高考数学复习 拓展精练13【含答案】

合集下载

2015届高考数学总复习 第四章 第四节平面向量的拓展与应用课时精练试题 文(含解析)

2015届高考数学总复习 第四章 第四节平面向量的拓展与应用课时精练试题 文(含解析)

1.若AB =3e 1,CD =-5e 1 ,且|AD |=|BC |,则四边形ABCD 是( )A .平行四边形B .菱形C .等腰梯形D .不等腰梯形解析:∵ AB →=3e 1,CD →=-5e 1,∴AB →=-35CD →, ∴AB →∥CD →,且|AB →|≠|CD →|.又|AD →|=|BC →|,∴四边形ABCD 是等腰梯形.故选C.答案:C2.将函数y =x 2的图象按向量a 平移后,得到y =()x +12-2的图象,则( )A .a =()1,2B .a =()1,-2C .a =()-1,2D .a =()-1,-2答案:D3.(2013·河南三门峡一练)在平面直角坐标系中,若定点A (1,2)与动点P (x ,y )满足向量OP →在向量OA →上的投影为-5,则点P 的轨迹方程是( )A .x -2y +5=0B .x +2y -5=0C .x +2y +5=0D .x -2y -5=0解析: 由题意知-5=OP →·OA →|OA →|=x +2y 5,所以点P 的轨迹方程是x +2y +5=0,故选C.答案:C4.函数y =tan ⎝ ⎛⎭⎪⎫π4x -π2的部分图象如图所示,则(OA →+OB →)·AB →=( )A .4B .6C .1D .2解析:由条件可得B (3,1),A (2,0),∴(OA →+OB →)·AB →=(OA →+OB →)·(OB →-OA →)=OB →2-OA→2=10-4=6.故选B.答案:B5.平面上有四个互异的点A ,B ,C ,D ,满足(AB →-BC →)·(AD →-CD →)=0,则三角形ABC是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形解析:由(AB →-BC →)·(AD →-CD →)=0,得(AB →-BC →)·(AD →+DC →)=0,即(AB →-BC →)·AC →=0,(AB →-BC →)·(AB →+BC →)=0,即AB →2-BC →2=0,|AB →|=|BC →|,故三角形ABC 为等腰三角形. 答案:B6.(2013·大纲全国卷)已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k的直线与C 交于A ,B 两点.若MA →·MB →=0,则k =( )A.12B.22C. 2 D .2解析:抛物线的焦点坐标为(2,0),设直线l 的方程为x =ty +2,与抛物线方程联立得y 2-8ty -16=0.设A (x 1,y 1),B (x 2,y 2),则y 1y 2=-16,y 1+y 2=8t ,x 1+x 2=t (y 1+y 2)+4=8t 2+4,x 1x 2=t 2y 1y 2+2t (y 1+y 2)+4=-16t 2+16t 2+4=4.MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4=4+16t 2+8+4-16-16t +4=16t 2-16t +4=4(2t -1)2=0,解得t =12,所以k =1t=2. 答案:D7.若向量a =(2sin α,1),b =(2sin 2α+m ,cos α)(α∈R ),且a ∥b ,则m 的最小值为__________.解析:因a =(2sin α,1),b =(2sin 2α+m ,cos α),(α∈R ),且a ∥b ,所以2sin αcos α=2sin 2α+m ,得m =-2sin 2α+2sin αcos α=cos 2α+sin 2α-1=2sin ⎝⎛⎭⎪⎫2α+π4-1, 所以m 的最小值为-2-1. 答案:-2-18.已知两个单位向量a 和b 的夹角为135°,则当|a +λb |>1时λ的取值范围是________.解析:由|a +λb |>1,得到a 2+(λb )2+2λa ·b >1,即1+λ2+2λ×⎝ ⎛⎭⎪⎫-22>1,λ2-2λ>0,所以λ∈(-∞,0)∪(2,+∞).答案:(-∞,0)∪(2,+∞)9.(2013·郑州一模)向量a =(2,0),b =(x ,y ),若b 与b -a 的夹角等于π6,则|b |的最大值为____________.解析:如图,设OA →=a =(2,0),OB →=b =(x ,y ),则b -a =AB →,b 与b -a 的夹角为π6,即∠OBA =30°,再设|OB →|=a ,|AB →|=x ,在△OAB 中,根据余弦定理有:22=a 2+x 2-2×ax ×cos π6,整理得:x 2-3ax +a 2-4=0, 由(-3a )2-4(a 2-4)≥0,得:a 2≤16,所以0<a ≤4.所以|b |的最大值为4.答案:410.(2012·广东六校联考)已知向量m =(sin B,1-cos B ),且与向量n =(1,0)的夹角为π3,其中A ,B ,C 是△ABC 的内角. (1)求角B 的大小;(2)求sin A +sin C 的取值范围.解析:(1)∵m =(sin B,1-cos B ),且与向量n =(1,0)所成的角为π3,m ,n =m·n |m ||n |=sin B 2-2cos B =12. ∴2sin 2B =1-cos B .∴2cos 2B -cos B -1=0.∴cos B =1或cos B =-12. 又0<B <π,∴B =2π3,A +C =π3. (2)由(1)可得sin A +sin C =sin A +sin ⎝ ⎛⎭⎪⎫π3-A =12sin A +32cos A =sin ⎝ ⎛⎭⎪⎫A +π3, ∵0<A <π3,∴π3<A +π3<2π3. ∴sin ⎝ ⎛⎭⎪⎫A +π3∈⎝ ⎛⎦⎥⎤32,1. ∴sin A +sin C ∈⎝ ⎛⎦⎥⎤32,1.11.(2013·许昌二模)在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,且满足(2a -c )BA →·BC →=cCB →·CA →.(1)求角B 的大小;(2)若|BA →-BC →|=6,求△ABC 面积的最大值.解析:(1)(2a -c )BA →·BC →=cCB →·CA →,可化为:(2a -c )|BA →|·|BC →|cos B =c |CB →|·|CA →|cos C , 即:(2a -c )ca cos B =cab cos C ,∴(2a -c )cos B =b cos C , 根据正弦定理有(2sin A -sin C )cos B =sin B cos C ,∴2sin A cos B =sin(C +B ),即2sin A cos B =sin A ,因为sin A >0,所以cos B =22,即B =π4. (2)因为|BA →-BC →|=6,所以|CA →|=6,即b 2=6,根据余弦定理b 2=a 2+c 2-2ac cos B ,可得6=a 2+c 2-2ac ,由基本不等式可知6=a 2+c 2-2ac ≥2ac -2ac =(2-2)ac ,即ac ≤3(2+2),故△ABC 的面积S =12ac sin B =24ac ≤2+2, 即当a =c =6+32时,△ABC 的面积的最大值为2+2.12.已知圆C :(x -3)2+(y -3)2=4及点A (1,1),M 是圆C 上的任意一点,点N 在线段MA 的延长线上,且MA →=2AN →,求点N 的轨迹方程.解析:设M (x 0,y 0),N (x ,y ).由MA →=2AN →得(1-x 0,1-y 0)=2(x -1,y -1),∴⎩⎪⎨⎪⎧x 0=3-2x ,y 0=3-2y . ∵点M (x 0,y 0)在圆C 上,∴(x 0-3)2+(y 0-3)2=4,即(3-2x -3)2+(3-2y -3)2=4.∴x 2+y 2=1.∴所求点N 的轨迹方程是x 2+y 2=1.。

2024年高考数学高频考点(新高考通用)柯西不等式(精讲+精练)解析版

2024年高考数学高频考点(新高考通用)柯西不等式(精讲+精练)解析版

【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)
素养拓展01柯西不等式(精讲+精练)
1.二维形式的柯西不等式
.),,,,,()())((22222等号成立时当且仅当bc ad R d c b a bd ac d c b a =∈+≥++2.二维形式的柯西不等式的变式
bd ac d c b a +≥+⋅+2222)1( .),,,,,(等号成立时当且仅当bc ad R d c b a =∈bd ac d c b a +≥+⋅+2222)2(
.),,,,,(等号成立时当且仅当bc ad R d c b a =∈.)
,0,,,(())()(3(2等号成立,时当且仅当bc ad d c b a bd ac d c b a =≥+≥++3.
二维形式的柯西不等式的向量形式
.),,,(等号成立时使或存在实数是零向量当且仅当βαβk k =≤注:有条件要用;没有条件,创造条件也要用。

比如,对2
2
2
c b a ++,并不是不等式的形状,但变成
()()
2222221113
1
c b a ++∙++∙就可以用柯西不等式了。

4.扩展:()()233221122322212
2322
21)(n n n n b a b a b a b a b b b b a a a a ++++≥++++++++ ,当且仅当n n b a b a b a :::2211=== 时,等号成立.
【题型训练1-刷真题】
二、题型精讲精练
一、知识点梳理。

最新高考数学总复习考点精练 函数的单调性及最值 课时闯关(含答案解析)

最新高考数学总复习考点精练 函数的单调性及最值 课时闯关(含答案解析)

一、选择题1.给定函数①y =x 12;②y =log 12(x +1);③y =|x -1|;④y =2x +1.其中在区间(0,1)上单调递减的函数的序号是( )A .①②B .②③C .③④D .①④ 解析:选B.①函数y =x 12在(0,+∞)上为增函数;②y =log 12(x +1)在(-1,+∞)上为减函数,故在(0,1)上也为减函数;③y =|x -1|在(0,1)上为减函数;④y =2x +1在(-∞,+∞)上为增函数,故选B.2.(2013·江西重点盟校二次联考)定义在R 上的偶函数f (x )满足:对任意x 1,x 2∈[0,+∞),且x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2>0则( ) A .f (3)<f (-2)<f (1) B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)解析:选B.由已知得f (x )在[0,+∞)上为增函数,且f (x )为偶函数,所以f (3)>f (2)=f (-2)>f (1),故选B.3.定义在R 上的函数f (x )满足f (-x )=-f (x ),当m >0时,f (x +m )<f (x ),则不等式f (x )+f (x 2)<0的解集是( )A .(-∞,-1)∪(0,+∞)B .(-1,0)C .(0,1)D .(-1,1)解析:选A.∵f (-x )=-f (x ),∴f (x )是奇函数.又当m >0时,f (x +m )<f (x ),∴f (x )是减函数.∴f (x )+f (x 2)<0可化为f (x )<f (-x 2).即x >-x 2.∴x >0或x <-1.即解集为(-∞,-1)∪(0,+∞).4.(2011·高考辽宁卷)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)解析:选B.设m (x )=f (x )-(2x +4),则m ′(x )=f ′(x )-2>0,∴m (x )在R 上是增函数.∵m (-1)=f (-1)-(-2+4)=0,∴m (x )>0的解集为{x |x >-1},即f (x )>2x +4的解集为(-1,+∞).5.(2012·高考天津卷)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .y =cos 2x ,x ∈RB .y =log 2|x |,x ∈R 且x ≠0C .y =e x -e -x2,x ∈R D .y =x 3+1,x ∈R 解析:选B.由函数是偶函数可以排除C 和D ,又函数在区间(1,2)内为增函数,而此时y =log 2|x |=log 2x 为增函数,所以选择B.二、填空题6.函数y =-(x -3)|x |的递增区间是________.解析:y =-(x -3)|x |=⎩⎪⎨⎪⎧-x 2+3x (x >0)x 2-3x (x ≤0). 作出该函数的图象,观察图象知递增区间为⎣⎡⎦⎤0,32, 答案:⎣⎡⎦⎤0,32 7.f (x )是定义在(0,+∞)上的增函数,对正实数x ,y 都有:f (xy )=f (x )+f (y )成立.则不等式f (log 2x )<0的解集为________.解析:令x =y =1得f (1)=f (1)+f (1),即f (1)=0,则f (log 2x )<0,即为f (log 2x )<f (1),于是0<log 2x <1,解集为{x |1<x <2},故填{x |1<x <2}.答案:{x |1<x <2}8.(2011·高考四川卷)函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数.例如,函数f (x )=2x +1(x ∈R )是单函数.下列命题中:①函数f (x )=x 2(x ∈R )是单函数;②若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2);③若f :A →B 为单函数,则对于任意b ∈B ,它至多有一个原象;④函数f (x )在某区间上具有单调性,则f (x )一定是单函数.其中的真命题是__________.(写出所有真命题的编号)解析:当f (x )=x 2时,不妨设f (x 1)=f (x 2)=4,有x 1=2,x 2=-2,此时x 1≠x 2,故①不正确;由f (x 1)=f (x 2)时总有x 1=x 2可知,当x 1≠x 2时,f (x 1)≠f (x 2),故②正确;若b ∈B ,b 有两个原象时,不妨设为a 1,a 2,可知a 1≠a 2,但f (a 1)=f (a 2),与题中条件矛盾,故③正确;函数f (x )在某区间上具有单调性时在整个定义域上不一定单调,因而f (x )不一定是单函数,故④不正确.故答案为②③.答案:②③三、解答题9.试讨论函数f (x )=ax x 2-1,x ∈(-1,1)的单调性(其中a ≠0). 解:任取x 1,x 2∈(-1,1),且x 1<x 2,则Δx =x 2-x 1>0,则Δy =f (x 2)-f (x 1)=ax 2x 22-1-ax 1x 21-1=a (x 1-x 2)(x 1x 2+1)(x 22-1)(x 21-1). ∵-1<x 1<x 2<1,∴|x 1|<1,|x 2|<1,x 1-x 2<0,x 21-1<0,x 22-1<0,|x 1x 2|<1,即-1<x 1x 2<1,∴x 1x 2+1>0,∴(x 1-x 2)(x 1x 2+1)(x 22-1)(x 21-1)<0.因此,当a >0时,Δy =f (x 2)-f (x 1)<0,此时函数f (x )在(-1,1)上为减函数;当a <0时,Δy =f (x 2)-f (x 1)>0,此时函数f (x )在(-1,1)上为增函数.10.若函数f (x )=log 2(ax 2+2x +5)在(-2,+∞)单调递增,求a 的取值范围. 解:设u (x )=ax 2+2x +5,y =log 2u ,∵y =log 2u 在u ∈(0,+∞)为增函数,∴u (x )=ax 2+2x +5在(-2,+∞)上为增函数且恒有ax 2+2x +5>0即可.∴当a >0时⎩⎪⎨⎪⎧ -1a ≤-2u (-2)≥0,∴⎩⎪⎨⎪⎧a ≤124a -4+5≥0, ∴0<a ≤12. 当a =0时,u (x )=2x +5显然成立.∴0≤a ≤12. 11.(探究选做)已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23. (1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值.解:(1)证明:设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2)=f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2).又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2),∴f (x )在R 上为减函数.(2)由(1)可知f (x )在[-3,3]上是减函数,∴f max =f (-3),f min =f (3),f (3)=f (2+1)=f (2)+f (1)=3f (1)=-2.又∵f (0)+f (0)=f (0),∴f (0)=0,f (-3)+f (3)=f (0),∴f (-3)=-f (3)=2,∴最大值为2,最小值为-2.。

