七年级应用题专项练习

合集下载

七年级数学上册综合算式专项练习题加减法混合运算(应用题)

七年级数学上册综合算式专项练习题加减法混合运算(应用题)

七年级数学上册综合算式专项练习题加减法混合运算(应用题)某校七年级数学上册综合算式专项练习题题目一:加减法混合运算(应用题)1. 小明去菜市场买了2斤土豆,3斤西红柿,6斤黄瓜,他一共花了42元。

如果土豆每斤8元,西红柿每斤6元,黄瓜每斤4元,问小明买每种蔬菜分别花了多少钱。

解答:设土豆花费为x元,西红柿花费为y元,黄瓜花费为z元。

根据题意可列出方程组:2x + 3y + 6z = 428x + 6y + 4z = 42解方程组:首先将第一个方程乘以2,得到:4x + 6y + 12z = 84将第二个方程化简得到:4x + 3y + 2z = 21然后将两个方程相减,得到:4x + 6y + 12z - (4x + 3y + 2z) = 84 - 21化简得到:3y + 10z = 63接下来将第一个方程乘以3,得到:6x + 9y + 18z = 126将第二个方程乘以2,得到:6x + 4y + 8z = 42将两个方程相减,得到:6x + 9y + 18z - (6x + 4y + 8z) = 126 - 42化简得到:5y + 10z = 84现在有两个方程:3y + 10z = 635y + 10z = 84将第一个方程乘以5,得到:15y + 50z = 315将第二个方程乘以3,得到:15y + 30z = 252将两个方程相减,得到:15y + 50z - (15y + 30z) = 315 - 252化简得到:20z = 63解方程得到:z = 3将z = 3代入第一个方程,得到:3y + 10 * 3 = 63化简得到:3y + 30 = 633y = 33解方程得到:y = 11将z = 3代入第二个方程,得到:15y + 10 * 3 = 84化简得到:15y + 30 = 8415y = 54解方程得到:y = 6综上所述,小明买土豆花了6元,买西红柿花了11元,买黄瓜花了3元。

七年级数学下册方程组应用专项训练题试题(共13页)

七年级数学下册方程组应用专项训练题试题(共13页)

?方程组应用(yìngyòng)?专项训练题1、某校150名学生参加数学考试,人平均分55分,其中及格学生平均77分,不及格学生平均47分,那么不及格学生人数为〔〕A、49B、101C、110D、402、在1996年全国足球甲级A组的前11轮〔场〕比赛中,万达队连续不败,一共积23分,按比赛规那么,胜一场得3分,平一场得1分,那么该队胜与平场次之比为〔〕A、B、C、D、3、某船的载重量是260吨,容积是1000米3,现有甲、乙两种货物,甲种货物每吨的体积是8米3,乙种货物每吨的体积是2米3,要想利用这只船的载重量和容积,两种货物应装的吨数分别是甲种吨,乙种吨。

4、甲、乙两人从相距28千米的两地同时相向出发,经过3小时30分钟相遇,假如乙先走2小时,然后甲再出发,这样甲经过2小时45分钟与乙相遇,那么甲每小时走千米;乙每小时走________千米。

5、今年哥哥的年龄是妹妹的2倍,2年前哥哥的年龄是妹妹的3倍,求2年前哥哥和妹妹的年龄,设2年前哥哥x岁,妹妹y岁,依题意,得到的方程组是〔〕A、B、C、D、6、一商贩(shāngfàn)第一天卖出鲫鱼30kg,草鱼50kg,一共获毛利310元;第二天卖出鲫鱼25kg,草鱼45kg,一共获毛利265元。

照这样计算,假设该商贩某个月卖出鲫鱼700kg,草鱼1200kg,能获毛利〔〕A、7500元B、7300元C、6500元D、8200元7、甲对乙幽默地说:“我像你这样大岁数的那年,你才2岁;而你像我这样大岁数的那年,我已经38岁了。

〞那么甲、乙两人如今的岁数分别是。

8、某个体商店在一次买卖中同时卖出两件上衣,每件都是以135卖出,假设按本钱计算,其中一件赢利25%,另一件亏损25%,那么家商店在这次买卖中〔〕A、不赔不赚B、赚9元C、赔8元D、赔18元9、HY蓝球HY乔丹在一场比赛中24投14中,拿下28分,其中三分球三投全中,那么乔丹两分球投中_________球,罚球投中________球。

沪科版数学七年级下册 第九章 分式应用题专项练习(举一反三) (PDF版)

沪科版数学七年级下册 第九章 分式应用题专项练习(举一反三) (PDF版)

专项练习1分式应用题专项练习(沪科版)学校:___________姓名:___________班级:___________考号:___________一、解答题1.近年来,雾霾天气给人们的生活带来很大的影响,空气质量问题也受人们关注.某单位计划在室内安装空气净化装置,需购进A、B两种设备,每台B种设备价格比每台A种设备价格多0.2万元,花2万元购买A种设备和花3万元购买B种设备的数量相同.(1)求A种、B种设备每台各多少万元?(2)根据单位实际情况,需购进A、B两种设备共18台,总费用不高于10万元,求A 种设备至少要购买多少台?2.我国的农作物主要以水稻、玉米和小麦为主,种植太单调不利于土壤环境的维护,而且对农业的发展也没有促进作用,为了鼓励大豆的种植,国家对种植大豆的农民给予补贴,调动农民种植大豆的积极性.我市乃大豆之乡,今年很多合作社调整种植结构,把种植玉米改成种植大豆,今年我市某合作社共收获大豆200吨,计划采用批发和零售两种方式销售.经市场调查,批发平均每天售出14吨,由于今年我市小型大豆深加工企业的增多,预计能提前完成销售任务,在平均每天批发量不变的情况下,实际平均每天的零售量比原计划的2倍还多14吨,结果提前5天完成销售任务。

