .由题设可得22 19981 |||| 254542 km m k k ?= -- .整理得 22 2 (54) || k m k - =,0 k≠. 将上式代入③式得 22 2 (54) 540 || k k k - +->,整理得22 (45)(4||5)0 k k k --->,0 k≠.

高中数学《双曲线》典型例题12例(含标准答案)

《双曲线》典型例题12例 典型例题一 例1 讨论 19252 2=-+-k y k x 表示何种圆锥曲线,它们有何共同特征. 分析:由于9≠k ,25≠k ,则k 的取值范围为9-k ,09>-k , 所给方程表示椭圆,此时k a -=252,k b -=92,16222=-=b a c ,这些椭圆有共同的焦点(-4,0),(4,0). (2)当259<-k ,09<-k ,所给方程表示双曲线,此时, k a -=252,k b -=92,16222=+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0). (3)25

∴所求双曲线方程为19 162 2=+-y x 说明:采取以上“巧设”可以避免分两种情况讨论,得“巧求”的目的. (2)∵焦点在x 轴上,6=c , ∴设所求双曲线方程为:162 2 =-- λ λy x (其中60<<λ) ∵双曲线经过点(-5,2),∴164 25 =-- λ λ ∴5=λ或30=λ(舍去) ∴所求双曲线方程是15 22 =-y x 说明:以上简单易行的方法给我们以明快、简捷的感觉. (3)设所求双曲线方程为: ()16014162 2<<=+--λλλy x ∵双曲线过点() 223, ,∴144 1618=++-λ λ ∴4=λ或14-=λ(舍) ∴所求双曲线方程为18 122 2=- y x 说明:(1)注意到了与双曲线 14 162 2=-y x 有公共焦点的双曲线系方程为14162 2=+--λ λy x 后,便有了以上巧妙的设法. (2)寻找一种简捷的方法,须有牢固的基础和一定的变通能力,这也是在我们教学中应该注重的一个重要方面. 典型例题三 例3 已知双曲线116 92 2=- y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F ∠的大小.

双曲线练习题经典(含答案)

《双曲线》练习题 一、选择题: 1.已知焦点在x 轴上的双曲线的渐近线方程是y =±4x ,则该双曲线的离心率是( A ) 2.中心在原点,焦点在x 轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方 程为( B ) A .x 2 ﹣y 2 =1 B .x 2 ﹣y 2 =2 C .x 2 ﹣y 2 = D .x 2﹣y 2 = 3.在平面直角坐标系中,双曲线C 过点P (1,1),且其两条渐近线的方程分别为2x+y=0和2x ﹣y=0,则双曲线C 的标准方程为( B ) A . B . C .或 D . 4.已知椭圆222a x +222b y =1(a >b >0)与双曲线2 2 a x -22 b y =1有相同的焦点,则椭圆的离心率为( A ) A .22 B .21 C .66 D .36 5.已知方程﹣ =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( A ) A .(﹣1,3) B .(﹣1,) C .(0,3) D .(0,) 6.设双曲线 =1(0<a <b )的半焦距为c ,直线l 过(a ,0)(0,b )两点,已知原点到直线l 的距 离为,则双曲线的离心率为( A ) A .2 B . C . D . 7.已知双曲线22219y x a -=的两条渐近线与以椭圆22 1259y x + =的左焦点为圆心、半径为165 的圆相切,则双曲线的离心率为( A ) A .54 B .5 3 C . 43 D .6 5 8.双曲线虚轴的一个端点为M ,两个焦点为F 1、F 2,∠F 1MF 2=120°,则双曲线的离心率为( B ) 9.已知双曲线 22 1(0,0)x y m n m n -=>>的一个焦点到一条渐近线的距离是2,一个顶点到它的一条渐近线的

圆锥曲线经典例题及总结(全面实用)

圆锥曲线经典例题及总结 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程2 2 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。

双曲线高考知识点及题型总结

双曲线高考知识点及题型总结—(最新最全) 目录 双曲线知识点 (2) 1双曲线定义: (2) 2.双曲线的标准方程: (2) 3.双曲线的标准方程判别方法是: (2) 4.求双曲线的标准方程 (2) 5.曲线的简单几何性质 (2) 6曲线的内外部 (3) 7曲线的方程与渐近线方程的关系 (3) 8双曲线的切线方程 (3) 9线与椭圆相交的弦长公式 (4) 高考知识点解析 ........................................................................................................................ 错误!未定义书签。 知识点一:双曲线定义问题 ............................................................................................ 错误!未定义书签。 知识点二:双曲线标准方程问题 .................................................................................... 错误!未定义书签。 知识点三:双曲线在实际中的应用 ................................................................................ 错误!未定义书签。 知识点四:双曲线的简单几何性质的应用 .................................................................... 错误!未定义书签。 知识点五:双曲线的离心率 ............................................................................................ 错误!未定义书签。 知识点六:直线与双曲线 (6) 考题赏析 .............................................................................................................................................................. 7-13分块讲练 .................................................................................................................................... 错误!未定义书签。

(完整版)高考圆锥曲线题型归类总结(最新整理)