高中数学选择性必修二 精讲精炼 拓展四 导与零点、不等式等综合运用(精练)(含答案)

高中数学选择性必修二 精讲精炼 拓展四 导与零点、不等式等综合运用(精练)(含答案)

拓展四 导数与零点、不等式等综合运用(精练)【题组一 零点问题】1.(2021·河北邢台·高二月考)已知函数()f x '满足()()()()43,00,11xxf x f x x f f e e -===+',则函数()()1F x f x =-的零点个数为( )A .0B .1C .2D .3【答案】B【解析】当0x ≠时,由()()43xxf x f x e x -=',可得()()3263xx f x x f x e x ='-,则()()3263x x f x x f x xe '-=,即()'3x f x x e ⎡⎤=⎢⎥⎣⎦,所以()3.x e f x C x =+因为()11f e =+,所以1=C ,故()()()310.xe f x x x =+≠因为()00f =,所以()()31xf x x e =+,则()()233.xe f x x x ⎡=+'⎤+⎣⎦设()()33x g x x e =++,则()()4x g x x e +'=, 所以()g x 在(),4-∞-上单调递减,在()4,-+∞上单调递增,所以()4min ()430e g x g -=-=-+>,所以()f x '0,则()f x 在(),-∞+∞上单调递增,()()1F x f x =-在(),-∞+∞上也单调递增,因为()()00110,F f =-=-<()()111110F f e e =-=+-=>, 所以(0)(1)0F F <,所以()F x 有且只有1个零点. 故选:B2.(2021·河南南阳·高二月考(理))已知函数2()(2)(2)f x x x a a =->,若函数()(()1)g x f f x =+恰有4个零点,则a 的取值范围是( ) A .(3,4) B .(3,)+∞ C .(2,3) D .(4,)+∞【答案】B【解析】因为2()(2)(2)f x x x a a =->的零点为0,2a,所以由()(()1)0g x f f x =+=,得()10f x +=或2a ,即()1f x =-或12a-.因为()2(3)(2)f x x x a a '=->,所以()f x 在(,0)-∞,,3a ⎛⎫+∞ ⎪⎝⎭上单调递增,在0,3a ⎛⎫⎪⎝⎭上单调递减,则()f x 的极大值为(0)0f =,极小值为3327a a f ⎛⎫=- ⎪⎝⎭.因为2a >,所以102a ->,所以结合()f x 的图象可得3127a-<-且102a ->,解得3a >.故选:B3.(2021·北京·首都师范大学附属中学高二期中)若函数()ln f x x ax =-有两个不同的零点,则实数a 的取值范围是( ) A .0,B .10,e ⎛⎫⎪⎝⎭C .()0,eD .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B【解析】解:因为函数()ln f x x ax =-有两个不同的零点, 所以方程ln 0x ax -=有两个不相等的实数根, 所以ln xa x=有两个不相等的实数根, 令ln x y x=,21ln 'xy x -=,所以当()0,x e ∈时,'0y >,函数ln xy x=为增函数, 当(),x e ∈+∞时,'0y <,函数ln xy x=为减函数, 由于当ln ln 0,,,0x xx x x x→→-∞→+∞→, 故函数ln xy x=的图像如图,、所以ln x a x =有两个不相等的实数根等价于10,a e ⎛⎫∈ ⎪⎝⎭. 故选:B4.(2021·陕西省洛南中学高二月考(理))函数3()12f x x x m =-++有三个零点,则m 的取值范围为_______. 【答案】(16,16)-【解析】因为函数3()12f x x x m =-++, 所以2()3123(2)(2)f x x x x '=-+=-+-,令()022()02f x x f x x ''>⇒-<<<⇒<-;或2x >,所以函数()f x 在()2-∞-,和(2),+∞上为减函数,在(22)-,上为增函数, 所以当2x =-时,()f x 取得极小值,且(2)16f m -=-, 当2x =时,()f x 取得极大值,且(2)16f m =+,又函数有三个零点,所以160160m m -<⎧⎨+>⎩,解得1616m -<<.故答案为:(1616)-,5.(2021·河北邢台·高二月考)已知方程e 0x x m --=有且只有1个实数根,则m =__________. 【答案】1【解析】设()e x f x x =-,则()e 1.xf x ='-令()0f x '=,得0x =,则()f x 在(),0-∞上单调递减,在()0,∞+上单调递增,所以()f x 在0x =处取得最小值()0 1.f =故若方程e 0x x m --=有且只有1个实数根,则 1.m =故答案为:16.(2021·福建·福州三中高二期中)已知函数1()x f x xe +=,若关于x 方程2()2()20()f x tf x t R -+=∈有两个不同的零点,则实数t 的取值范围为_______________.【答案】32⎫⎪⎭【解析】令1()x g x xe +=,111()(1)x x x g x e xe x e +++'=+=+,所以在(1,)-+∞上,()0g x '>,()g x 单调递增, 在(,1)-∞-上,()0g x '<,()g x 单调递减, 所以11()(1)1min g x g e -+=-=-=-, 又(0)0g =,所以作出()g x 与()f x 的图像如下:()11f -=,令()(0)k f x k =>,则方程2()2()20()f x tf x t R -+=∈为2220()k tk t R -+=∈,则2222k t k k k+==+, 令()2g k k k=+,作出()g k 的图像:当02t <<0t <<2y t =与()2g k k k=+没有交点, 所以方程22t k k=+无根,则()(0)k f x k =>无解,不合题意.当2t =t =时,2y t =与()2g k k k=+有1个交点,所以方程22t k k=+有1个根为k =()(0)k f x k =>有1个解,不合题意.当2t >t >2y t =与()2g k k k=+有2个交点,所以方程22t k k=+有2个根为10k <2k >若11k =时,则1()(0)k f x k =>有2个解,2()(0)k f x k =>有1个解, 所以()k f x =有3个解,不合题意.若101k <<时,则1()(0)k f x k =>有3个解,2()(0)k f x k =>有1个解, 所以()k f x =有4个解,不合题意.11k >>时,则1()(0)k f x k =>有1个解,2()(0)k f x k =>有1个解, 所以()k f x =有2个解,合题意. 因为22t k k=+,所以23t <32t <,综上所述,t 的取值范围为3)2.故答案为:3)2.7.(2021·安徽·芜湖一中高二期中(理))已知函数2()2ln x f x e x t -=--有四个零点,则实数t 的取值范围为___________. 【答案】()0,2ln 21-【解析】函数2()2ln x f x e x t -=--的零点个数,也就是22ln x y e x -=-与y t =的交点个数,设()22ln x g x ex -=-,显然函数的定义域为()0,∞+,()22x g x e x -'=-, 记()22x h x ex -=-,则有()20h =,()2220x h x e x-'=+>, ()h x ∴在()0,∞+上单调递增,所以当()0,2x ∈时,()0h x <,即()0g x '<, 所以()g x 在()0,2上单调递减,当()2,x ∈+∞时,()0h x >,即()0g x '>, 所以()g x 在()2,+∞上单调递增, 所以()()min 212ln 20g x g ==-<,同一直角坐标系中画出函数22ln x y e x -=-与y t =的大致图象,如图:由图可知,函数22ln x y e x -=-与y t =有四个交点,可得02ln 21t <<-. 故答案为:()0,2ln 21-8.(2021·江苏·无锡市青山高级中学高二期中)已知函数f (x )=3223,015,1x x m x mx x ⎧++≤≤⎨+>⎩,若函数()f x 有两个不同的零点,则实数m 的取值范围为___. 【答案】()5,0-【解析】当01x ≤≤时,()3223f x x x m =++,则()2660f x x x '=+≥,故()f x 在[]0,1x ∈上是增函数.要使函数()f x 有两个不同的零点,则函数()f x 在[]0,1与(1,)+∞上各有1个零点,显然0m <.故()()0?1050f f m ⎧≤⎨+>⎩,解得:50m -<<,综上所述:实数m 的取值范围为()5,0-. 故答案为:()5,0-.9.(2021·河南·高二期中(理))已知函数()()3xx e x f a =-+.(1)当1a =时,求()f x 的最小值;(2)若()f x 有两个零点,求实数a 的取值范围. 【答案】(1)2-;(2)21,e ⎛⎫+∞ ⎪⎝⎭.【解析】(1)当1a =时,()3xf x e x =--,则()f x 的定义域为(),-∞+∞,且()1xf x e '=-,∴当(),0x ∈-∞时,()0f x '<;当()0,x ∈+∞时,()0f x '>;()f x ∴在(),0-∞上单调递减,在()0,∞+上单调递增, ()f x ∴的最小值为()02f =-.(2)由题意知:()f x 定义域为(),-∞+∞,()xf x e a '=-;①当0a ≤时,()0xf x e a '=->恒成立,()f x ∴在(),-∞+∞上单调递增,不符合题意;②当0a >时,令()0f x '=,解得:ln x a =,∴当(),ln x a ∈-∞时,()0f x '<,()f x 单调递减;当()ln ,x a ∈+∞时,()0f x '>,()f x 单调递增;即当0a >时,()f x 有极小值也是最小值为()()ln 2ln f a a a =-+. 又当x →-∞时,()f x →+∞;当x →+∞时,()f x →+∞;∴要使()f x 有两个零点,只需()ln 0f a <即可,则2ln 0a +>,解得:21a e >; 综上所述:若()f x 有两个零点,则a 的取值范围为21,e ⎛⎫+∞ ⎪⎝⎭.10.(2021·广东普宁·高二期中)设函数()cos x f x e x =,()'f x 为()f x 导函数. (1)求()f x 的单调区间;(2)令()()()2h x f x f x x π⎛⎫=+- ⎪⎝⎭',讨论当3,44x ππ⎡⎤∈⎢⎥⎣⎦时,函数()h x 的零点个数.【答案】(1)()f x 的单调递增区间为32,2()44k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,()f x 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z ;(2)只有一个零点. 【解析】(1)由已知,有()(cos sin )x f x e x x '=-.当52,2()44x k k k ππππ⎛⎫∈++∈ ⎪⎝⎭Z 时,有sin cos x x >,得()0f x '<,则()f x 单调递减;当32,2()44x k k k ππππ⎛⎫∈-+∈ ⎪⎝⎭Z 时,有sin cos x x <,得()0f x '>,则()f x 单调递增. 所以()f x 的单调递增区间为32,2()44k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,()f x 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . (2)证明:由(1)有()e (cos sin )x f x x x '=-,令()()g x f x '=, 从而()2sin x g x e x '=-.当3,44x ππ⎛⎫∈ ⎪⎝⎭时,()0g x '<,故()()()()(1)()22h x f x g x x g x g x x ππ⎛⎫⎛⎫=+-+-=- ⎪ ⎪⎝⎭⎝'''⎭',因此,,42x ππ⎛⎫∈ ⎪⎝⎭时,()0h x '<,3,24x ππ⎛⎫∈ ⎪⎝⎭时,()0h x '>,()h x 在区间,42ππ⎛⎫ ⎪⎝⎭单调递减,在区间3,24ππ⎛⎫⎪⎝⎭单调递增.∴3,44x ππ⎛⎫∈ ⎪⎝⎭时,()02h x h π⎛⎫≥= ⎪⎝⎭.所以,当3,44x ππ⎛⎫∈ ⎪⎝⎭时,函数()h x 只有一个零点. 11.(2021·江苏启东·高二期中)已知函数23(n )l f x x x c x d =-++,3(2)2f '=. (1)求()f x 的单调区间;(2)若2>d ,求证:()f x 只有1个零点.【答案】(1)单调增区间是10,2⎛⎫ ⎪⎝⎭和(1,)+∞;单调减区间是1,12⎛⎫⎪⎝⎭;(2)证明见解析.【解析】(1)依题意,函数()f x 的定义域为(0,)+∞, 由23(n )l f x x x c x d =-++,得()23cf x x x'=-+, 又()322f '=,即322322c ⨯-+= 计算得 1c =, 所以2231(21)(1)()x x x x f x x x-+--'==. 令()0f x '>,得102x <<或1x >;令()0f x '<,得112x <<, 所以()f x 的单调增区间是10,2⎛⎫ ⎪⎝⎭和(1,)+∞;单调减区间是1,12⎛⎫⎪⎝⎭;(2)由(1)知,()f x 在12x =处取极大值,在1x =处取极小值,当2>d 时,()f x 的极小值(1)20f d =->,所以()f x 在区间1,2⎛⎫+∞ ⎪⎝⎭上无零点.由于1(1)02f f ⎛⎫>> ⎪⎝⎭,而()2e e 3e e d d d df ----=-<3e 2e 0d d ---=-<,所以()f x 在区间10,2⎛⎫⎪⎝⎭上有且只有1个零点.所以2>d 时,()f x 只有1个零点. 【题组二 不等式证明问题】1.(2021·新疆·乌市八中高二月考(文))已知函数()ln f x x a x =-. (1)讨论的单调性;(2)若()1f x ≥恒成立,求a 的取值范围;(3)在(2)的条件下,()f x m =有两个不同的根12,x x ,求证:121x x m +>+. 【答案】(1)答案见解析;(2){}1;(3)证明见解析.【解析】解:(1)()ln f x x a x =-,则()()10a x a f x x x x-'=-=>, 当0a ≤时,()0f x '>恒成立,所以()f x 在()0,∞+上单调递增,当0a >时,令()0f x '=,得x a =,所以x a >时,()0f x '>;0x a <<时,()0f x '<, 所以()f x 在()0,a 上单调递减,在(),a +∞上单调递增; 综上:当0a ≤时,()f x 在()0,∞+上单调递增,当0a >时,()f x 在()0,a 上单调递减,在(),a +∞上单调递增;(2)()f x 的定义域为(0,)+∞,且()1a x a f x x x'-=-=, 当0a =时,()f x x =,()f x 在()0,∞+上单调递增, 所以()1f x ≥不恒成立,不合题意;当0a <时,()0f x '>,()f x 在()0,∞+上单调递增, 且当0x →时,()f x →-∞,不合题意; 当0a >时,由()0f x '=得x a =,所以()f x 在()0,a 上单调递减,在(,)a +∞上单调递增, 所以()f x 在x a =处取到极小值,也是最小值()ln f a a a a =-, 由题意得()ln 1f a a a a =-≥恒成立, 令()ln g x x x x =-,()ln g x x '=-,()g x 在()0,1上单调递增,在(1,)+∞上单调递减,所以()()ln 11g x x x x g =-≤=,所以()ln 1f a a a a =-=,即1a =. (3)()ln f x x x =-,且()f x 在1x =处取到极小值1,又0x →时,()f x →+∞,x →+∞时,()f x →+∞,故1m 且1201x x <<<, 要证明:121x x m +>+,只需证明211x m x >+-,又2111x m x >+->, 故只需证明:()()211f x f m x >+-,即证:()11m f m x >+-, 即证:()111ln 1m m x m x >+--+-,即证:()111ln 1ln 0x x ---<,设()()()1ln 1ln 01h x x x x =---<<,则()()()11ln 11ln 1ln x x x h x x x x x -+'=-+=--,因为01x <<,所以()1ln 0x x ->,由(2)知ln 1≤-x x 恒成立, 所以11ln 1,ln 1x x x x x≤--≤-,即1ln 0x x x -+≥,所以()h x 在01x <<上为增函数,所以()()10h x h <=,即命题成立. 