那么原计划零售平均每天售出多少吨?3.科技创新加速中国高铁技术发展,某建筑集团承担一座高架桥的铺设任务,在合同期内高效完成了任务,这是记者与该集团工程师的一段对话:记者:你们是用9天完成4800米长的高架桥铺设任务的?工程师:是的,我们铺设600米后,采用新的铺设技术,这样每天铺设长度是原来的2倍.通过这段对话,请你求出该建筑集团原来每天铺设高架桥的长度.4.小丽妈妈开了一家淘宝店,专门销售女士鞋子.小丽在销售单上记录了这两天的数据如下表:日期A款女鞋销量B款女鞋销量销售总额4月20日12双6双960元4月21日8双10双1000元(1)请问A,B两种鞋的销售价分别是多少?(2)小丽发现一个进货单上的一个信息:B款鞋的进价比A款鞋进价多20%,同样花费420元,进A款鞋的数量比进B款鞋的数量多2双.①请问两种鞋子的进价分别是多少?②小丽妈妈告诉小丽:今天利润达到了390元,其中B款鞋的销售量不少于7双,且不多于17双.那么小丽妈妈今天卖出A、B两种鞋共__________双.5.某商品经销店欲购进两种纪念品,用160元购进的种纪念品与用240元购进的种纪念品的数量相同,每件种纪念品的进价比种纪念品的进价贵10元.(1)求两种纪念品每件的进价分别为多少元?(2)若该商店种纪念品每件售价24元,种纪念品每件售价35元,这两种纪念品共购进1000件,这两种纪念品全部售出后总获利不低于4900元,问种纪念品最多购进多少件?6.某服装厂“双十一”前接到一份加工4500件服装的订单,应客户要求,需提前供货.该服装厂决定提高工作效率,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.求原计划每天加工服装的件数.7.一项工程,乙队单独完成比甲队单独完成需多用16天,甲队单独做3天的工作量乙队单独做需要5天才能完成.(1)甲,乙两队单独完成此项工程各需几天?(2)该项工程先由甲,乙两队合作,再由甲队单独完成,若完成此项工程不超过18天,甲乙两队至少合作几天?8.甲、乙两个筑路队共同承担一段一级路的施工任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用15天.且甲队单独施工60天和乙队单独施工40天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了4天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?9.列方程解应用题:第19届亚洲运动会将于2022年9月10日至25日在杭州举行,杭州奥体博览城将成为杭州2022年亚运会的主场馆,某工厂承包了主场馆建设中某一零件的生产任务,需要在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.10.甲、乙两地相距120千米,一辆大巴车从甲地出发,行驶1小时后,一辆小汽车从甲地出发,小汽车和大巴车同时到达到乙地,已知小汽车的速度是大巴车的2倍,求大巴车和小汽车的速度.11.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.2倍,两人各加工600个这种零件,甲比乙少用4天.求乙每天加工零件的个数.12.某单位在疫情期间用3000元购进A、B两种口罩1100个,购买A种口罩与购买B 种口罩的费用相同,且A种口罩的单价是B种口罩单价的1.2倍;(1)求A,B两种口罩的单价各是多少元?(2)若计划用不超过7000元的资金再次购进A、B两种口罩共2600个,已知A、B两种口罩的进价不变,求A种口罩最多能购进多少个?13.我市为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作8天后,余下的工程由甲工程队单独来做还需3天完成.(1)问我市要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资2万元.两个工程队在完成这项工程后,共获得工程工资款总额65万元,请问该工程甲、乙两工程队各做了多少天?14.为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生已知用300元购买甲种文具的个数是用50元购买乙种文具个数的2倍,购买1个甲种文具比购买1个乙种文具多花费10元.(1)求购买一个甲种文具、一个乙种文具各需多少元;(2)若学校计划购买这两种文具共120个,投入资金不多于1000元,且甲种文具至少购买36个,求有多少种购买方案.15.2020年新冠病毒在全球蔓延,口罩成为抗击病毒传播的有效物资,某厂需要生产一批口罩,该厂有甲、乙两种型号的生产机器,若用甲机器单独完成这批订单需要消耗原料费76万元,若用乙机器单独完成需要消耗原料费26万元,已知每生产一个口罩,甲机器消耗原料费比乙机器消耗原料费多用0.5元.(1)求乙机器生产一个口罩需要消耗多少原料费?(2)为了尽快完成这批订单,该厂决定使用甲、乙机器一起完成这批订单,消耗原料费合计不超过39万元,则乙机器至少生产多少口罩?16.一项工程,如果由甲队单独做这项工程刚好如期完成,若乙队单独做这项工程,要比规定日期多5天完成.现由若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.已知甲、乙两队施工一天的工程费分别为16万元和14万元.(1)求规定如期完成的天数.(2)现有两种施工方案:方案一:由甲队单独完成;方案二:先由甲、乙合作4天,再由乙队完成其余部分;通过计算说明,哪一种方案比较合算.17.