)直接法:直接利用条件建立之间的关系; 和直线的距离之和等于 ),端点向圆作两条切线

的距离比它到直线的距离小于 :和⊙:都外切,则动圆圆心 代入转移法:动点依赖于另一动点的变化而变化,并且又在某已知曲线上,则可先用的代数式表示,再将代入已知曲线得要求的轨 是抛物线上任一点,定点为,分所成的比为 参数法:当动点坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。 过抛物线的焦点作直线交抛物线于

?OA OB ⊥?121K K ?=-?0OA OB ?= ?12120 x x y y += ②“点在圆内、圆上、圆外问题” “直角、锐角、钝角问题” “向量的数量积大于、等于、小于0问题”?? >0; ?1212x x y y + ③“等角、角平分、角互补问题” 斜率关系(或);?120K K +=12K K = ④“共线问题” (如: 数的角度:坐标表示法;形的角度:距离转化法); AQ QB λ= ?(如:A 、O 、B 三点共线直线OA 与OB 斜率相等);? ⑤“点、线对称问题” 坐标与斜率关系;? ⑥“弦长、面积问题” 转化为坐标与弦长公式问题(提醒:注意两个面积公式的合理选择);?六、化简与计算;七、细节问题不忽略; ①判别式是否已经考虑;②抛物线问题中二次项系数是否会出现0.基本解题思想: 1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无关;⑵也可先在特殊条件下求出定值,再给出一般的证明。 4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明 5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决; 6、转化思想:有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 7、思路问题:大多数问题只要忠实、准确地将题目每个条件和要求表达出来,即可自然而

双曲线重难点题型归纳

双曲线常考重难点题型归纳 必考点1: 双曲线的定义 1.双曲线的定义 满足以下三个条件的点的轨迹是双曲线 (1)在平面内; (2)动点到两定点的距离的差的绝对值为一定值; (3)这一定值一定要小于两定点的距离. 2.双曲线的标准方程 标准方程 x 2a 2-y 2 b 2=1(a >0,b >0) y 2a 2-x 2 b 2=1(a >0,b >0) 图形 例题1: 已知点O (0,0),A (–2,0),B (2,0).设点P 满足|P A |–|PB |=2,且P 为函数y =234x -上的点,则|OP |=( ) A . 22 2 B 410 C 7 D 10 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,2 2 2 413b c a =-=-=,即双曲线的右支方程为()2 2 103 y x x -=>,而点P 还在函数 2 34y x =-()2 2210334y x x y x ???->-==??,解得13233 2x y ?=? ???=??,即13271044OP =+= D. 例题2: 已知F 为双曲线22 :149 x y C -=的左焦点,P ,Q 为双曲线C 同一支上的两点.若PQ 的长等于虚 轴长的2倍,点(13,0)A 在线段PQ 上,则PQF △的周长为________.

【解析】根据题意,双曲线 22 :1 49 x y C-=的左焦点(13,0) F-,所以点(13,0) A是双曲线的右焦点,虚轴长为:6;双曲线图象如图: ||||24 PF AP a -==①||||24 QF QA a -==②而||12 PQ=,①+②得: ||||||8 PF QF PQ +-=,∴周长为||||||82||32 PF QF PQ PQ ++=+=.故答案为:32. 【小结】 1.双曲线定义的主要应用 (1)判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出曲线方程. (2)在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF1|-|PF2||=2a,运用平方的方法,建立与|PF1|·|PF2|的联系. 2.用定义法求双曲线方程,应依据条件辨清是哪一支,还是全部曲线. 3.与双曲线两焦点有关的问题常利用定义求解. 4.如果题设条件涉及动点到两定点的距离,求轨迹方程时可考虑能否应用定义求解. 双曲线的标准方程 例题3:已知双曲线 22 22 1(0,0) x y a b a b -=>>的左焦点为F,点A在双曲线的渐近线上,OAF △是边长为2的等边三角形(O为原点),则双曲线的方程为() A. 22 1 412 x y -= B. 22 1 124 x y -= C. 2 21 3 x y -= D. 2 21 3 y x-= 【解析】由题意结合双曲线的渐近线方程可得:222 2 tan603 c c a b b a ? ?= ? =+ ? ? ?== ? ,解得:22 1,3 a b ==, 双曲线方程为: 2 21 3 y x-=.本题选择D选项.