2.(2021·重庆十八中高二月考)已知函数()ln 11x aF x x x =--+. (1)设2a =,1x >,试比较()()()1h x x F x =-与0的大小; (2)若()0F x >恒成立,求实数a 的取值范围;(3)若a 使()F x 有两个不同的零点12 ,x x ,求证:21||a a x x e e --<-. 【答案】(1)()0h x >; (2)(,2]-∞; (3)证明见解析. 【解析】(1)当2a =时,()()ln (1)1()ln ,1111x a a x h x x x x x x x -=--=->-++, 可得()2222212(1)2(1)(1)4(1)(1)(1)(1)x x x x x h x x x x x x x x +-----'=-==+++,当1x >时,()0h x '>,所以()h x 在(1,)+∞上为单调递增函数, 因为(1)0h =,所以()(1)0h x h >=.(2)设函数()(1)ln 1a x f x x x -=-+,则()222(1)1ln (1)x a x f x x x x +-+'=-+,令()22(1)1g x x a x =+-+,当1a ≤时,当0x >时,()0g x >,当12a <≤时,2480a a ∆=-≤,可得()0g x ≥,所以当2a ≤时,()f x 在(0,)+∞上单调递增函数,且()10f =, 所以有()101f x x >-,可得()0F x >, 当2a >时,有2480a a ∆=->,此时()g x 有两个零点,设为12,t t ,且12t t <, 又因为122(1)0t t a +=->且121t t =,所以1201t t <<<, 在2(1,)t 上,()f x 为单调递减函数, 所以此时有()0f x <,即(1)ln 1a x x x -<+,可得ln 011x ax x -<-+,此时()0F x >不恒成立,综上可得2a ≤,即实数a 的取值范围是(,2]-∞. (3)若()F x 有两个不同的零点12,x x ,不妨设12x x <, 则12,x x 为()(1)ln 1a x f x x x -=-+的两个零点,且121,1x x ≠≠, 由(2)知此时2a >,并且()f x 在12(0,),(,)t t +∞为单调递增函数, 在12(,)t t 上为单调递减函数,且()10f =,所以12()0,()0f t f t ><,因为()()220,0,111aaa a a aa a f e f e e e e e --=-<=-><<++,且()f x 的图象连续不断, 所以1122(,),(,)a a x e t x t e -∈∈,所以2121a at t x x e e --<-<-,因为21t t -==综上可得:21||a a x x e e -<-<-.3.(2021·山东任城·高二期中)已知函数()ln ()R f x x a x a =-∈ (1)求()f x 的极值;(2)若()1f x ≥,求a 的值,并证明:()2.x f x x e >-【答案】(1)当0a ≤时,()f x 无极值;当0a >时,()f x 的极小值为()ln f a a a a =-,无极大值;(2)1,证明见解析.【解析】解:(1)()1(0)a x a f x x x x-∴=-=>' ①当0a ≤时,()0f x '>,()f x 在(0,)+∞上单调递增. ()f x ∴在()0,∞+上无极值.②当0a >时,令()0f x '>得x a >;令()0f x '<得0x a <<. ()f x ∴在(0,)a 上单调递减,在(,)a +∞上单调递增. ()f x ∴的极小值为()ln f a a a a =-,无极大值.综上,当0a ≤时,()f x 无极值;当0a >时,()f x 的极小值为()ln f a a a a =-,无极大值. (2)由(1)可知,①当0a ≤时,()f x 在(0,)+∞上单调递增,而(1)1f =,∴当(0,1)x ∈时,()1f x <,即()1f x ≥不恒成立.②当0a >时,()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增.min ()()ln 1.f x f a a a a ∴==-≥令()ln (0)g a a a a a =->,则()1(ln 1)ln .g a a a '=-+=-当(0,1)∈a 时,()0g a '>,()g a 在(0,1)上单调递增; 当(1,)∈+∞a 时,()0g a '<,()g a 在(1,)+∞上单调递减.()(1) 1.g a g ∴≤=1.a ∴=设()()2ln (0)x x h x f x x e x x e x =-+=--+>,下面证明()0.h x > 当1a =时,()ln 1f x x x =-≥,即ln 1.x x ≤- ln 21,x x x ∴+≤-∴只要证21(*).x x e -<令()21,0x q x e x x =-+>,则'() 2.x q x e =-∴当(0,ln 2)x ∈时,'()0q x <,()q x 在(0,ln 2)上单调递减;当(ln 2,)x ∈+∞时,'()0q x >,()q x 在(ln 2,)+∞上单调递增. 3()(ln 2)3ln 4ln ln 40.q x q e ∴≥=-=-> (*)∴式成立,即()2x f x x e >-成立.4.(2021·河北邢台·高二月考)已知函数()21f x ax x=+. (1)当4a =-时,求()f x 的极值点.(2)当2a =时,若()()12f x f x =,且120x x <,证明21:3x x -.【答案】(1)极大值点为12-,无极小值点;(2)证明见解析.【解析】(1)当4a =-时,()214f x x x=-+,定义域为()(),00,-∞⋃+∞. 则()3221818.x f x x x x +=--=-'令()0f x '=,解得12x =-则函数()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递增,在()1,0,02∞⎛⎫-+ ⎪⎝⎭上单调递减.所以12x =-为()f x 的极大值点,所以()f x 的极大值点为12-,无极小值点.(2)当2a =时,()212f x x x=+,定义域为()(),00,-∞⋃+∞, 则()()22112212112,2f x x f x x x x =+=+因为()()12f x f x =,所以2212121122x x x x +=+, 整理得()()121212122.x x x x x x x x -+-=因为120x x <,所以()121212x x x x +=, 所以()()22212112122121444x x x x x x x x x x -=+-=-.设1210t x x =<,则()()322212214148,422t x x g t t g t t t t t '+-==-=+=. 令()0g t '=,解得2t =-,则()2144g t t t=-在(),2-∞-上单调递减,在()2,0-上单调递增,所以()()23g t g -=,即2213x x -,故213x x -.5(2021·山西晋中·高二期末(文))已知()ln f x ax x =-,()a ∈R (1)讨论()f x 的单调性;(2)求证:当1a =时,()xe f x ex ≥.【答案】(1)答案见解析;(2)证明见解析. 【解析】(1)()11ax f x a x x-'=-=,()0,x ∈+∞ 当a ≤0时,()0f x '<,()f x 在()0,∞+上单调递减; a >0时,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减; 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 单调递增.(2)证明:当a =1时,原不等式等价于()ln xe x x ex -≥欲证()ln xe x x ex -≥,只需证ln xex x x e -≥设()ln h x x x =-,()xexg x e =,()0x >()111x h x x x-'=-=,当()0,1x ∈ 时,()0h x '<,()h x 单调递减; 当()1,x ∈+∞时,()0h x '>,()h x 单调递增,∴()()min 11h x h ==()()1xe x g x e-'=,当()0,1x ∈)时,()0h x '>,()h x 单调递增; 当()1,x ∈+∞时,()0h x '<,()h x 单调递减,∴()()max 11g x g == 所以()()h x g x ≥,即原命题成立.6.(2021·河北·邯山区新思路学本文化辅导学校高二期中)已知函数()2ln xf x me x =-.(1)若1x =是()f x 的极值点,求m 的值,并判断()f x 的单调性. (2)当1m 时,证明:()2f x >. 【答案】(1)212m e=,()f x 在()0,1上单调递减,在()1,+∞上单调递增;(2)证明见解析. 【解析】(1)解:()212xf x me x'=-. 因为1x =是()f x 的极值点,所以()20121me f '=-=,得212m e =. 此时()221ln 2x e f x e x =-,()2211x e xf x e '=-. 令()()()2211,0,x e x e x m x f x =-∈'=+∞,则()222210x e m x e x=+'>', 所以()m x 在()0,∞+上单调递增,且()2211101e e m =-= 因此01x <<时,()0m x <;当1x >时()0m x >. 故当01x <<时()0f x '<;当1x >时()0f x '>.所以()f x 在()0,1上单调递减,在()1,+∞上单调递增.因此1x =是()f x 的极值点,故212m e =;()f x 在()0,1上单调递减,在()1,+∞上单调递增(2)证明:当1m 时,因为()222ln 2ln 2x xme x x e x f -=-->--,所以只需证2ln 20x e x -->即可.令()2ln 2x g e x x =--,则()()2211221xx g e xe x xx '=-=-. 令()()2210x h e x x x =->,则()22240x xh e x xe '=+>,因为12111042h e ⎛⎫=-< ⎪⎝⎭,1102h e ⎛⎫=-> ⎪⎝⎭,所以存在011,42x ⎛⎫∈ ⎪⎝⎭,使得()00h x =,即020210xx e -=,即02012x e x =,也可化为002ln 20x x +=,即00ln 2ln 2x x =--. 所以()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以()()0022000min 01ln 22ln 222x x g x g x e x e x x ==--==++-. 因为()12ln 222n x x x =++-在11,42⎛⎫⎪⎝⎭上单调递增, 所以()11ln 2042n x n ⎛⎫>=+> ⎪⎝⎭,故()min 0g x >,即()2f x >. 【题组三 恒成立问题】1.(2021·重庆十八中高二月考)设函数()2ln f x a x bx =-.(1)若12b =,讨论函数()f x 的单调性; (2)当0b =时,若不等式()f x m x ≥+对所有的31,2a ⎡⎤∈⎢⎥⎣⎦,(21,x e ⎤∈⎦恒成立,求实数m 的取值范围. 【答案】(1)答案见解析;(2)(22e ⎤-∞-⎦,.【解析】解:(1)若12b =,()21ln 2f x a x x =-()>0x ,则2()a a x f x x x x-'=-=,当0a ≤时,()0f x '<,所以函数()f x 在()0+∞,上单调递减, 当>0a 时,令()0f x '=,得x =负值舍去),当0x <<()0f x '>,函数()f x在(0上单调递增,当x ()0f x '<,函数()f x在)+∞上单调递减;(2)当0b =时,()ln f x a x =.若不等式()f x m x ≥+对所有的(231,,1,2a x e ⎡⎤⎤∈∈⎦⎢⎥⎣⎦都成立,则ln a x m x ≥+对所有的(231,,1,2a x e ⎡⎤⎤∈∈⎦⎢⎥⎣⎦都成立,即ln m a x x ≤-,对所有的(231,,1,2a x e ⎡⎤⎤∈∈⎦⎢⎥⎣⎦都成立, 令()ln h a a x x =-,则()h a 为一次函数,min ()m h a ≤, (21,x e ⎤∈⎦,ln 0x ∴>,()h a ∴在3[1,]2a ∈上单调递增,min ()(1)ln h a h x x ∴==-,ln m x x ∴≤-对所有的(21,x e ⎤∈⎦都成立,令()ln g x x x =-,则()111x g x x x -'=-=,因为21x e <≤,所以()10xg x x-'=<,所以函数()ln g x x x =-在(21,e ⎤⎦单调递减,所以()()22222ln g x g e ee e -==-≥, 2min ()2m g x e ∴≤=-,所以实数m 的取值范围为(22e ⎤-∞-⎦,.2.(2021·江西省南昌县莲塘三中高二月考(理))已知函数32()f x ax bx cx d =+++为奇函数,且在1x =-处取得极大值2. (1)求()f x 的解析式;(2)若()()()221xf x m x x e ++≤-对于任意的[0,)x ∈+∞恒成立,求实数m 的取值范围.【答案】(1)()33f x x x =-;(2)1m .【解析】(1)由于()f x 为奇函数,所以0b d ==,()3f x ax cx =+,()'23f x ax c =+,所以()()1211303f a c a f a c c ⎧-=--==⎧⎪⇒⎨⎨-=+==-⎪⎩'⎩,所以()()()()3'23,33311f x x x f x x x x =-=-=+-,所以()f x 在区间()(),1,1,-∞-+∞上()()'0,f x f x >递增,在区间()1,1-上()()'0,f x f x <递减,在1x =-处取得极小值,符合题意.(2)依题意()()()221xf x m x x e ++≤-对于任意的[0,)x ∈+∞恒成立,即()()32321xx x m x x e -++≤-①.当0x =时,①恒成立.当0x >时,①可化为21x m xe x x ≤--+,构造函数()21x h x xe x x =--+,()01h =,()()()''121,00x h x x e x h =+--=,()()()()''''2221,00x x x h x x e xe e h =+-=+-=,当0x >时,()''0h x >,()'h x 递增,所以在区间()0,∞+上,()'0h x >,所以在区间()0,∞+上,()1h x >. 所以1m .。