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120,现有1600个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过4200元,那么甲至少加工了多少天?18.某玩具店用2000元购进一批玩具,面市后,供不应求,于是店主又购进同样的玩具,所购的数量是第一批数量的3倍,但每件进价贵了4元,结果购进第二批玩具共用了6300元.若两批玩具的售价都是每件120元,且两批玩具全部售完.(1)第一次购进了多少件玩具?(2)求该玩具店销售这两批玩具共盈利多少元?19.某店准备购进A,B两种口罩,A种口罩毎盒的进价比B种口罩每盒的进价多10元,用2000元购进A种口罩和用1500元购进B种口罩的数量相同.(1)A种口罩每盒的进价和B种口罩每盒的进价各是多少元?(2)商店计划用不超过1770元的资金购进A,B两种口罩共50盒,其中A种口罩的数量应多于B种口罩数量,该商店有几种进货方案?20.从青岛到济南有南线和北线两条高速公路:南线全长400千米,北线全长320千米.甲、乙两辆客车分别由南线和北线从青岛驶往济南,已知客车甲在南线高速公路上行驶的平均速度比客车乙在北线高速公路上快20千米/小时,两车恰好同时到达济南,求两辆客车从青岛到济南所用的时间是多少小时?21.某商场购进甲、乙两种商品,甲种商品共用了元,乙种商品共用了元.已知乙种商品每件进价比甲种商品每件进价多元,且购进的甲、乙两种商品件数相同.求甲、乙两种商品的每件进价;22.列方程解应用题.2019年9月25日,被誉为“世界新七大奇迹”之首的北京大兴国际机场正式投运.某校组织初二年级同学到距学校30公里的北京大兴国际机场进行参观.同学们乘坐大巴车前往,张老师因学校有事晚出发了5分钟,开私家车沿相同路线行进,结果和同学们同时到达.已知私家车的速度是大巴车速度的1.2倍.求大巴车的速度是多少?23.某服装店用960元购进一批服装,并以每件46元的价格全部售完,由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售,卖了部分后,为了加快资金周转,服装店将剩余的20件以售价的九折全部出售.问:(1)该服装店第一次购买了此种服装多少件?(2)两次出售服装共盈利多少元?24.某地在城区美化工程招标时,有甲、乙两个工程队投标.经测算,获得以下信息:信息1:乙队单独完成这项工程需要60天;信息2:若先由甲、乙两队合做16天,剩下的工程再由乙队单独做20天可以完成;信息3:甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.根据以上信息,解答下列问题:(1)甲队单独完成这项工程需要多少天?(2)若该工程计划在50天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲、乙两队全程合作完成该工程省钱?25.八年级为筹备红色研学旅行活动,王老师开车前往距学校180的研学训练营地考察,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前了40到达研学训练营地.求王老师前一小时行驶速度.参考答案1.(1)A种设备每台万元,则B种设备每台万元;(2)A种设备至少要购买4台【来源】【新东方】2020年1月江西南昌育华初二上学期期末数学试卷2.6吨【来源】黑龙江省黑河市三县区(嫩江县、逊克县、爱辉区)2019-2020学年八年级上学期期末数学试题3.该建筑集团原来每天铺设高架桥300米.【来源】云南省昆明市官渡区2019-2020学年八年级上学期期末数学试题4.(1)A,B两种鞋的销售价分别是50元/双和60元/双;(2)①35元和42元;②23或24.【来源】浙江省温州市瑞安市西部联考2019-2020学年七年级下学期数学试题5.(1)纪念品每件进价20元;纪念品每件进价30元;(2)最多购进纪念品100件.【来源】黑龙江省哈尔滨市虹桥中学2019-2020学年九年级下学期阶段检测数学试题6.原计划每天加工服装150件.【来源】河南省洛阳市洛宁县2019-2020学年八年级下学期期中数学试题7.(1)甲队单独完成此项工程需24天,乙队单独完成此项工程需40天;(2)甲,乙两队至少合作10天.【来源】黑龙江省哈尔滨市道里区2019-2020学年八年级上学期期末数学试题8.(1)甲队单独完成此项任务需45天,乙队单独完成此项任务需30天;(2)4天【来源】广西壮族自治区北海市2019-2020学年八年级上学期期末数学试题9.(1)原计划每天生产的零件2400个,规定的天数是10天;(2)原计划安排的工人人数480人.【来源】山东省禹城市2019-2020学年八年级上学期期末数学试题10.大巴车的速度为60千米/小时,则小汽车的速度为120千米/小时【来源】海南省保亭县2019-2020学年八年级上学期期末数学试题11.25个【来源】吉林省长春市东北师大附中新城校区2019-2020学年八年级下学期期中数学试题12.(1)种口罩单价为3元,种口罩单价为2.5元;(2)种口罩最多能购进1000个.【来源】黑龙江省哈尔滨市第十七中学2019-2020学年九年级下学期3月检测数学试题13.(1)15天;(2)甲工程队做了5天,乙工程队做了20天本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