圆锥曲线基本题型总结

圆锥曲线基本题型总结:提纲: 一、定义的应用: 1、定义法求标准方程: 2、涉及到曲线上的点到焦点距离的问题: 3、焦点三角形问题: 二、圆锥曲线的标准方程: 1、对方程的理解 2、求圆锥曲线方程(已经性质求方程) 3、各种圆锥曲线系的应用: 三、圆锥曲线的性质: 1、已知方程求性质: 2、求离心率的取值或取值范围 3、涉及性质的问题: 四、直线与圆锥曲线的关系: 1、位置关系的判定: 2、弦长公式的应用: 3、弦的中点问题:

4、韦达定理的应用: 一、定义的应用: 1. 定义法求标准方程: (1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处 理) 1.设F1, F2 为定点,|F1F2| =6,动点M满足|MF1| + |MF2| = 6,则动点M的轨 迹是() A.椭圆 B.直线 C.圆 D.线段【注:2a>|F1 F2| 是椭圆,2a=|F1 F2|是线段】 2. 设 B - 4,0) , C4,0),且厶ABC的周长等于18,则动点A的轨迹方程为) x2 y2 y2 x2 A.25+ -9 = i y z0) B.25^9 = 1 徉0) x2 y2 y2 x2 C.^+16= 1 y z 0) D£+_9 = 1 y z 0) 【注:检验去点】 3. 已知A0, - 5)、B0,5) ,|PA| - |PB| = 2a,当a= 3 或 5 时,P点的轨迹为) A. 双曲线或一条直线 B. 双曲线或两条直线 C. 双曲线一支或一条直线

D. 双曲线一支或一条射线【注:2av|F1 F2|是双曲线,2a=|F1 F2|是射线,注意一支与两支的判断】

双曲线优秀经典例题讲解

双 曲 线 是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为12 m ,上口半径为13 m ,下口半径为25 m ,高55 m.选择适当的坐标系,求出此双曲线的方程(精确到1m ). 解:如图8—17,建立直角坐标系xOy ,使A 圆的直径AA ′在x 轴上,圆心与原点重合.这时上、下口的直径CC ′、BB ′平行于x 轴,且C C '=13×2 (m),B B '=25×2 (m).设双曲线的方程 为122 22=-b y a x (a >0,b >0)令点C 的坐标为(13,y ),则点B 的坐标为(25,y -55).因为点B 、C 在双曲线上,所以,1)55(12252 222=--b y .1121322 22=-b y 解方程组???????=-=--(2) 11213(1) 1)55(12252 2 222 2 22b y b y 由方程(2)得 b y 125= (负值舍去).代入方程 (1)得,1)55125(12252222 =--b b 化简得 19b 2+275b -18150=0 (3) 解方程(3)得 b ≈25 (m).所以所求双曲线方程为: .1625 1442 2=-y x 例2. ABC ?中,固定底边BC ,让顶点A 移动,已知4=BC ,且A B C sin 2 1sin sin =-,求顶点A 的轨迹方程. 解:取BC 的中点O 为原点,BC 所在直线为x 轴,建立直角坐标系,因为4=BC ,所以B(0,2-), )0,2(c .利用正弦定理,从条件得242 1 =?= -b c ,即2=-AC AB .由双曲线定义知,点A 的轨迹是B 、C 为焦点,焦距为4,实轴长为2,虚轴长为32的双曲线右支,点(1,0)除外,即轨迹方程为13 2 2=- y x (1>x ). 变式训练3:已知双曲线)0,0(122 22>>=-b a b y a x 的一条渐近线方程为x y 3=,两条准 线的距离为l . (1)求双曲线的方程; (2)直线l 过坐标原点O 且和双曲线交于两点M 、N ,点P 为双曲线上异于M 、N 的一点,且直线PM ,PN 的斜率均存在,求k PM ·k PN 的值. 典型例题

双曲线-题型归纳-含答案

三、典型例题选讲 (一)考查双曲线的概念 例1 设P是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方 程为023=-y x ,1F 、2F 分别是双曲线的左、右焦点.若3||1=PF ,则= ||2PF ( ) A.1或5 B.6 C.7 D.9 分析:根据标准方程写出渐近线方程,两个方程对比求出a 的值,利用双曲线的定义求出2||PF 的值. 解: 双曲线 1922 2=-y a x 渐近线方程为x a 3 ±,由已知渐近线为023=-y x , 122,||||||4a PF PF ∴=±∴-=,||4||12PF PF +±=∴. 12||3, ||0PF PF =>,7||2=∴PF . 故选C. 归纳小结:本题考查双曲线的定义及双曲线的渐近线方程的表示法. (二)基本量求解 例 2(2009山东理)设双曲线122 22=-b y a x 的一条渐近线与抛物线 21y x =+只有一个公共点,则双曲线的离心率为( )

A.45 B .5 C.2 5 D. 5 解析:双曲线 122 22=-b y a x 的一条渐近线为 x a b y = ,由方程组 21b y x a y x ?=?? ?=+? ,消去y,得2 10b x x a -+=有唯一解,所以△=2()40b a -=, 所以2b a =,2221()5c a b b e a a a +===+=,故选D. 归纳小结:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念、基本方法和基本技能. 例3(2009全国Ⅰ理)设双曲线22 221x y a b -=(a>0,b >0)的渐近线 与抛物线 2 +1相切,则该双曲线的离心率等于( )A3 B .2 56解析:设切点00(,)P x y ,则切线的斜率为0 '0|2x x y x ==.由题意有 00 2y x x =.又有2001y x =+,联立两式解得:2201,2,1()5b b x e a a =∴==+= 因此选C. 例4(2009 江西)设1F 和2F 为双曲线22 221x y a b -=(0,0a b >>)的两个 焦点,若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为

相关文档
最新文档