最新高考数学总复习考点精练 算术平均数与几何平均数 课时闯关(含答案解析)

最新高考数学总复习考点精练 算术平均数与几何平均数 课时闯关(含答案解析)

一、选择题1.(2011·高考重庆卷)已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A.72 B .4 C.92D .5 解析:选C.∵a +b =2,∴a +b2=1,∴1a +4b =⎝⎛⎭⎫1a +4b ⎝ ⎛⎭⎪⎫a +b 2=52+⎝⎛⎭⎫2a b +b 2a ≥52+2 2a b ·b 2a =92(当且仅当2a b =b2a,即b =2a 时,“=”成立),故y =1a +4b 的最小值为92.2.(2013·广东三校联考)已知x >0,y >0,x lg 2+y lg 8=lg 2,则1x +13y的最小值是( )A .2B .2 2C .4D .2 3 解析:选C.∵x lg 2+y lg 8=lg 2x +lg 23y =lg(2x ·23y )=lg2x +3y =lg 2,∴x +3y =1,∴1x +13y =⎝⎛⎭⎫1x +13y (x +3y )=2+3y x +x 3y ≥2+21=4,当且仅当3y x =x 3y ,即x =3y =12时,1x +13y取得最小值4,故选C. 3.设x ,y 为正数,则(x +y )(1x +4y)的最小值为( )A .6B .9C .12D .15解析:选B.(x +y )(1x +4y )=4x y +y x +5≥2 4x y ·y x +5=4+5=9,当且仅当4x y =yx ,即2x=y 时,原式最小值为9.4.设a >b >0,则a 2+1ab +1a (a -b )的最小值是( )A .1B .2C .3D .4解析:选D.a 2+1ab +1a (a -b )=a 2-ab +ab +1ab +1a (a -b )=a (a -b )+1a (a -b )+ab +1ab ≥2+2=4.当且仅当a (a -b )=1且ab =1,即a =2,b =22时取等号. 5.(2012·高考湖南卷)已知两条直线l 1 :y =m 和l 2 : y =82m +1(m >0),l 1与函数y =|log 2x |的图象从左至右相交于点A ,B ,l 2 与函数y =|log 2x |的图象从左至右相交于点C ,D .记线段AC 和BD 在x 轴上的投影长度分别为a ,b .当m 变化时,ba的最小值为( )A .16 2B .8 2C .834D .434解析:选B.数形结合可知A ,C 点的横坐标在区间(0,1)内,B ,D 点的横坐标在区间(1,+∞)内,而且x C -x A 与x B -x D 同号,所以b a =x B -x Dx C -x A,根据已知|log 2x A |=m ,即-log 2x A =m ,所以x A =2-m.同理可得x C =2-82m +1,x B =2m,x D =282m +1,所以ba =2m-282m+12-82m +1-2-m =2m-282m+11282m +1-12m=2m-282m+12m-282m+12m·282m+1=282m +1+m ,由于82m +1+m =82m +1+2m +12-12≥4-12=72,当且仅当82m +1=2m +12,即2m +1=4,m =32时等号成立,故ba 的最小值为272=8 2.二、填空题6.已知t >0,则函数y =t 2-4t +1t的最小值为________.解析:∵t >0,∴y =t 2-4t +1t =t +1t-4≥2-4=-2.答案:-2 7.(2011·高考浙江卷)设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________. 解析:设2x +y =t ,∴y =t -2x ,代入4x 2+y 2+xy =1,整理得6x 2-3tx +t 2-1=0.关于x 的方程有根,因此Δ=(-3t )2-4×6×(t 2-1)≥0,解得-2105≤t ≤2105.则2x +y 的最大值是2105.答案:21058.(2012·高考江苏卷)已知正数a ,b ,c 满足:5c -3a ≤b ≤4c -a ,c ln b ≥a +c ln c ,则ba的取值范围是________. 解析:由条件可得⎩⎪⎨⎪⎧3·a c +b c≥5a c +bc ≤4,b c ≥e a c令a c =x ,bc=y ,则问题转化为约束条件为⎩⎨⎧3x +y ≥5x +y ≤4y ≥ex,求目标函数z =b a =yx的取值范围.作出不等式组所表示的平面区域(如图中阴影部分),过原点作y =e x 的切线,切线方程为y =e x ,切点P (1,e)在区域内.故当直线y =zx 过点P (1,e)时,z min =e ;当直线y =zx 过点C ⎝⎛⎭⎫12,72时,z max =7,故ba∈[e,7]. 答案:[e,7] 三、解答题9.求3a -4+a 的取值范围.解:显然a ≠4,当a >4时,a -4>0, ∴3a -4+a =3a -4+(a -4)+4≥2 3a -4×(a -4)+4 =23+4,当且仅当3a -4=a -4,即a =4+3时,取等号;当a <4时,a -4<0, ∴3a -4+a =3a -4+(a -4)+4=-[34-a+(4-a )]+4 ≤-234-a ×(4-a )+4=-23+4, 当且仅当34-a =4-a ,即a =4-3时取等号.∴3a -4+a 的取值范围是(-∞,-23+4]∪[23+4,+∞). 10.已知a ,b ,c 为不全相等的正数,求证:b +c -a a +c +a -b b +a +b -c c>3.证明:左式=(b a +a b )+(c b +b c )+(a c +ca)-3.∵a ,b ,c 为不全相等的正数,∴b a +a b ≥2,c b +b c ≥2,a c +ca ≥2,且等号不同时成立. ∴(b a +a b )+(c b +b c )+(a c +ca )-3>3, 即b +c -a a +c +a -b b +a +b -cc>3.11.(探究选做)如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空白的宽度为5 cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告的面积最小?解:设矩形栏目的高为a cm,宽为b cm,则ab=9 000.①广告的高为a+20,宽为2b+25,其中a>0,b>0.则广告的面积S=(a+20)(2b+25)=2ab+40b+25a+500=18 500+25a+40b≥18 500+225a·40b=18 500+2 1 000ab =24 500.当且仅当25a=40b时等号成立,此时b=58a,代入①式得a=120,从而b=75.即当a=120,b=75时,S取得最小值24 500.故当广告的高为140 cm,宽为175 cm时,可使广告的面积最小.。

平面向量系数和(等和线、等值线)问题(高阶拓展、竞赛适用)(学生版) 2025年高考数学一轮复习学案

平面向量系数和(等和线、等值线)问题(高阶拓展、竞赛适用)(学生版) 2025年高考数学一轮复习学案

第04讲 平面向量系数和(等和线、等值线)问题(高阶拓展、竞赛适用)(5类核心考点精讲精练)平面向量与代数、几何融合考查的题目综合性强,难度大,考试要求高。

平面向量是有效连接代数和几何的桥梁,已成为高考数学的一个命题热点。

近年,高考、模考中有关“系数和(等和线)定理”背景的试题层出不穷,学生在解决此类问题时,往往要通过建系或利用角度与数量积处理,结果因思路不清、解题繁琐,导致得分率不高,而向量三点共线定理与等和线巧妙地将代数问题转化为图形关系问题,将系数和的代数运算转化为距离的比例运算,数形结合思想得到了有效体现,同时也为相关问题的解决提供了新的思路,大家可以学以致用如图,P 为AOB ∆所在平面上一点,过O 作直线//l AB ,由平面向量基本定理知:存在,x y R ∈,使得OP xOA yOB=+下面根据点P 的位置分几种情况来考虑系数和x y +的值①若P l ∈时,则射线OP 与l 无交点,由//l AB 知,存在实数λ,使得OP AB λ=而AB OB OA =- ,所以OP OB OA λλ=-,于是=-=0x y λλ+②若P l ∉时,(i )如图1,当P 在l 右侧时,过P 作//CD AB ,交射线OA OB ,于,C D 两点,则OCD OAB ∆~∆,不妨设OCD ∆与OAB ∆的相似比为k由,P C D ,三点共线可知:存在R λ∈使得:(1)(1)OP OC OD k OA k OBλλλλ=+-=+- 所以(1-)x y k k kλλ+=+=(ii )当P 在l 左侧时,射线OP 的反向延长线与AB 有交点,如图1作P 关于O 的对称点P ',由(i )的分析知:存在存在R λ∈使得:(1)(1)OP OC OD k OA OB λλλλ'=+-=+- 所以--(1)OP k OA OBλλ'=+- 于是--(1-)-x y k k kλλ+=+=综合上面的讨论可知:图中OP 用,OA OB线性表示时,其系数和x y +只与两三角形的相似比有关。