苏科版七年级上册数学期末复习:一元一次方程实际应用 专项练习题 2套(含答案)

苏科版七年级上册数学期末复习:一元一次方程实际应用 专项练习题 2套(含答案)

苏科版七年级上册数学期末复习:一元一次方程实际应用专项练习题11.A、B两地相距550千米,甲、乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t小时,两车相距50千米,则t的值为()A.2.5 B.2或10 C.2.5或3 D.32.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是()A.B.C.D.3.超市正在热销某种商品,其标价为每件100元,若这种商品打7折销售,则每件可获利15元,设该商品每件的进价为x元,根据题意可列出的一元一次方程为()A.100×0.7﹣x=15 B.100﹣x×0.7=15C.(100﹣x)×0.7=15 D.100﹣x=15×0.74.某电商销售某款羽绒服,标价为300元,若按标价的八折销售,仍可获利60元.设这款羽绒服的进价为x元,根据题意可列方程为()A.300×0.8﹣x=60 B.300﹣0.8x=60C.300×0.2﹣x=60 D.300﹣0.2x=605.我国古代有一问题:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果设快马x天可追上慢马,下面所列方程中正确的是()A.240x=150(x+12)B.150x=240(x+12)C.240x=150(x﹣12)D.150x=240(x﹣12)6.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km的两地同时出发,相向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相遇后又相距20km?③甲乙两人从相距60km的两地相向而行,甲的速度是4km/h,乙的速度是6km/h,如果甲先走了20km后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km的两地同时出发,背向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相距60km?其中可以用方程4x+6x+20=60表述题目中对应数量关系的应用题序号是()A.①②③④B.①③④C.②③④D.①②7.一件工程甲单独做50天可完成,乙单独做75天可完成,现在两个人合作.但是中途乙因事离开几天,从开工后40天把这件工程做完.则乙中途离开了多少天.()A.10 B.25 C.30 D.358.某人驾驶一小船航行在甲,乙码头之间,顺水航行需6h,逆水航行比顺水航行多用2h,若水流的速度是每小时2km,那么船在静水中的平均速度为每小时多少千米()A.14 B.15 C.16 D.179.学校把一些图书分给某班学生阅读,如果每人分4本,则剩余30本;如果每人分5本,则还缺15本.设这个班有学生x人,依据题意可列方程为()A.4x﹣30=5x+15 B.4x+30=5x﹣15C.4x﹣30=5x﹣15 D.4x+30=5x+1510.为进一步深化课堂教学改革,武侯区初中数学开展了分享学习课堂之“生讲生学”活动,某中学决定购买甲、乙两种礼品共30件,用于表彰在活动中表现优秀的学生.已知某商店甲乙两种礼品的标价分别为25元和15元,购买时恰逢该商店全场9折优惠活动,买完礼品共花费495元,问购买甲、乙礼品各多少件?设购买甲礼品x件,根据题意,可列方程为()A.25x+15(30﹣x)=495 B.[25x+15(30﹣x)]×0.9=495 C.[25x+15(30﹣x)]×9=495 D.[25x+15(30﹣x)]÷0.9=495 11.甲、乙两地相距180km,一列慢车以40km/h的速度从甲地匀速驶往乙地,慢车出发30分钟后,一列快车以60km/h的速度也从甲地匀速驶往乙地,两车相继到达终点乙地,在此过程中,两车恰好相距10km的次数是()A.1 B.2 C.3 D.412.某眼镜厂车间有28名工人,每个工人每天生产镜架60个或者镜片90片,为使每天生产的镜架和镜片刚好配套.设安排x名工人生产镜片,则可列方程()A.60(28﹣x)=90x B.60x=90(28﹣x)C.2×60(28﹣x)=90x D.60(28﹣x)=2×90x13.长为300米的春游队伍,以2米/秒的速度向东行进.在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为4米/秒.则往返共用的时间为()A.200s B.205s C.210s D.215s14.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母正好配套,设有x名工人生产螺钉,其他工人生产螺母,则根据题意可列方程为()A.2000x=1200(22﹣x)B.2×1200x=2000(22﹣x)C.2×2000x=1200(22﹣x)D.1200x=2000(22﹣x)15.一项工程,甲队单独做需10天完成,乙队单独做需8天完成,甲乙两队的工作效率的最简整数比是()A.5:4 B.10:8 C.4:5 D.8:1016.随着传统节日“端午节”临近,某超市决定开展“欢度端午,回馈顾客”的活动,将进价为120元一盒的某品牌粽子按标价的8折出售,仍可获利20%,则该超市该品牌粽子的标价为__元.()A.180 B.170 C.160 D.15017.中国总理李克强2020年6月1日考察山东时表示,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.市场、企业、个体工商户活起来,生存下去,再发展起来,国家才能更好!为了响应党中央、国务院的号召,各地有序开放了“地摊经济”、“马路经济”,长沙某地摊摊主将进价为10元的小商品提价100%后再6折销售,该小商品的利润率()A.40% B.20% C.60% D.30%18.疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1964元,求其他两个年级的捐款数.