2024年高考数学复习拓展考点精讲精练讲义 26 立体几何中的轨迹问题含详解

【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展26立体几何中的轨迹问题(精讲+精练)一、立体几何中的轨迹问题立体几何轨迹问题是以空间图形为素材,去探究符合一定条件的点的运动轨迹,处于解析几何和立体几何的交汇处,要求学生有较强的空间想象能力、数学转化和化归能力,以及对解析几何和立体几何知识的全面掌握.常见的轨迹类型有直线、圆雉曲线、球面、椭球面.二、常用的解决策略(1)定义法:借助圆雉曲线的定义判断.(2)坐标法:建立合适的坐标系,用方程来表示所求点的轨迹,借助方程来判断轨迹形状.(3)交轨法:运动的点同时在两个空间几何体上,如平面与圆雉、圆柱、球相交,球与球相交,等等.(4)平面化:把空间几何关系转化到同一平面内,进而探究平面内的轨迹问题,使问题更易解决.空间问题平面化也是解决立体几何题目的一般性思路.三、轨迹是圆锥曲线的原理剖析令平面与轴线的夹角为θ0<θ<90°,圆雉的母线与轴的夹角为()090<<αα,如图②.(1)当<αθ时,截口曲线为椭圆;(2)当=αθ时,截口曲线为抛物线;(3)当>αθ时,截口曲线为双曲线.图②我们再从几何角度来证明.(1)如图③,在圆锥内放两个大小不同的球,使它们分别与截面切于点12,F F .在截口曲线上任取一点P ,过点P 作圆雉的母线,分别与两球切于点12,Q Q .由球的性质可知2112,PQ PF PQ PF ==,于是121212PF PF PQ PQ Q Q +=+=为定值,这样截口曲线上的任一点P 到两个定点12,Q Q 的距离之和为常数,由椭圆的定义知,截口曲线是椭圆.一、知识点梳理(2)如图④,在互相倒置的两个圆雉内放两个大小不同的球,使它们分别与圆雉的侧面、截面相切,两个球分别与截面切于点12,F F .在截口曲线上任取一点P ,过点P 作圆雉的母线,分别与两球切于点12,Q Q .由球的性质可知1122,PQ PF PQ PF ==,于是121212PF PF PQ PQ Q Q -=-=为定值,这样截口曲线上的任一点P 到两个定点12,Q Q 的距离之差的绝对值为常数,由双曲线的定义知,截口曲线是双曲线.(3)如图⑤,用平行于母线OM 且垂直于轴截面OMN 的平面β去截圆雉.在圆雉内放一个球,使它和圆雉的侧面与截面β相切,球与截面切于点F .设α为球与圆雉相切时切点构成的圆所在的平面,记l ⋂=αβ.在截口曲线上任取一点P ,作直线与球相切于点T ,连结PT ,有PF PT =.在母线OM 上取点,A B (B 为OM 与球的切点),使得AB PT =.过点P 作//PQ AB ,有点Q 在l 上,且FQ AB PF ==.另一方面,因为平面OMN 与α垂直,那么l ⊥平面OMN ,有l AB ⊥,所以l PQ ⊥.于是截口曲线是以点F 为焦点,l 为准线的抛物线.1.平行、垂直有关的的轨迹问题①平行有关的轨迹问题的解题策略二、题型精讲精练1.线面平行转化为面面平行得轨迹;2.平行时可利用法向量垂直关系求轨迹.②垂直有关的轨迹问题的解题策略1.可利用线线线面垂直,转化为面面垂直,得交线求轨迹;2.利用空间坐标运算求轨迹;3.利用垂直关系转化为平行关系求轨迹.【典例1】如图,在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 、N 分别是CC 1、C 1D 1、DD 1、CD 、BC的中点,M 在四边形EFGH 边上及其内部运动,若MN ∥面A 1BD ,则点M 轨迹的长度是()A Ba C .2D .2【典例2】在正方体1111ABCD A B C D -中,Q 是正方形11B BCC 内的动点,11A Q BC ⊥,则Q 点的轨迹是()A .点1B B .线段1B CC .线段11B C D .平面11B BCC 【答案】B【分析】如图,连接1AC ,证明1BC ⊥1B Q ,又1BC ⊥1B C ,即得解.【详解】如图,连接1AC ,因为111111111111,,,,BC AQ BC A B AQ A B A AQ A B ⊥⊥=⊂ 平面11A B Q ,所以1BC ⊥平面11A B Q ,又1B Q ⊂平面11A B Q ,所以1BC ⊥1B Q ,又1BC ⊥1B C .所以点Q 在线段1B C 上.故选:B2.距离、角度有关的的轨迹问题①距离有关的轨迹问题的解题策略1.距离,可转化为在一个平面内的距离关系,借助于圆锥曲线定义或者球和圆的定义等知识求解轨迹;2.利用空间坐标计算求轨迹.②角度有关的轨迹问题的解题策略1.直线与面成定角,可能是圆锥侧面;2.直线与定直线成等角,可能是圆锥侧面;3.利用空间坐标系计算求轨迹.【典例3】已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面ABCD 内一点,若P 到棱CD ,A 1D 1距离相等的点,则点P 的轨迹是()如图示,过P 作PE ⊥以D 为坐标原点建立空间直角坐标系2211x y -=+,平方得:【典例4】正方体1111ABCD A B C D -中,M ,N 分别为AB ,11A B 的中点,P 是边11C D 上的一个点(包括端点),Q 是平面1PMB 上一动点,满足直线MN 与直线AN 夹角与直线MN 与直线NQ 的夹角相等,则点Q 所在轨迹为()A .椭圆B .双曲线C .抛物线D .抛物线或双曲线【答案】D【分析】根据题设分析可知:Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,应用数形结合,结合平面与双锥面相交所成曲线的性质判断Q 所在轨迹的形状.【详解】由题设,Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,如下图示:当P 是边11C D 上移动过程中,只与下方锥体有相交,Q 点轨迹为抛物线;当P 是边11C D 上移动过程中,与上方锥体也有相交,Q 点轨迹为双曲线;故选:D3.翻折有关的的轨迹问题①翻折有关的轨迹问题的解题策略1.翻折过程中寻找不变的垂直的关系求轨迹2.翻折过程中寻找不变的长度关系求轨迹3.可以利用空间坐标运算求轨迹【典例5】1822年,比利时数学家Dandelin 利用圆锥曲线的两个内切球,证明了用一个平面去截圆锥,可以得到椭圆(其中两球与截面的切点即为椭圆的焦点),实现了椭圆截线定义与轨迹定义的统一性.在生活中,有一个常见的现象:用手电筒斜照地面上的篮球,留下的影子会形成椭圆.这是由于光线形成的圆锥被地面所截产生了椭圆的截面.如图,在地面的某个占1A 正上方有一个点光源,将小球放置在地面,使得1AA 与小球相切.若15A A =,小球半径为2,则小球在地面的影子形成的椭圆的离心率为()A .23B .45C .13D .25【答案】A【分析】设21A F x =,从而可得15AA =,122A A x =+,23AA x =+,利用勾股定理可得10x =,再由离心率的定义即可求解.【详解】在21Rt AA A 中,设21A F x =,2DA x∴=15AA =,122A A x =+,23AA x =+,2225(2)(3)x x ∴++=+,10x ∴=,∴长轴长12212A A a ==,6a =,624c =-=则离心率23c e a ==.故选:A 【题型训练2-刷模拟】1.平行、垂直有关的的轨迹问题一、单选题1.(2023·全国·高三专题练习)正四棱锥S ABCD -的底面边长为2,高为2,E 是边BC 的中点,动点P 在表面上运动,并且总保持PE AC ⊥,则动点P 的轨迹的周长为()A .62+B .62-C .4D .51+2.(2023·安徽滁州·安徽省定远中学校考模拟预测)在正四棱柱1111ABCD A B C D -中,1AB =,14AA =,E 为1DD 中点,P 为正四棱柱表面上一点,且11C P B E ⊥,则点P 的轨迹的长为()A .52+B .222+C .252+D .132+3.(2023·江西赣州·统考二模)在棱长为4的正方体1111ABCD A B C D -中,点P 满足14AA AP =,E ,F 分别为棱BC ,CD 的中点,点Q 在正方体1111ABCD A B C D -的表面上运动,满足1//AQ 面EFP ,则点Q 的轨迹所构成的周长为()A .5373B .237C .7373D .83734.(2023·全国·高三专题练习)如图所示,正方体1111ABCD A B C D -的棱长为2,E ,F 分别为1AA ,AB 的中点,点P 是正方体表面上的动点,若1//C P 平面1CD EF ,则P 点在正方体表面上运动所形成的轨迹长度为()A .25+B .225+C .225+D .2225+BBA.点P可以是棱1C.点P的轨迹是正方形6.(2023·全国·高三专题练习)已知棱长为MP平面ABD表面上,且//二、填空题8.(2023·河南·校联考模拟预测)已知正方体则点P的轨迹长度为9.(2023春·四川绵阳内切球O的球面上的动点,2.距离、角度有关的的轨迹问题一、单选题二、填空题3.翻折有关的的轨迹问题一、单选题A .523πB .453π2.如图,正方形ABCD 的边长为2,E 为BC 的中点,将①四棱锥P AECD -的体积最大值为255AB=,上一动点,现将AED ....【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展26立体几何中的轨迹问题(精讲+精练)一、立体几何中的轨迹问题立体几何轨迹问题是以空间图形为素材,去探究符合一定条件的点的运动轨迹,处于解析几何和立体几何的交汇处,要求学生有较强的空间想象能力、数学转化和化归能力,以及对解析几何和立体几何知识的全面掌握.常见的轨迹类型有直线、圆雉曲线、球面、椭球面.二、常用的解决策略(1)定义法:借助圆雉曲线的定义判断.(2)坐标法:建立合适的坐标系,用方程来表示所求点的轨迹,借助方程来判断轨迹形状.(3)交轨法:运动的点同时在两个空间几何体上,如平面与圆雉、圆柱、球相交,球与球相交,等等.(4)平面化:把空间几何关系转化到同一平面内,进而探究平面内的轨迹问题,使问题更易解决.空间问题平面化也是解决立体几何题目的一般性思路.三、轨迹是圆锥曲线的原理剖析令平面与轴线的夹角为θ0<θ<90°,圆雉的母线与轴的夹角为()090<<αα,如图②.(2)当<αθ时,截口曲线为椭圆;(2)当=αθ时,截口曲线为抛物线;(3)当>αθ时,截口曲线为双曲线.图②我们再从几何角度来证明.(1)如图③,在圆锥内放两个大小不同的球,使它们分别与截面切于点12,F F .在截口曲线上任取一点P ,过点P 作圆雉的母线,分别与两球切于点12,Q Q .由球的性质可知2112,PQ PF PQ PF ==,于是121212PF PF PQ PQ Q Q +=+=为定值,这样截口曲线上的任一点P 到两个定点12,Q Q 的距离之和为常数,由椭圆的定义知,截口曲线是椭圆.一、知识点梳理(2)如图④,在互相倒置的两个圆雉内放两个大小不同的球,使它们分别与圆雉的侧面、截面相切,两个球分别与截面切于点12,F F .在截口曲线上任取一点P ,过点P 作圆雉的母线,分别与两球切于点12,Q Q .由球的性质可知1122,PQ PF PQ PF ==,于是121212PF PF PQ PQ Q Q -=-=为定值,这样截口曲线上的任一点P 到两个定点12,Q Q 的距离之差的绝对值为常数,由双曲线的定义知,截口曲线是双曲线.(3)如图⑤,用平行于母线OM 且垂直于轴截面OMN 的平面β去截圆雉.在圆雉内放一个球,使它和圆雉的侧面与截面β相切,球与截面切于点F .设α为球与圆雉相切时切点构成的圆所在的平面,记l ⋂=αβ.在截口曲线上任取一点P ,作直线与球相切于点T ,连结PT ,有PF PT =.在母线OM 上取点,A B (B 为OM 与球的切点),使得AB PT =.过点P 作//PQ AB ,有点Q 在l 上,且FQ AB PF ==.另一方面,因为平面OMN 与α垂直,那么l ⊥平面OMN ,有l AB ⊥,所以l PQ ⊥.于是截口曲线是以点F 为焦点,l 为准线的抛物线.1.平行、垂直有关的的轨迹问题①平行有关的轨迹问题的解题策略二、题型精讲精练1.线面平行转化为面面平行得轨迹;2.平行时可利用法向量垂直关系求轨迹.②垂直有关的轨迹问题的解题策略1.可利用线线线面垂直,转化为面面垂直,得交线求轨迹;2.利用空间坐标运算求轨迹;3.利用垂直关系转化为平行关系求轨迹.【典例1】如图,在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 、N 分别是CC 1、C 1D 1、DD 1、CD 、BC的中点,M 在四边形EFGH 边上及其内部运动,若MN ∥面A 1BD ,则点M 轨迹的长度是()A Ba C .2D .2【典例2】在正方体1111ABCD A B C D -中,Q 是正方形11B BCC 内的动点,11A Q BC ⊥,则Q 点的轨迹是()A .点1B B .线段1B CC .线段11B C D .平面11B BCC 【答案】B【分析】如图,连接1AC ,证明1BC ⊥1B Q ,又1BC ⊥1B C ,即得解.【详解】如图,连接1AC ,因为111111111111,,,,BC AQ BC A B AQ A B A AQ A B ⊥⊥=⊂ 平面11A B Q ,所以1BC ⊥平面11A B Q ,又1B Q ⊂平面11A B Q ,所以1BC ⊥1B Q ,又1BC ⊥1B C .所以点Q 在线段1B C 上.故选:B2.距离、角度有关的的轨迹问题①距离有关的轨迹问题的解题策略1.距离,可转化为在一个平面内的距离关系,借助于圆锥曲线定义或者球和圆的定义等知识求解轨迹;2.利用空间坐标计算求轨迹.②角度有关的轨迹问题的解题策略1.直线与面成定角,可能是圆锥侧面;2.直线与定直线成等角,可能是圆锥侧面;3.利用空间坐标系计算求轨迹.【典例3】已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面ABCD 内一点,若P 到棱CD ,A 1D 1距离相等的点,则点P 的轨迹是()如图示,过P 作PE ⊥以D 为坐标原点建立空间直角坐标系2211x y -=+,平方得:【典例4】正方体1111ABCD A B C D -中,M ,N 分别为AB ,11A B 的中点,P 是边11C D 上的一个点(包括端点),Q 是平面1PMB 上一动点,满足直线MN 与直线AN 夹角与直线MN 与直线NQ 的夹角相等,则点Q 所在轨迹为()A .椭圆B .双曲线C .抛物线D .抛物线或双曲线【答案】D【分析】根据题设分析可知:Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,应用数形结合,结合平面与双锥面相交所成曲线的性质判断Q 所在轨迹的形状.【详解】由题设,Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,如下图示:当P 是边11C D 上移动过程中,只与下方锥体有相交,Q 点轨迹为抛物线;当P 是边11C D 上移动过程中,与上方锥体也有相交,Q 点轨迹为双曲线;故选:D3.翻折有关的的轨迹问题①翻折有关的轨迹问题的解题策略1.翻折过程中寻找不变的垂直的关系求轨迹2.翻折过程中寻找不变的长度关系求轨迹3.可以利用空间坐标运算求轨迹【典例5】1822年,比利时数学家Dandelin 利用圆锥曲线的两个内切球,证明了用一个平面去截圆锥,可以得到椭圆(其中两球与截面的切点即为椭圆的焦点),实现了椭圆截线定义与轨迹定义的统一性.在生活中,有一个常见的现象:用手电筒斜照地面上的篮球,留下的影子会形成椭圆.这是由于光线形成的圆锥被地面所截产生了椭圆的截面.如图,在地面的某个占1A 正上方有一个点光源,将小球放置在地面,使得1AA 与小球相切.若15A A =,小球半径为2,则小球在地面的影子形成的椭圆的离心率为()A .23B .45C .13D .25【答案】A【分析】设21A F x =,从而可得15AA =,122A A x =+,23AA x =+,利用勾股定理可得10x =,再由离心率的定义即可求解.【详解】在21Rt AA A 中,设21A F x =,2DA x∴=15AA =,122A A x =+,23AA x =+,2225(2)(3)x x ∴++=+,10x ∴=,∴长轴长12212A A a ==,6a =,624c =-=则离心率23c e a ==.故选:A 【题型训练2-刷模拟】1.平行、垂直有关的的轨迹问题一、单选题1.(2023·全国·高三专题练习)正四棱锥S ABCD -的底面边长为2,高为2,E 是边BC 的中点,动点P 在表面上运动,并且总保持PE AC ⊥,则动点P 的轨迹的周长为()A .62+B .62-C .4D .51+【答案】A【分析】由题意,动点P 的轨迹为过E 且垂直AC 的平面与正四棱锥S ABCD -的交线,再根据线面垂直的性质求解即可.【详解】如图,设,AC BD 交于O ,连接SO ,由正四棱锥的性质可得,SO ⊥平面ABCD ,因为AC ⊂平面ABCD ,故SO AC ⊥.又BD AC ⊥,SO BD O ⋂=,SO BD ⊂,平面SBD ,故AC ⊥平面SBD .由题意,PE AC ⊥则动点P 的轨迹为过E 且垂直AC 的平面与正四棱锥S ABCD -的交线,即如图EFG ,则AC ⊥平面EFG .由线面垂直的性质可得平面//SBD 平面EFG ,又由面面平行的性质可得//EG SB ,//GF SD ,//EF BD ,又E 是边BC 的中点,故,,EG GF EF 分别为,,SBC SDC BCD 的中位线.由题意222,226BD SB SD ===+=,故()16622622EG EF GF ++=++=+.即动点P 的轨迹的周长为62+.故选:A2.(2023·安徽滁州·安徽省定远中学校考模拟预测)在正四棱柱点,P 为正四棱柱表面上一点,且A .52+B .2因为11AC ⊂平面1B A 1111ED B D D ⋂=,则取1CC 中点F ,连接而11D C ⊥平面1BCC 又1,B F FE ⊂平面1B故选:D4.(2023·全国·高三专题练习)如图所示,正方体P 是正方体表面上的动点,若1C P A .25+B .2【答案】B【分析】要满足1//C P 平面CD 中点G ,11A B 的中点H ,连结迹为三角形1C HG ,求出周长即可【详解】取1BB 的中点G ,A 正方体1111ABCD A B C D -的棱长为因为,F H 为分别为11,AB A B 的中点,BB的中点A.点P可以是棱1C.点P的轨迹是正方形【答案】B【分析】如图,取棱BC的中点必过D点,进而取A D中点F【点睛】关键点点睛:本题解题的关键在于取棱的性质求解点P 轨迹即可求解6.(2023·全国·高三专题练习)已知棱长为表面上,且//MP 平面1ABD ,则动点A .22B .【详解】E 、F 、G 、M 分别是1AA 、11A D 、1B C 1AD ,//EM AB ,所以//EF 平面1ABD 1ABD //平面EFGM ,故点P 的轨迹为矩形12G =,所以22MG =,所以1EFGM S =⨯【点睛】本题考查面面平行的判定和面面平行的性质,以及正方体的截面问题,属综合中档题二、填空题【答案】10【分析】先推出BC ⊥,,EF CF AC ,推出BC 【详解】因为AB 是圆柱下底面圆又BC AD ⊥,AC AD 设过A 的母线与上底面的交点为因为⊥AE 平面ABC ,因为AE AC A = ,所以点D 在平面ACE 依题意得5AE =,OA 所以矩形AEFC 的面积为1DD ⊥平面ABCD ,AC ⊂平面ABCD ,则1DD AC ⊥11,,DD BD D DD BD =⊂∩平面1BDD ,于是AC ⊥平面则1AC BD ⊥,同理11⊥AB BD ,而1,,AC AB A AC AB = 令1BD 交平面1AB C 于点E ,由11B AB C B ABC V V --=,得13S 311【答案】3305π【分析】由题意画出图形,得BN ⊥平面DCP ,所以【详解】如图所示,在1BB 上取点P ,使得12BP PB =,连接112NC NB =Q ,CP BN∴⊥又DC ⊥平面11BCC B ,DC BN∴⊥又DC CP C Ç=Q ,DC ⊂平面DCP ,CP ⊂平面BN ∴⊥平面DCP又点M 是棱长为32的正方体1111ABCD A B C D -DCP 与球O 的截面圆周.2.距离、角度有关的的轨迹问题一、单选题故选:C2.(2023·河北·统考模拟预测)已知正四棱锥(底面为正方形,且顶点在底面的射影为正方形的中心的棱锥为正四棱锥)P -ABCD 的底面正方形边长为则动点Q 形成轨迹的周长为(A .2π11根据等体积法得(143ABCD PAB S S +△∴11344423263PE ⎛⎫+⨯⨯⨯⨯=⨯ ⎪⎝⎭【详解】,取AD 的中点H ,连接EH ,则1//EH AA .1111ABCD A B C D -中,1AA ⊥底面ABCD ,所以EH ⊥底面ABCD.EFH 为EF 与底面ABCD 所成的角,则60EFH ∠=︒.设正方体的棱长为a ,因为该正方体外接球的表面积为12π,22233π12π2a a ⎛⎫==⎪ ⎪⎝⎭,解得2a =,12AA a ===,从而23HF =,的轨迹为以H 为圆心,23为半径的圆在正方形ABCD 区域内的部分,如图中,23HG HM ==,3AH AHG πAHG ∠=,【点睛】本题考查了平面截圆锥面所得轨迹问题,考查了转化化归思想,属于难题7.(2022秋·河南·高三期末)棱长为1的正方体11ABCD A B C -则下面结论正确的有()①若点E 满足1AE B C ⊥,则动点E 的轨迹是线段;②若点E 满足130EA C ∠=,则动点E 的轨迹是椭圆的一部分;若130EA C ∠= ,则E 在以1AC 为轴,母线所在直线为平面1BC 与圆锥的轴1AC 因为11//,A B CD 所以1A E 与CD 所成的角等于当E 为1BC 中点时,1B E tan EA B ∠二、填空题8.(2023春·湖南长沙·高三校联考阶段练习)则正方体表面到P 点距离为5的点的轨迹总长度为【答案】35π2⎛⎫+ ⎪⎝⎭【分析】根据以P 为球心,5为半径的球与正方体表面的交线长度来求得轨迹总长度【详解】以P 为球心,5为半径的球与正方体表面的交线长度即为所求,在平面11ABB A 和平面11ADD A 上轨迹是以圆心角为π2的两段弧,弧长为在平面1111D C B A 上的轨迹是以A 在平面ABCD 上的轨迹是以A 为圆心,因此,轨迹的总长度为352⎛+ ⎝故答案为:35π2⎛⎫+ ⎪⎝⎭9.(2023·全国·高三专题练习)已知三棱锥到底面ABC 的距离为4,且三棱锥【答案】43π【分析】设ABC 直角边的边长为得出球心O 到底面ABC 的距离连接,,OD OG OH ,则有OG OH =2GH a =,5GD a =且GH GD ⊥设O 到平面DCHG 的距离为:d 则在三棱锥O DGH -中,有O GDH V -所以11113232GH GD d OG ⨯⨯⨯⨯=⨯⨯3.翻折有关的的轨迹问题一、单选题A .523πB .453π【答案】D设三棱锥S ABC -外接球的球心为,,O SAC BAC 的中心分别为易知1OO ⊥平面2,SAC OO ⊥平面BAC ,且12,,,O O O①四棱锥P AECD -的体积最大值为255③,EP CD 与平面PAD 所成角的正弦值之比为④三棱锥P AED -的外接球半径有最小值A .①③B .②③【答案】C取PA中点为G,则,GF EC平行且相等,四边形所以,点F的轨迹与点G的轨迹完全相同,过,H G的轨迹是H以为圆心,55HG=中点F的轨迹长度为55π.②错误;由四边形ECFG是平行四边形知//ECAB=,上一动点,现将AED....。

第03讲 平面向量基本定理及其拓展(爪子定理)(高阶拓展)(教师版) 2025年高考数学一轮复习学案

第03讲平面向量基本定理及其拓展(“爪子定理”)(高阶拓展)(3类核心考点精讲精练)1. 5年真题考点分布2. 命题规律及备考策略【命题规律】本节内容是新高考卷的必考内容,设题稳定,难度较低,分值为5分【备考策略】1.理解平面向量基本定理及其意义2.掌握平面向量的正交分解及其坐标表示3.掌握基底的概念及灵活表示未知向量4.会综合应用平面向量基本定理求解【命题预测】本节一般考查平面向量数量积基本定理的基底表示向量、在平面几何图形中的应用问题,易理解,易得分,需重点复习。

1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.(1).基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底.(2)基底给定,同一向量的分解形式唯一. 2.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组.(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加、减运算或数乘运算.3. 形如AD xAB y AC =+uuu r uuu r uuu r条件的应用(“爪子定理”)“爪”字型图及性质:(1)已知,AB AC uuu r uuu r 为不共线的两个向量,则对于向量AD uuu r,必存在,x y ,使得AD xAB y AC =+uuu r uuu r uuu r 。

则,,B C D 三点共线Û1x y +=当01x y <+<,则D 与A 位于BC 同侧,且D 位于A 与BC 之间当1x y +>,则D 与A 位于BC 两侧1x y +=时,当0,0x y >>,则D 在线段BC 上;当0xy <,则D 在线段BC 延长线上(2)已知D 在线段BC 上,且::BD CD m n =,则n m AD AB AC m n m n=+++uuu r uuu r uuu r 3、AD xAB y AC =+uuu r uuu r uuu r中,x y 确定方法(1)在几何图形中通过三点共线即可考虑使用“爪”字型图完成向量的表示,进而确定,x y(2)若题目中某些向量的数量积已知,则对于向量方程AD xAB y AC =+uuu r uuu r uuu r,可考虑两边对同一向量作数量积运算,从而得到关于,x y 的方程,再进行求解(3)若所给图形比较特殊(矩形,特殊梯形等),则可通过建系将向量坐标化,从而得到关于,x y 的方程,再进行求解B1.(2024高三·全国·专题练习)下列各组向量中,可以作为基底的是( ).A .()10,0e =r,()21,2e =-r B .()11,2e =-r ,()25,7e =r C .()13,5e =r,()26,10e =r D .()12,3e =-r,213,24e æö=-ç÷èør 【答案】B【分析】不共线的非零向量可以作为向量的基底.【详解】因为()11,2e =-r 与()25,7e =r不共线,其余选项中1e r 、2e r 均共线,所以B 选项中的两向量可以作为基底.故选:B【点睛】本题考查平面向量的基本定理及其意义,属于基础题.2.(2024高三·全国·专题练习)如果12,e e r r是平面α内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是( )A .1e r 与12e e +r r B .122e e -r r 与122e e +r r C .12e e +r r 与12e e -r r D .123e e +r r 与1226e e +r r 【答案】D【分析】分别验证四个选项中的两向量是否共线即可选出正确答案.【详解】选项A 中,设121=e e e l +r r r,无解,则两向量不共线;选项B 中,设()12122=2e e e e l -+r r r r,则=11l l ìí=-î,无解,则两向量不共线;选项C 中,设()1212=e e e e l +-r r r r,则=11l l ìí=-î,无解,则两向量不共线;选项D 中,()121213262e e e e +=+r r r r,所以两向量是共线向量.故选:D .【点睛】本题考查了基底的涵义,考查了两向量是否共线的判定.本题的关键是判断两向量是否共线.3.(2023高三·福建·阶段练习)下列向量组中,可以用来表示该平面内的任意一个向量的是( )A .()1,2a =r ,()0,0b =r B .()1,2a =r,()1,2b =--r C .()1,2a =r,()5,10b =r D .()1,2a =r,()1,2b =-r 【答案】D【分析】根据平面向量基本定理可知,表示平面内的任意向量的两个向量不能共线,结合选项,即可判断.【详解】表示平面内的任意一个向量的两个向量不能共线,A.向量b r是零向量,所以不能表示平面内的任意向量,故A 错误;B.a b =-r r,两个向量共线,所以不能表示平面内的任意向量,故B 错误;C.5b a =r r,两个向量共线,所以不能表示平面内的任意向量,故C 错误;D.不存在实数l ,使b a l =r r,所以向量,a b r r 不共线,所以可以表示平面内的任意向量,故D 正确.故选:D1.(2023·陕西西安·一模)设R k Î,下列向量中,可与向量()1,1q =-r组成基底的向量是( )A .(),b k k =rB .(),c k k =--rC .()221,1k d k =++u rD .()221,1k e k =--r 【答案】C【分析】根据构成基地向量的条件不共线的两个非零向量解决.【详解】对于AB 项,若0k =时,()0,0b =r,()0,0c =r 不满足构成基向量的条件,所以AB 都错误;对于D 项,若1k =±时,()0,0e =r不满足构成基向量的条件,所以D 错误;对于C 项,因为2R,10k k "Î+¹,又因为()()()2211110k k +´--+´¹恒成立,说明d u r 与q r 不共线,复合构成基向量的条件,所以C 正确.故选:C2.(2023高三·全国·专题练习)设{}12,e e u r u u r为平面内的一个基底,则下面四组向量中不能作为基底的是( )A .12e e +u r u u r 和12e e -u r u ur B .1224e e +u r u u r 和2124e e -u u r u rC .122e e +u r u u r 和1212e e +u r u u r D .122e e -u r u u r 和2142e e +u u r u r【答案】C【分析】根据基底的概念确定正确答案.【详解】平面向量的基底由两个不共线的非零向量组成,C 选项中,12121222e e e e æö+=+ç÷èøu r u u r u r u u r ,即122e e +u r u u r 和1212e e +u r u u r 为共线向量,所以它们不能作为基底.其它选项中的两个向量都没有倍数关系,所以可以作为基底.故选:C1.(2022·全国·高考真题)在ABC V 中,点D 在边AB 上,2BD DA =.记CA m CD n ==uuu r uuu r r r ,,则CB uuu r=( )A .32m n-r r B .23m n -+r r C .32m n +r r D .23m n +r r【答案】B【分析】根据几何条件以及平面向量的线性运算即可解出.【详解】因为点D 在边AB 上,2BD DA =,所以2BD DA =uuu r uuu r,即()2CD CB CA CD -=-uuu r uuu r uuu r uuu r ,所以CB uuu r =3232CD CA n m -=-uuu r uuu r r u r 23m n =-+r r .故选:B .2.(全国·高考真题)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =uuu vA .3144AB AC-uuuv uuu v B .1344AB AC-uuuv uuu v C .3144+AB AC uuuv uuu v D .1344+AB AC uuuv uuu v 【答案】A【分析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得1122BE BA BD =+uuu v uuu v uuu v,之后应用向量的加法运算法则-------三角形法则,得到BC BA AC =+uuu v uuu v uuu v,之后将其合并,得到3144BE BA AC =+uuu v uuu v uuu v ,下一步应用相反向量,求得3144EB AB AC =-uuu v uuu v uuu v,从而求得结果.【详解】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++uuu v uuu v uuu v uuu v uuu v uuu v uuu v uuu v1113124444BA BA AC BA AC uuuv uuu v uuu v uuu v uuu v =++=+,所以3144EB AB AC =-uuu v uuu v uuu v,故选A.【点睛】该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.3.(2024·陕西安康·模拟预测)在ABC V 中,M 是AB 的中点,3,AN NC CM =uuu r uuu r 与BN 相交于点P ,则AP =uuu r( )A .3155AB AC +uuu r uuu r B .1355AB AC +uuur uuu r C .1324AB AC +uuur uuu r D .3142AB AC +uuur uuu r 【答案】B【分析】根据向量的线性运算、三点共线等知识列方程组,由此求得正确答案.【详解】设AP AB AC l m =+uuu r uuu r uuu r ,由M 是AB 的中点,得2AB AM =uuu r uuuu r,由3AN NC =uuu r uuu r,得43AC AN =uuu r uuu r ,所以2AP AM AC l m =+uuu r uuuu r uuu r,且43AP AB AN l m =+uuu r uuu r uuu r ,由CM 与BN 相交于点P 可知,点P 在线段CM 上,也在线段BN 上,由三点共线的条件可得21413l m l m +=ìïí+=ïî,解得1535l m ì=ïïíï=ïî,所以1355AP AB AC =+uuu r uuu r uuu r .故选:B1.(广东·高考真题)在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC a =uuu v v ,BD b =uuu v v ,则AF =uuu vA .1142a b+v v B .2133a b+v vC .1124a b+vv D .1233a b+v v【答案】B【分析】利用平面几何知识求解【详解】如图,可知222()333AF AC CF AC CD AC AB AC AO OB =+=+=-=-+uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r =2112112132232233AC AC BD a a b a b æöæö--=--=+ç÷ç÷èøèøuuu r uuu r uuu r r r r rr ,选B.【点睛】本题考查向量的运算及其几何意义,同时要注意利用平面几何知识的应用,2.(2024·山西吕梁·三模)已知等边ABC V 的边长为1,点,D E 分别为,AB BC 的中点,若3DF EF =uuu r uuu r ,则AF =uuu r ( )A .1526AB AC +uuur uuu r B .1324AB AC +uuur uuu r C .12AB AC+uuur uuu r D .1322AB AC+r r 【答案】B【分析】取{},AC AB uuu r uuu r为基底,利用平面向量基本定理结合已知条件求解即可.【详解】在ABC V 中,取{},AC AB uuu r uuu r为基底,则2,,60AC AB AC AB ===ouuu r uuu r uuu r uuu r ,因为点,D E 分别为,AB BC 的中点,3DF EF =uuu r uuu r,所以1124DE AC EF ==uuu r uuu r uuu r ,所以()11132424AF AE EF AB AC AC AB AC =+=++=+uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r .故选:B.3.(22-23高一下·河南洛阳·阶段练习)在ABC V 中,点M 是AB 的中点,N 点分AC 的比为:1:2,AN NC BN =与CM 相交于E ,设,AB a AC b ==uuu r uuu r r r ,则向量AE =uuu r( )A .1132a b+r r B .1223a b+rr C .2155a b+rr D .3455a b+rr【答案】C【分析】由三点共线性质以及平面向量基本定理解方程组即可得解.【详解】由题意,,B E N 三点共线,所以存在R l Î,使得()113AE AB AN AB AC l l l l -=+-=+uuu r uuu r uuu r uuu r uuu r,同理,,C E M 三点共线,所以存在R m Î,使得()112AE AC AM AC AB m m m m -=+-=+uuu r uuu r uuuu ruuu r uuu r,由平面向量基本定理可得1213m l lm -ì=ïïí-ï=ïî,解得21,55l m ==,所以2155AE a b =+uuu r rr .故选:C.1.(全国·高考真题)设D 为ABC V 所在平面内一点,且3BC CD =uuu r uuu r,则( )A. 1433AD AB AC =-+uuu r uuur uuu rB. 1433AD AB AC=-uuu r uuu r uuu rC. 4133AD AB AC =+uuu r uuu r uuu rD. 4133AD AB AC=-uuu ruuur uuu r 答案:A解析:由图可想到“爪字形图得:1344AC AB AD =+uuu r uuu r uuu r ,解得:1433AD AB AC=-+uuu r uuur uuu r 2. 如图,在ABC V 中,13AN NC =uuu r uuu r ,P 是BN 上的一点,若211AP mAB AC =+uuu r uuu r uuu r,则实数m 的值为( )A.911 B.511C.311D.211解:观察到,,B P N 三点共线,利用“爪”字型图,可得AP mAB nAN =+uuu r uuu r uuu r ,且1m n +=,由13AN NC =uuu r uuu r 可得14AN AC =uuu r uuu r ,所以14AP mAB nAC =+uuu r uuu r uuu r ,由已知211AP mAB AC =+uuu r uuu r uuu r 可得:12841111n n =Þ=,所以311m =答案:C3. 如图,在ABC V 中,13AN NC =uuu r uuu r ,P 是BN 上的一点,若211AP mAB AC =+uuu r uuu r uuu r,则实数m 的值为( )A.911 B.511C.311D.211解:观察到,,B P N 三点共线,利用“爪”字型图,可得AP mAB nAN =+uuu r uuu r uuu r ,且1m n +=,由13AN NC =uuu r uuu r 可得14AN AC =uuu r uuu r ,所以14AP mAB nAC =+uuu r uuu r uuu r ,由已知211AP mAB AC =+uuu r uuu r uuu r 可得:12841111n n =Þ=,所以311m =答案:C1.(2024·云南昆明·一模)在ABC V 中,点D 满足4AD DB =uuu r uuu r,则( )A .1344CD CA CB=+uuu r uuu r uuu r B .3144CD CA CB=+uuu r uuu r uuu r C .1455CD CA CB =+uuu ruuu r uuu r D .4155CD CA CB=+uuu ruuu r uuu r 【答案】C【分析】利用平面向量的加减法则,根据向量定比分点代入化简即可得出结果.【详解】如下图所示:易知()()4441455555CD CA AD CA AB CA AC CB CA CA CB CA CB =+=+=++=+-+=+uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r ;即可得1455CD CA CB =+uuu r uuu r uuu r.故选:C2.(2024·广东广州·一模)已知在ABC V 中,点D 在边BC 上,且5BD DC =uuu r uuur ,则AD =uuu r( )A .1566AB AC +uuur uuu r B .1566AC AB +r r C .1455AB AC +uuur uuu r D .4155AB AC +uuur uuu r 【答案】A【分析】根据向量的线性运算即可.【详解】在ABC V 中,BC AC AB uuu r uuu r uuu r =-,又点D 在边BC 上,且5BD DC =uuu r uuur,则()55156666AD AB BD AB BC AB AC AB AB AC =+=+=+-=+uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r,故选:A.A .13,22x y ==C .13,22x y =-=-【分析】用向量的线性运算把向量AD uuu r分解成AD xAB y AC =+uuu r uuu r uuu r 形式即可得答案.【详解】∵3,2AD AB BD BD BC =+=uuu r uuu r uuu r uuu r uuu r ,∴()33132222AD AB BC AB AC AB AB AC =+=+-=-+uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r ,故选:B .【分析】分点内分与外分线段BC 讨论,再由向量的线性运算求解即可.【详解】当D 点在线段BC 上时,如图,()331313444444AD AB BD AB BC AB AC AB AB AC a b ®®=+=+=+-=+=+uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r ,所以114334m n ==,当D 点在线段BC 的延长线上时,如图,()331313222222AD AB BD AB BC AB AC AB AB AC a b ®®=+=+=+-=-+=-+uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r ,则112332m n -==-,故选:BC.1.(2024·上海浦东新·三模)给定平面上的一组向量1e u r 、2e u ur ,则以下四组向量中不能构成平面向量的基底的是( )A .122e e +u r u u r 和12e e -u r u u r B . 123e e +u r u u r 和213e e +u ur u r C . 123e e -u r u u r 和2126e e -u u r u r D . 1e u r 和12e e +u r u u r 【答案】C【分析】根据平面向量共线定理,结合选项,进行逐一分析即可.【详解】对A :不存在实数l ,使得()12122e e e e l +=-u r u u r u r u u r ,故122e e +u r u u r 和12e e -u r u u r不共线,可作基底;对B :不存在实数l ,使得()122133e e e e l +=+u r u u r u u r u r,故123e e +u r u u r 和213e e +u ur u r 不共线,可作基底;对C :对 123e e -u r u u r 和2126e e -u u r u r ,因为21,e e u r u u r是不共线的两个非零向量,且存在实数2-,使得()21122326e e e e =---u r u u u u r u rr ,故123e e -u r u u r 和2126e e -u u r u r共线,不可作基底;对D :不存在实数l ,使得()112e e e l =+u r u r u u r ,故1e u r 和12e e +u r u u r 不共线,可作基底.故选:C.2.(2024·浙江绍兴·二模)已知四边形ABCD 是平行四边形,2EC BE =uuu r uuu r ,2DF FC =uuu r uuu r ,记AB a uuu r r=,AD b =uuu r r ,则EF =uuu r( )A .1233a b -+r r B .1233a b--r rC .2133a b+r rD .2133a b-r r 【答案】A【分析】根据给定条件,利用平面向量的线性运算求解即得.【详解】在ABCD Y 中,2EC BE =uuu r uuu r ,2DF FC =uuu r uuu r ,AB a uuu r r=,AD b =uuu r r ,所以12123333EF CF CE CD CB a b =-=-=-+uuu r u ruuu uu r uuu u r r r r uu .故选:A3.(2024·全国·模拟预测)在平行四边形ABCD 中,2,EB AE BF FC ==uuu r uuu r uuu r uuu r ,记,AB a AD b ==uuu r uuu r r r ,则EF =uuu r( )A .2132a b-r r B .2132a b+rr C .1132a b+r r D .1223a b+r r 【答案】B【分析】由向量的线性运算,用,AB AD uuu r uuu r 表示EFuuu r【详解】因为2,EB AE BF FC ==uuu r uuu r uuu r uuu r,则有211,322EB AB BF BC AD ===uuu r uuu r uuu r uuu r uuu r ,所以2132EF EB BF a b =+=+uuu r uuu r r uur ru .故选:B .4.(2024·山东济南·二模)在ABC V 中,E 为边AB 的中点,23BD BC =uuu r uuu r ,则DE =uuu r( )A .1263AB AC -+uuu r uuu r B .5163AB AC +uuur uuu r C .1263AB AC+uuur uuu r D .1263AB AC-uuur uuu r 【答案】D【分析】借助平面向量的线性运算及平面向量基本定理计算即可得解.【详解】因为E 为边AB 的中点,23BD BC =uuu r uuu r,所以()212131262233DE DB BE CB AB AB AC A C B AB A =+=-=---=uuu r uuu r uuu r uuu r uuu u u uuu r uuu r uuu r u r r uu r u .故选:D.5.(2024·全国·模拟预测)已知等边三角形ABC 的边长为2,P 为ABC V 的中心,PE AC ^,垂足为E ,则PE =uuu r( )A .1233AB AC -+uuur uuu r B .1136AB AC-+uuu r uuu r C .1163AB AC-+uuur uuu r D .2133AB AC-+r r 【答案】B【分析】连接AP 并延长,交BC 于点D ,根据P 为ABC V 的中心,易得D 为BC 的中点,E 为AC 的中点,利用平面向量的线性运算求解.【详解】解:如图所示:连接AP 并延长,交BC 于点D ,因为P 为ABC V 的中心,所以D 为BC 的中点.又,PE AC E ^\为AC 的中点,1223PE AE AP AC AD \=-=-uuu r uuu r uuu r uuu r uuu r,()1211123236AC AB AC AB AC =-´+=-+uuu r uuu r uuu r uuur uuu r ,故选:B .6.