若设七年级捐款数为x元,则可列方程为()A.x+x+1964=x B.x+x+1964=xC.x+x+1964=x D.x+x+1964=3x19.由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为()A.230元B.250 元C.270元D.300 元20.某球队参加了10场足球赛,共积17分,已知胜一场得3分,平一场得1分,负一场得0分,其中该队输了3场,则该队胜的场次为()A.4 B.5 C.6 D.7参考答案1.解:依题意,得:110t+90t=550﹣50或110t+90t=550+50,解得:t=2.5或t=3.故选:C.2.解:A、设最小的数是x.x+x+7+x+7+1=19x=故本选项不符合题意;B、设最小的数是x.x+x+6+x+7=19,x=2.故本选项符合题意.C、设最小的数是x.x+x+1+x+7=19,x=,故本选项不符合题意.D、设最小的数是x.x+x+1+x+8=19,x=,故本选项不符合题意.故选:B.3.解:设该商品每件的进价为x元,依题意,得:100×0.7﹣x=15.故选:A.4.解:设这款羽绒服的进价为x元,依题意,得:300×0.8﹣x=60.故选:A.5.解:设快马x天可追上慢马,则慢马跑了(x+12)天,依题意,得:240x=150(x+12).故选:A.6.解:①设两人开始工作x小时后还有20个零件没有加工,依题意,得:4x+6x+20=60,∴①可以用方程4x+6x+20=60来表述;②设经过x小时后两人相遇后又相距20km,依题意,得:4x+6x﹣20=60,∴②不可以用方程4x+6x+20=60来表述;③设乙出发后x小时两人相遇,依题意,得:4x+20+6x=80,∴③方程4x+6x+20=60来表述;④设经过x小时后两人相距60km,依题意,得:4x+6x+20=60,∴④可以用方程4x+6x+20=60来表述.故选:B.7.解:设乙中途离开了x天,×40+(40﹣x)=1,解得,x=25即乙中途离开了25天,故选:B.8.解:设船在静水中的速度为x千米每小时,根据题意得:6(x+2)=(6+2)(x﹣2),解得:x=14,故选:A.9.解:设这个班有学生x人,由题意得:4x+30=5x﹣15,故选:B.10.解:设购买甲礼品x件,则购买乙种礼品(30﹣x)件,由题意,得[25x+15(30﹣x)]×0.9=495.故选:B.11.解:∵10÷40=(h),∴快车未出发,慢车出发小时时,两车相距10km;设快车出发x小时时,两车相距10km.快车未超过慢车时,40(x+)﹣10=60x,解得:x=;快车超过慢车10km时,40(x+)+10=60x,解得:x=;快车到达乙地后,40(x+)=180﹣10,解得:x=.∴两车恰好相距10km的次数是4.故选:D.12.解:设x人生产镜片,由题意得,90x=2×60(28﹣x).故选:C.13.解:设从排尾到排头需要t1秒,从排头到排尾需要t2秒,根据题意,得(4﹣2)t1=300,(4+2)t2=300,解得t1=150,t2=50,t1+t2=150+50=200(秒).答:此人往返一趟共需200秒,故选:A.14.解:∵有x名工人生产螺钉,∴有(22﹣x)名工人生产螺母.∵每天生产螺母的总数是生产螺钉总数的2倍,∴2×1200x=2000(22﹣x).故选:B.15.解:根据工作量=工作效率×工作时间,可得工作量一定时,工作效率和工作时间成反比,所以甲队和乙队的工作效率的比是甲乙的工时间的反比;因此甲队和乙队的工作效率的最简整数比是8:10=4:5.答:甲乙两队的工作效率的最简整数比是4:5.故选:C.16.解:设该超市该品牌粽子的标价为x元,则售价为80%x元,由题意得:80%x﹣120=20%×120,解得:x=180.即该超市该品牌粽子的标价为180元.故选:A.17.解:设该小商品的利润率为x,依题意,得:10×(1+100%)×0.6﹣10=10x,解得:x=0.2=20%.故选:B.18.解:由题意可得,七年级捐款数为x元,则三个年级的总的捐款数为:x÷=x,故八年级的捐款为:,则x++1964=x,故选:A.19.解:设该商品的原售价为x元,根据题意得:75%x+25=90%x﹣20,解得:x=300,则该商品的原售价为300元.故选:D.20.解:设该队胜了x场,由题意得:3x+(10﹣3﹣x)=17解得:x=5;故选:B.苏科版七年级上册数学期末复习:一元一次方程实际应用专项练习题2 1.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A.2x+4×20=4×340 B.2x﹣4×72=4×340C.2x+4×72=4×340 D.2x﹣4×20=4×3402.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是()A.2或2.5 B.2或10 C.10或12.5 D.2或12.53.中百超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.王波两次购物分别付款80元、252元,如果他将这两次所购商品一次性购买,则应付款()A.288元B.332元C.288元或316元D.332元或363元4.一列匀速前进的火车,从它进入600米的隧道到离开,共需30秒,又知在隧道顶部的一固定的灯发出的一束光线垂直照射火车5秒,则这列火车的长度是()A.100米B.120米C.150米D.200米5.在高速公路上,一辆长4米,速度为110千米/小时的轿车准备超越一辆长12米,速度为100千米/小时的卡车,则轿车从开始追及到超越卡车,需要花费的时间约是()A.1.6秒B.4.32秒C.5.76秒D.345.6秒6.为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?()A.140元B.150元C.160元D.200元7.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里8.某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A.5 B.6 C.7 D.89.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)10.