(2024·陕西安康·模拟预测)在梯形ABCD 中,3,DC AB E =uuu r uuu r 为线段AD 的中点,2DF FC =uuu r uuu r ,则EF =uuu r ( )A .12BA BC-+uuu r uuu r B .12BA BC-+uuur uuu r C .1122BA BC-+uuur uuu r D .32BA BC-+uuu r uuu r【答案】A【分析】先用向量和三角形减法法则得EF DF DE =-uuu r uuu r uuu r ,再对它们进行线性运算转化为5122EF BA BD -+=uuu r uuur uuu r ,此时继续找到3BD BC BA =+uuu r uuu r uuu r,从而可得结果.【详解】由图可得:EF DF DE =-uuu r uuu r uuu r,由2,DF FC E =uuu r uuu r 为线段AD 的中点可得,2312EF DC DA =-uuu r uuu r uuu r ,再由3DC AB =uuu r uuu r可得,()()215133222EF BA BA BD BA BD =´---=-+uuu r uuu r uuu r uuu r uuur uuu r ,又因为3BD BC CD BC BA +==+uuu r uuu r uuu r uuu r uuu r,代入得:()5113222EF BA BC BA BA BC =-++=-+uuu r uuur uuu r uuu r uuu r uuu r ,故选:A.7.(2024·四川·模拟预测)已知平行四边形ABCD 中,E 为AC 中点.F 为线段AD 上靠近点A 的四等分点,设AB a =uuu r r,AD b uuu r r =,则EF =uuu r ( )A .1142a b--r r B .3142a b--rr C .1124a b--r r D .1324a b--r r 【答案】C【分析】利用向量的线性运算可得答案.【详解】如图所示,由题意可得AC AB AD a b =+=+uuu r uuu r uuu r rr ,而()111111242424EF EA AF CA AD a b b a b =+=+=-++=--uuu r uuu r uuu r uuu r uuu r r r r r r ,故选:C.8.(2024·黑龙江·模拟预测)已知在梯形ABCD 中,//AB CD 且满足2AB DC =uuu r uuur,E 为AC 中点,F 为线段AB上靠近点B 的三等分点,设AB a =uuu r r,AD b uuu r r =,则EF =uuu r ( ).A .2132a b-r r B .3146a b-rr C .51122a b -rr D .1126a b-r r【答案】C【分析】根据平面向量线性运算法则计算可得.【详解】如图所示,由题意可得1122AC AD DC AD AB b a =+=+=+uuu r uuu r uuu r uuu r uuu r r r ,而121125123223122EF EA AF CA AB b a a a b æö=+=+=-++=-ç÷èøuuu r uuu r uuu r uuu r uuu r r rr r r .故选:C .9.(2024·广东汕头·三模)已知四边形ABCD 是平行四边形,2BE EC =uuu r uuu r ,DF FC =uuu r uuu r ,则EF =uuu r( )A .1123AB AD -+uuur uuu r B .1123AB AD --uuur uuu r C .1132AB AD-+uuur uuu r D .1132AB AD--uuur uuu r 【答案】A【分析】根据给定条件,利用向量的加法,结合共线向量求解即得.【详解】在ABCD Y 中,由2BE EC =uuu r uuu r ,DF FC =uuu r uuur ,得11113223EF EC CF BC CD AB AD =+=+=-+uuu r uuu r uuu r uuu u uu r uuu u r r uu r .故选:A10.(2024·广东佛山·模拟预测)在ABC V 中,,AB a AC b ==uuu r uuu r rr ,若2,2AC EC BC DC ==uuu r uuu r uuu r uuu r ,线段AD 与BE 交于点F ,则CF =uuu r( )A .1233a b+r r B .1233a b-rrC .1233a b-+r r D .1233a b--r r【答案】B【分析】根据中线性质得出23AF AD = r r,再由平面向量线性运算即可求得结果.【详解】如下图所示:由2,2AC EC BC DC ==uuu r uuu r uuu r uuu r可得,D E 分别为,BC AC 的中点,由中线性质可得23AF AD = r r,又()()1122AD AB AC a b =+=+uuu r uuu r uuu r r r ,所以()()211323AF a b a b =´+=+uuu r r r r r ,因此()112333CF CA AF b a b a b =+=-++=-uuu r uuu r uuu r r r rr r .故选:B一、单选题1.(2024·福建漳州·模拟预测)在ABC V 中,D 是边BC 上一点,且2,BD DC E =是AC 的中点,记,AC m AD n ==uuu r uuu r u r r ,则BE =uuu r( )A .533n m-r u r B .732n m-r u r C .732m n-u r r D .532m n-u r r 【答案】D【分析】根据平面向量的线性运算法则进行运算即可.【详解】1()2BE AE AB AC AC CB =-=-+uuu r uuu r uuu r uuu r uuu r uuu r ()113322AC CD AC AD AC =--=---uuu r uuu r uuu ruuu r uuu r 553322AC AD m n =-=-uuu r uuu r r r ,故选:D .2.(2024·辽宁·二模)已知平行四边形ABCD ,点P 在BCD △的内部(不含边界),则下列选项中,AP uuu r可能的关系式为( )A .1355AP AB AD=+uuu r uuu r uuu r B .1344AP AB AD=+uuu r uuu r uuu rC .2334AP AB AD=+uuu r uuu r uuu rD .2433AP AB AD=+uuu r uuu r uuu r【答案】C【分析】根据题意,设AP xAB y AD =+uuu r uuu r uuu r,结合平面向量的基本定理,逐项判定,即可求解.【详解】设(,R)AP xAB y AD x y =+Îuuu r uuu r uuu r,由平面向量的基本定理,可得:当1x y +=时,此时点P 在直线BD 上;当01x y <+<时,此时点P 在点A 和直线BD 之间;当12x y <+<时,此时点P 在点C 和直线BD 之间;当2x y +=时,此时点P 在过点C 且与直线BD 平行的直线上,对于A 中,由向量1355AP AB AD =+uuu r uuu r uuu r ,满足13155+<,所以点P 在ABD △内部,所以A 错误;对于B 中,由1344AP AB AD =+uuu r uuu r uuu r ,满足13144+=,所以点P 在BD 上,所以B 错误;对于C 中,由2334AP AB AD =+uuu r uuu r uuu r ,满足231234<+<,所以点P 可能在BCD △内部,所以C 正确;对于D 中,由2433AP AB AD =+uuu r uuu r uuu r ,满足24233+=,此时点P 在过点C 且与直线BD 平行的直线上,所以D错误.故选:C.3.(2023·湖南·一模)在ABC V 中,点D 满足2,AD DB E =uuu r uuu r 为BCD △重心,设,BC m AC n ==uuu r uuu r r r ,则AE uuu r可表示为( )A .1233m n+r r B .1233m n-+r rC .5899m n-+r rD .5899m n+r r 【答案】C【分析】根据向量的线性运算、三角形的重心等知识求得正确答案.【详解】()211211323333AE AC CE AC CD CB AC CB CA CB æö=+=+´´+=+++ç÷èøuuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r .()2199n m =+×-+r r ()()158399n m m n -+×-=-+rrr r .故选:C4.(22-23高三上·全国·阶段练习)在平行四边形ABCD 中,2BE ED =uuu r uuu r ,2AF AC AB =+uuu r uuu r uuu r,若(),EF AB AD l m l m =+ÎR uuu r uuu r uuu r ,则lm=( )A .1B .2C .4D .8【答案】D【分析】根据向量的加减运算及数乘运算可得8133EF AB AD =+ r r r,从而得解.【详解】223AF AC AB AB AD AB AB AD =+=++=+uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r,Q 22()AE AB BE AB ED AB AD AE =+=+=+-uuu ruuu ruuu ruuu ruuu ruuu ruuu r uuu r,\2331AE AD AB =+uuur uuu ruuu r ,\113283333EF AF AE AB AD AD AB AB AD =-=+--=+uuur uuu ruuur uuur uuu ruuu ruuu r uuu r uuu r ,Q EF AB AD l m =+uuu r uuu r uuu r,83l \=,13m =,8l m \=.故选:D .5.(2024·内蒙古包头·一模)如图,在菱形ABCD 中,4AB =,60ABC Ð=o ,,E F 分别为,AB BC 上的点,3BE EA =uuu r uuu r ,3BF FC =uuu r uuu r.若线段EF 上存在一点M ,使得()12DM DC xDA x =+ÎR uuuu r uuu r uuu r ,则DM CA ×uuuu r uuu r 等于( )A .2B .4C .6D .8【答案】A【分析】以,BE BF uuu r uuu r 为基底可表示出BM uuuu r,由三点共线可构造方程求得x,将所求数量积化为()1324BA BC BA BC æö--×-ç÷èøuuur uuu r uuu r uuu r ,根据数量积的定义和运算律可求得结果.【详解】3BE EA =uuu r uuu r Q ,3BF FC =uuur uuu r ,43BA BE \=uuu r uuu r ,43BC BF =uuu r uuu r ,1112422233x DM DC xDA AB xCB BA xBC BE BF \=+=+=--=--uuuu r uuu r uuu r uuu r uuu r uuu r uuu r uuur uuu r ,()24133BM BD DM BA BC DM BE x BF \=+=++=+-uuuu r uuu r uuuu r uuu r uuu r uuuu r uuu r uuu r,,,E M F Q 三点共线,()241133x \+-=,解得:34x =,1324DM BA BC \=--uuuu r uuu r uuu r ,()221311324244DM CA BA BC BA BC BA BA BC BC æö\×=--×-=--×+ç÷èøuuuu r uuu r uuu r uuu r uuu r uuu r uuur uuu r uuu r uuu r 84cos 60122=--+=o .故选:A.6.(2024·河北衡水·模拟预测)在ABC V 中,D 是BC 的中点,直线l 分别与,,AB AD AC 交于点,,M E N ,且43AB AM =uuu r uuuu r ,2,AE ED AC AN l ==uuu r uuu r uuu r uuu r,则l =( )A .85B .53C .74D .52【答案】B【分析】根据向量运算法则,利用,AM AN uuuu r uuu r 表示AE uuu r,结合向量三点共线的定理列式运算求解.【详解】由2AE ED =uuu r uuu r,得()21144333393AE AD AB AC AM AN AM AN l l æö==+=+=+ç÷èøuuu r uuu r uuu r uuu r uuuu r uuu r uuuu r uuu r .因为,,M E N 共线,所以4193l+=,解得53l =.故选:B.7.(2024·宁夏银川·模拟预测)在ABC V 中,2BD DC =uuu r uuu r,过点D 的直线分别交直线AB 、AC 于点E 、F ,且,AE mAB AF nAC ==uuu r uuu r uuu r uuu r,其中0m >,0n >,则2m n +的最小值为( )A .2BC .3D .83【答案】C【分析】根据题意以,AB AC uuu r uuu r 为基底表示出AD uuu r ,再根据,,E F D 三点共线,利用共线定理可得12133m n+=,再由基本不等式即可求得2m n +的最小值为3.【详解】如下图所示:因为2BD DC =uuu r uuu r,易知()22123333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r ,又,AE mAB AF nAC ==uuu r uuu r uuu r uuu r,所以12123333AD AB AC AE AF m n +=+=uuu r uuu r uuu r uuu r uuu r ,易知,,E F D 三点共线,利用共线定理可得12133m n+=,又0m >,0n >,所以()1212245252223333333333m n m n m n m n n m æö+=++=+++³=´+=ç÷èø;当且仅当2233m nn m=,即1m n ==时,等号成立,所以2m n +的最小值为3.故选:C二、多选题8.(2024·河北廊坊·模拟预测)如图,在矩形ABCD 中,6,4,AB BC E ==是BC 的中点,F 是DC 上的一点,且2DF FC =,则下列说法正确的是( )A .23AF AB AD=+uuu r uuu r uuu r B .13AF AB AD=+uuu r uuu r uuu r C .28AE AF ×=uuu r uuu rD .32AE AF ×=uuu r uuu r【答案】AD【分析】利用向量加法法则运算判断AB ,先用加法法则求得12AE AB AD =+uuu r uuu r uuu r,再利用数量积的定义及运算律求解判断CD.【详解】2233D AF AD DF A C AB D AD =+==++uuu r uuu uuu r uuu r uuu r uuu u u r rr u ,故A 正确,B 错误;因为1122AE AB BE AB BC AB AD =+=+=+uuu r uuu r uuu r uuu r uuu r uuu r uuu r,所以1223AE AF AB AD AB AD æöæö×=+×+ç÷ç÷èøèøuuu r uuu r uuu r uuu r uuu r uuu r 22124824032233AD AB AD AB =++×=++=uuu r uuur uuu r uuu r ,故C 错误,D 正确.故选:AD.三、填空题9.(23-24高三上·天津和平·阶段练习)如图,在ABC V 中,2,3,3AB AC AB AC ==×=uuu r uuu r,点D 是BC 的中点,点E 在边AC 上,3,AE AC BE =uuu r uuu r交AD 于点F ,设(),BF AB AC l m l m =+ÎR uuu r uuu r uuu r ,则l m += ;点G 是线段BC 上的一个动点,则BF FG ×uuu r uuu r的最大值为 .【答案】12-/0.5- 98【分析】利用平面向量的基本定理计算即可得空一,利用平面向量数量积的运算律计算即可得空二.【详解】设,AF mAD BF nBE ==uuu r uuu r uuu r uuu r ,由题意可知112222m m AD AB AC AF AB AC =+Þ=+uuu r uuu r uuu r uuu r uuu r uuu r ,133n BE AE AB AC AB BF AC nAB =-=-Þ=-uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r,则()1322n m m AF AB BF AC n AB AB AC =+=+-=+uuu r uuu r uuu r uuu r uuu r uuu r uuu r,因为AB AC 、不共线,所以有13223142n m m m n n ìì==ïïïïÞííïï=-=ïïîî,此时3131414424BF AC AB l l m m ì=-ïï=-ÞÞ+=-íï=ïîuuu r uuu r uuu r ;可设()[]()0,1BG k BC k AC AB k ==-Îuuu r uuu r uuu r uuu r ,则()2221334444k k BF FG k AC AB BF AC AB AC k AB AC AB BF æöéù×=--×-=-×+-ç÷ëûèøuuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r ,92794168k =-£当C G 、重合时取得等号.故答案为:12-;98.10.(2024·天津·模拟预测)如图,在ABC V 中,2AB =,5AC =,3cos 5CAB Ð=,D 是边BC 上一点,且2BD DC =uuu r uuu r.若34BP AD =uuu r uuu r ,记(),PD AB AC l m l m =+ÎR uuu r uuu r uuu r ,则l m += ;若点P 满足BP uuu r 与AD uuu r共线,PA PC ^uuu r uuu r,则BP ADuuu r uuu r 的值为.【答案】34-/0.75- 34或316【分析】把2BD DC =uuu r uuu r 两边用,,AD AB AC uuu r uuu r uuu r 表示即可得解;利用共线向量建立BP uuu r ,AD uuu r之间的数乘关系,进而结合第一空把,PA PC uuu r uuu r 用,AB AC uuu r uuu r表示,利用垂直向量点积为零可得解.【详解】2BD DC =uuu r uuu r,∴()2AD AB AC AD -=-uuu r uuu r uuu r uuu r ,∴1233AD AB AC =+uuu r uuu r uuu r ,则()232312343433PD BD BP BC AD AC AB AB AC æö=-=-=--+ç÷èøu u u u u u uuu r uuu r uuu r uuu r u u r uuu r r uu r uu r 111126AB AC =-+uuur uuu r ,又PD AB AC l m =+uuu r uuu r uuu r ,∴111,126l m =-=,所以34l m +=-;∵BP uuu r 与AD uuu r共线,∴可设BP xAD =uuu r uuu r,x ÎR ,∵1233AD AB AC =+uuu r uuu r uuu r ,∴233x x BP AB AC =+uuu r uuu r uuu r,∴PA PB BA=+uuu r uuu r uuu r BP AB=--uuu r uuu r =2133x x AB AC æö-+-ç÷èøuuur uuu r ,PC PA AC =+uuu r uuu r uuu r =21133x x AB AC æöæö-++-ç÷ç÷èøèøuuur uuu r ,∴PA PC ×uuu r uuu r =222422111133333x x x x x AB AB AC AC æöæöæöæö+++-×--ç÷ç÷ç÷ç÷èøèøèøèøuuur uuu r uuu r uuu r ,①∵32,5,cos 5AB AC CAB ==Ð=,∴24AB =uuu r,225AC =uuu r ,6AB AC ×=uuu r uuu r ,②把②代入①并整理得:∴2128829PA PC x x ×=--uuu r uuu r ,∵PA PC ^uuu r uuu r ,∴0PA PC ×=uuu r uuu r,∴21288209x x --=,解得:1233,416x x ==-,∴BP x AD=uuu r uuu r 34=或316,故BP ADuuu ruuu r 的值为34或316.故答案为:34-;34或316.1.(2020·山东·高考真题)已知平行四边形ABCD ,点E ,F 分别是AB ,BC 的中点(如图所示),设AB a =uuu r r ,AD b =uuu r r,则EF uuu r 等于( )A .()12a b+r r B .()12a b-r r C .()12b a-r r D .12a b+r r 【答案】A【分析】利用向量的线性运算,即可得到答案;【详解】连结AC ,则AC 为ABC V 的中位线,\111222EF AC a b ==+uuu r uuu r r r ,故选:A2.(全国·高考真题)在ABC V 中,AB c =uuu v v ,AC b =uuu v v .若点D 满足2BD DC =uuu v uuu v ,则AD =uuu v( )A .2133b c+v v B .5233c b-v v C .2133b c-v vD .1233b c+v v【答案】A【详解】试题分析:,故选A .3.(·全国·高考真题)在ABC V 中,D 是AB 边上一点.若12,3AD DB CD CA CB l ==+uuu r uuu r uuu ruuur uuu r ,则l 的值为( )A .23B .13C .13-D .23-【答案】A【分析】利用向量的加法的法则,以及其几何意义,把CD uuu r 化为1233CA CB +uuur uuu r ,和已知的条件作对比,求出l值.【详解】解:Q 12,3AD DB CD CA CB l ==+uuu ruuu r uuu ruuur uuu r,22()33CD CA AD CA AB CA CB CA =+=+=+-uuu ruuu ruuu ruuu ruuur uuu r uuu r uuuu r2133CA CB +=uur uuur ,23l \=,故选:A .4.(全国·高考真题)ABC V 中,点D 在AB 上,CD 平分ACB Ð.若CB a =uuu v v ,CA b =uuuv v ,1=v a ,2b =v ,则CD =uuu vA .1233a b+v v B .2133a b+v vC .3455a b+v vD .4355a b+v v【答案】B【详解】如图所示,由题设条件知∠1=∠2,∴BD DA=CB CA=12,∴BD uuu r =13BA uuu r =13(CA uuu r -CB uuu r )=13b -13a ,∴CD uuu r =CB uuu r +BD uuu r =a +13b -13a =23a +13b .5.(安徽·高考真题)在ABCD Y 中,,,3AB a AD b AN NC ===uuu v v uuu v v uuu v uuu v ,M 为BC 的中点,则MN =uuuu v _______.(用a bvv 、表示)【答案】1144MN a b=-+r uuuu v r 【详解】解:343A =3()AN NC AN C a b ==+uuu r uuu r uuu r uuu r rr 由得,12AM a b =+uuuu r r r ,所以3111()()4244MN a b a b a b =+-+=-+uuuu r r r r r r r 。

高考数学一轮专项复习练习卷(新高考思维拓展)-指对幂值的比较大小的常见七大类型(含解析)

高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)思维拓展-指对幂值的比较大小的常见七大类型(精

讲+精练)

①利用单调性②作差作商法③利用中间值④利用构造函数⑤数形结合法⑥估算法⑦同构法⑧放缩法

一、常规思路1.①底数相同,指数不同时,如1xa和2xa

,利用指数函数xya的单调性;

②指数相同,底数不同,如1ax和2

ax

利用幂函数ayx单调性比较大小;

③底数相同,真数不同,如1logax和2

log

ax利用指数函数logax

单调性比较大小;

注:除了指对幂函数,其他函数(比如三角函数,对勾函数等)也都可以利用单调性比较大小。2.底数、指数、真数、三角函数名都不同,寻找中间变量0,1或者其它能判断大小关系的中间量,借助“媒

介数”进行大小关系的判定.

3.通过做差与0的比较来判断两数的大小;通过做商与1的比较来判断两数的大小。

二、估值比较大小

根式:21.414,31.732,52.236,103.162

一、必备知识整合分式:1.572,指数式:2.718e,27.389e,320.09e

对数式:ln20.69,ln31.099,lg20.301,lg30.477

三角式:62sin124,62cos

124



三、同构构造函数或者利用作差或作商法构造函数1.同构是构造函数的一种常用方法.常利用=ln e(∈R),=eln 

(>0)将要比较的三个数化为结构相同

的式子,再将其看作同一个函数的三个值,用常值换元构造函数,利用函数的单调性比较大小.2.对于同时含有指数、对数结构的两个变量的等式,或者含两个变量,且结构相似的等式,比较相关的两个变量

间的大小问题时,思考的逻辑路径为先分离变量,再将等式通过合理变形,放缩成结构相同的不等式,然后利用同构函数思想,转化为比较某个函数的两个函数值f(g(x))与f(h(x))的大小,最后利用函数f(x)的单调性,转化为比较自变量g(x)与h(x)的大小,实现将超越函数普通化的目的,达到事半功倍的效果。3.常见的构造函数有

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拓展精练 (13)
1.fxaxax()21在R上满足fx()0,则a的取值范围是( )
A.a0 B.a4 C.40a D.40a
2.如果正数,,,abcd满足4abcd,那么( )
A. abcd且等号成立时,,,abcd的取值唯一
B. abcd且等号成立时,,,abcd的取值唯一
C. abcd且等号成立时,,,abcd的取值不唯一
D. abcd且等号成立时,,,abcd的取值不唯一

3.不等式xx1的解集是 .
4.等差数列110,116,122,128,……,在400与600之间共有________项.

5.已知变量yx,满足关系式333yxyx,22)1(yxz,则z的最大值是 .
6.在△ABC中,已知sinA∶sinB∶sinC=3∶5∶7,则此三角形的最大内角的度数等于________.

7.(本题满分12分)

已知在△ABC中,A=450,AB=6,BC=2.
解此三角形.

8. (本题满分12分)
解关于x的不等式:11xax.

9.(本题满分12分)
等差数列na的项数m是奇数, 且a1 + a3 + …+am = 44 , a2 + a 4 +…+ a m-1 =33 .
求m的值.

10. (本题满分12分)
已知是数列na是等比数列,其中71a,且456,1,aaa成等差数列.
(Ⅰ)求数列na的通项公式;
(Ⅱ)数列na的前n项和记为ns,证明:128(1,2,3,...nsn).
11.(本题满分12分)
已知2()3(6)6fxxaax.
(Ⅰ)解关于a的不等式(1)4f;
(Ⅱ)若不等式()fxb的解集为(0,3),求实数,ab的值.


参考答案
1.D 2.A
3. (,1)(0,1) 4.33 5. 25 6. 1200

7.解答:C=120 B=15 AC=13…………………………………6分
或C=60,B=75 ,AC=13………………………………12分
8.解不等式可变形为(1)101axx,
当0a时,xR………………………………2分
当1a时,1x………………………………4分
当111a即01a时,111xa………………………………7分
当111a即0a或1a时,111xa………………………………10分
综上……. …………………………12分
9. 解:由已知可得

1324144(1)33(2)m
maaaaaa






………………………………4分

(1)-(2)得
1
1112mad

………………………………6分

(1)+(2)得
11(1)(1)[]7722m
mmmSmadmad

………………………………10分

所以 11m=77 即 m=7………………………………12分
10. (1)由题意得:244422aqaaq……(1)……………………………2分
3
4
1aq
……(2)………………………………4分

整理得222(1)1qqq12q………………………………6分
4
8a,164a
1164()2nna

………………………………8分

(2)11281()1282nns………………………………12分
11. 解:(1)|17aa…………………….6分
3,6ab
……………………………………………12分

相关文档
最新文档