用一根长12cm的铁丝围成一个长方形,使得长方形的宽是长的,则这个长方形的面积是()A.4cm2B.6cm2C.8cm2D.12cm211.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套.设用x张铝片制瓶身,则下面所列方程正确的是()A.2×16x=45(100﹣x)B.16x=45(100﹣x)C.16x=2×45(100﹣x)D.16x=45(50﹣x)12.甲计划用若干个工作日完成某项工作,从第二个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是()A.8 B.7 C.6 D.513.小明买书需用34元钱,付款时恰好用了1元和5元的纸币共10张,设所用的1元纸币为x张,根据题意,下面所列方程正确的是()A.x+10(x﹣50)=34 B.x+5(10﹣x)=34C.x+5(x﹣10)=34 D.5x+(10﹣x)=3414.如图,在长为a厘米的木条上钻4个圆孔,每个圆孔的直径为2厘米,则x等于()A.厘米B.厘米C.厘米D.厘米15.某种商品因换季准备打折出售,若按定价的七五折出售将赔25元,若按定价的九折出售将赚20元,则这种商品的定价为()A.280元B.300元C.320元D.200元16.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.17.某个体户在一次买卖中同时卖出两件上衣,售价都是225元,若按成本价计算,其中一件盈利25%,另一件亏损25%,在这次买卖中他()A.赚30元B.赚15元C.亏30元D.不赚不亏18.小明在新亚百货大楼以8折(即标价的80%)的优惠价买了一双沃特牌运动鞋,节省了45元,那么小明买鞋子时应付给营业员()A.150元B.180元C.200元D.225元19.一船在静水中的速度为20km/h,水流速度为4km/h,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm,则下列方程正确的是()A.(20+4)x+(20﹣4)x=15 B.20x+4x=5C.D.20.在矩形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE.若AE=x(cm),依题意可得方程()A.6+2x=14﹣3x B.6+2x=x+(14﹣3x)C.14﹣3x=6 D.6+2x=14﹣x参考答案1.解:设汽车离山谷x米,则汽车离山谷距离的2倍即2x,因为汽车的速度是72千米/时即20米/秒,则汽车前进的距离为:4×20米/秒,声音传播的距离为:4×340米/秒,根据等量关系列方程得:2x+4×20=4×340,故选:A.2.解:(1)当甲、乙两车未相遇时,根据题意,得120t+80t=450﹣50,解得t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.故选:A.3.解:(1)若第二次购物超过100元,但不超过300元,设此时所购物品价值为x元,则90%x=252,解得x=280两次所购物价值为80+280=360>300所以享受8折优惠,因此王波应付360×80%=288(元).(2)若第二次购物超过300元,设此时购物价值为y元,则80%y=252,解得y=315 两次所购物价值为80+315=395,因此王波应付395×80%=316(元)故选:C.4.解:设这火车的长为x米,则=,x=120.因此选择B.5.解:设需要的时间为x秒,110千米/小时=米/秒,100千米/小时=米/秒,根据轿车走的路程等于超越卡车的路程加上两车的车身长,得出:解得:x=5.76故选:C.6.解:设小慧同学不买卡直接购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150即:小慧同学不凭卡购书的书价为150元.故选:B.7.解:设第一天走了x里,依题意得:x+x+x+x+x+x=378,解得x=192.则()5x=()5×192=6(里).故选:C.8.解:根据题意得:200×﹣80=80×50%,解得:x=6.故选:B.9.解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∴可得2×22x=16(27﹣x).故选:D.10.解:设围成的长方形的宽为x,则长为2x,根据题意得:2(x+2x)=12,解得:x=2,∴2x=4,∴围成长方形的面积为2×4=8(cm2).故选:C.11.解:设用x张制瓶身,则用(100﹣x)张制瓶底才能正好制成整套的饮料瓶,根据题意列方程得,2×16x=45(100﹣x),故选:A.12.解:(方法一)设甲计划完成此项工作的天数为x,根据题意得:x﹣(1+)=3,解得:x=7.(方法二)设甲计划完成此项工作的天数为x,依题意,得:+=1,解得:x=7,经检验,x=7是所列分式方程的解,且符合题意.故选:B.13.解:设所用的1元纸币为x张,根据题意得:x+5(10﹣x)=34,故选:B.14.解:由题意可得,5x+2×4=a,解得,x=,故选:A.15.解:设这种商品的定价为x元,由题意,得0.75x+25=0.9x﹣20,解得:x=300.故选:B.16.解:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x只羊,∴乙有+1只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴+1+1=x﹣1,即x+1=2(x﹣3)故选:C.17.解:设两件上衣的进价分别为a元,b元,根据题意得:(1+25%)a=225,(1﹣25%)b=225,解得:a=180,b=300,∴这次买卖中盈利的钱为225﹣180+225﹣300=﹣30(元),则这次买卖中他亏了30元.18.解:设运动鞋原价x元,由题意得:x﹣80%x=45,解得:x=225,225﹣45=180(元),故选:B.19.解:若设甲、乙两码头的距离为xkm,由题意得:+=5,故选:D.20.解:设AE为xcm,则AM为(14﹣3x)cm,根据题意得出:∵AN=MW,∴AN+6=x+MR,即6+2x=x+(14﹣3x)故选:B.。

(苏科版)七年级数学上册一元一次方程的实际应用专项训练15:工程类问题(含答案与解析)

(苏科版)七年级数学上册一元一次方程的实际应用专项训练15:工程类问题(含答案与解析)
5.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?
6.一项工程,甲队单独完成需60天,乙队单独完成需75天.
(1)若甲队单独做24天后两队再合作,求:甲乙两队再合作多少天才能把该工程完成;
2.一项工程,甲单独做需20天完成,乙单独做需10天完成,现在先由甲乙合做4天后,剩下的部分由甲单独做完成,问一共需要做多少天完成任务?(列方程解应用题)
【答案】一共需要12天完成任务
【分析】等量关系为:甲的工作量 乙的工作量 ,列出方程,再求解即可.
【详解】解:设甲还需要 天完成任务

解得: ,

(2)在(1)的条件下,甲队每天的施工费用为5000元,乙队每天的施工费用为6000元,求完成此项工程需付给甲、乙两队共多少元?
7.问题解决:
现甲乙两工程队共同承包我区东站到机场的快速路段中 两地之间的道路,两队分别从 两地相向修建.已知甲队先施工 天,乙队才开始施工,乙队施工若干天后因另有紧急任务暂停施工,因考虑工期,由甲队以原速的 倍修建,乙队完成紧急任务后又以原速恢复施工,直到道路修通.甲,乙两队各自修路长度与时间之间的关系如图所示,请结合图中信息解答下列问题:
13.某石化工程公司第一工程队承包了铺设一段输油管道的工程,原计划用9天时间完成;实际施工时,每天比原计划平均多铺设50米,结果只用了7天就完成了全部任务.ቤተ መጻሕፍቲ ባይዱ
求:(1)按照原计划,平均每天铺设多少米?
(2)这段输油管道有多长?
14.某口罩加工厂有 两组工人共 人, 组工人每人每小时可加工口罩 只, 组工人每人每小时可加工口罩 只, 两组工人每小时一共可加工口罩 只.

北师大版七年级上册数学第五章一元一次方程应用题专项练习(附答案)

北师大版七年级上册数学第五章一元一次方程应用题专项练习(附答案)
北师大版七上数学第五章一元一次方程应用题专项练习
一、解答题
1.某人计划骑车以每小时 12 千米的速度由 A 地到 B 地,这样便可以在规定的时间到达 B 地,但他因有事将原计划 出发的时间推迟了 20 分钟,便只好以每小时 15 千米的速度前进,结果比规定时间早 4 分钟到达 B 地,求 A、B 两 地间的距离.(列方程解应用题)
(2)如果小聪行走的速度是 4 千米/小时,那么到几时几分,小明与小聪相距 3 千米?
21.列方程解应用题 为了迎接比赛,七年级学生准备买一些器材,现了解情况如下:甲乙两家商店出售同样品牌的乒乓球和球拍,乒乓 球拍每副定价 20 元,乒乓球每盒定价 5 元,经洽谈后,甲店:每买一副球拍赠一盒乒乓球;乙店按定价的九折优惠, 该班需购买球拍 4 副,乒乓球若干盒(不少于 4 盒).若你是负责人,你会决定到哪家商店购买?说明理由.
16.某行军纵队以 7 千米/时的速度行进,队尾的通讯员以 11 千米/时的速度赶到队伍前送一封信,送到后又立即返回 队尾,共用 13.2 分钟,求这支队伍的长度.
23.已知线段 AB,延长 AB 到点 C,使 ‫ﳀ‬
‫ ﳀ‬,D 为 AC 的中点,若 BD=3cm,求线段 AB 的长.
17.列方程解应用题:登山运动是最简单易行的健身运动,在秀美的景色中进行有氧运动,特别是山脉中森林覆盖率 高,负氧离子多,真正达到了身心愉悦的进行体育锻炼。张老师和李老师登一座山,张老师每分钟登高 10 米,并且 先出发 30 分钟,李老师每分钟登高 15 米,两人同时登上山顶,求这座山的高度。
7.一个角的余角比这个角的补角的一半还少 40°,求这个角的度数.
8.从甲地到乙地,公共汽车原需行驶 7 个小时,开通高速公路后,车速平均每小时增加了 20 千米,只需 5 个小时即 可到达,求甲、乙两地的路程.

人教版数学七年级上册应用题专项(附答案)

人教版数学七上应用题专项练习一、相遇问题对应数量关系式:速度×时间=路程快者路程+慢者路程=总路程(快者速度+慢者速度)×相遇时间=相遇路程1.AB两地相距75千米,甲车速度50千米每小时从A地出发,乙车速度40千米每小时从B地出发。

同时出发相对而行,几小时后相距30千米?2.甲乙两车从相距300千米的AB两地同时出发,甲速度是乙速度的1.5倍,4小时后相遇,乙速度是多少?3.甲乙两地相距600千米,慢车速度40千米每小时从甲地出发,快车速度60千米每小时从乙地出发;如果让慢车先走55分钟后,快车再出发,求快车开出多少小时后两车相遇?二、追及问题数量关系式:两者的路程差=追及路程/以追及时间为等量关系式1.同时不同地:快者时间=慢者时间快者路程—慢者路程=原来相距路程①甲车在乙车前方600米处,甲速度40千米每小时,乙车速度60千米每小时,同时出发,乙车几小时能追上甲车?②AB两地相距62千米,甲从A出发,每小时行14千米,乙从B出发每小时行18千米,若甲在前乙在后,两人同时同方向出发,几小时后乙超过甲10千米?2.同地不同时:先走者的时间=后走者的时间+时间差先走者的路程=慢走者的路程①慢车从车站开出,每小时行48千米,45分钟后,一快车从同车站同向开出,1.5小时追上了慢车,快车的速度是多少?②古代一队士兵去城外进行训练,以每小时5千米的速度行进,走了18分钟,城内要将一个重要信息传给队长,通讯员骑马以每小时14千米的速度按原路追赶。

通讯员多久能追上?三、环形跑道相遇追及问题同地反向:两者路程和=一圈的路程同地同向:两者路程差=一圈的路程1.一条环形跑道长400米,甲每分钟行450米,乙每分钟行250米;甲乙两人同时同地反向出发,几分钟后再相遇?甲乙两人同时同地同向出发,几分钟后再相遇?2.甲乙两人在400米的环形跑道上跑步,若同时同地同向跑则3分20秒相遇一次;若同时同地反向跑则40秒相遇,求甲的速度是每秒多少米?四、年龄问题等量关系式:大小年龄差永远不会变,一年一岁,人人平等1.现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,几年后父亲年龄是儿子年龄的3倍?3.父亲和女儿的年龄和是91,当父亲的年龄是女儿现在年龄的2倍的时候,女儿的年龄是父亲现在年龄的三分之一,求女儿现在的年龄?4.现在甲的年龄是乙的2倍,8年后两人年龄和是76岁,现在甲比乙大几岁?五、行船问题顺流航速=船的静水速度+水流速度逆流速度=船的静水速度-水流速度顺流速度×顺流时间=顺流路程逆流速度×逆流时间=逆流路程顺程+逆程=总路程1.一艘船航行于A,B两个码头之间,顺水航行需要2个小时,逆水航行需要4个小时,已知水流速度是4千米/时,求这两个码头之间的距离?2.一艘轮船每小时行15千米,它逆水6小时行了72千米,如果它顺水行驶同样长的航程需要多少小时?六、飞行问题顺风速=飞机无风速+风速逆风速=飞机无风速-风速顺风速×顺风时间=顺风路程逆风速×逆风时间=逆风路程顺程+逆程=总路程1.一架飞机在两地之间飞行风速为16千米/小时,顺飞飞行需要3小时,逆风飞行需要5小时,求无风时飞机的航速和两地之间的航程?七、利润率问题利润率=(利润÷进价)×100%进价(成本价)+利润=售价利润=进价(成本价)×利润率1.某商品进价500元,按标价的九折销售,利润率为15.2%,求商品的标价是多少元?2.某商品进价2000元,标价为3000元,商店要求以利润不低于5%的售价打折出售,售货员可以打几折出售此商品?3.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利利润相等,该工艺品每件的进4.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件扔获利15元,这种服装的进价是多少?八、和差倍分的问题问题的特点:已知两个量之间存在和倍差关系,可以求这两个量的多少。

人教版数学七年级上册第三章《一元一次方程实际应用》专项练习

⼈教版数学七年级上册第三章《⼀元⼀次⽅程实际应⽤》专项练习《⼀元⼀次⽅程实际应⽤》专项练习1.某校七年级A班有x⼈,B班⽐A班⼈数的2倍少8⼈,如果从B班调出6⼈到A班.(1)⽤代数式表⽰两个班共有多少⼈?(2)⽤代数式表⽰调动后,B班⼈数⽐A班⼈数多⼏⼈?(3)x等于多少时,调动后两班⼈数⼀样多?2.列⽅程解应⽤题举世瞩⽬的2019年中国北京世界园艺博览会在长城脚下的北京延庆开园,它给⼈们提供了看⼭、看⽔、看风景的机会.⼀天⼩龙和朋友⼏家去延庆世园会游玩,他们购买普通票⽐购买优惠票的数量少5张,买票共花费了1400元,符合他们购票的条件如下表,请问他们买了多少张优惠票?平⽇普通票?适⽤所有⼈除指定⽇外任⼀平⽇参观120优惠票?适⽤残疾⼈⼠、60周岁以上⽼年⼈、学⽣、中国现役军⼈(具体⼈群规则同指定⽇优惠票)购票及⼊园时需出⽰相关有效证件除指定⽇外任⼀平⽇参观803.(⽤列⽅程或⽅程组解答本题)元旦期间某商店进⾏促销活动,活动⽅式有如下两种:⽅式⼀:购物每满200元减60元;⽅式⼆:标价不超过400元的商品,打8折:标价超过400元的商品,不超过400元的部分打8折,超出400元的部分打5折.设某⼀商品的标价为x元.(1)当x=300元,则按⽅式⼀应该付的钱为元;则按⽅式⼆应该付的钱为元;(2)当400<x<600时,x取何值两种⽅式的实际⽀出的费⽤相同?4.【新知理解】如图①,点C在线段AB上,图中有三条线段AB、AC和BC.若其中⼀条线段的长度是另外⼀条线段长度的2倍,则称点C是线段AB的“巧点”.(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”);【问题解决】(2)如图②,点A和B在数轴上表⽰的数分别是﹣20和40,点C是线段AB的巧点,求点C在数轴上表⽰的数.【应⽤拓展】(3)在(2)的条件下,动点P从点A发,以每秒2个单位的速度沿AB向点B匀速运动,同时动点Q从点B出发,以每秒4个单位的速度沿BA向点A匀速运动,当其中⼀点到达终点时,两个点运动同时停⽌.当A、P、Q三点中,其中⼀点恰好是另外两点为端点的线段的巧点时,直接写出运动时间t(s)的所有可能取值.5.⼩明参加启秀期末考试时的考场座位号是由四个数字组成的,这四个数字组成的四位数有如下特征:(1)它的千位数字为2;(2)把千位上的数字2向右移动,使其成为个位数字,那么所得的新数⽐原数的2倍少1478,求⼩明的考场座位号.6.为了丰富⽼年⼈的晚年⽣活,甲、⼄两单位准备组织退休职⼯到某风景区游玩.甲、⼄两单位退休职⼯共102⼈,其中⼄单位⼈数少于50⼈,且甲单位⼈数不够100⼈.经了解,该风景区的门票价格如表:数量(张)1~50 51~100 101张及以上单价(元/张)60 50 40 如果两单位分别单独购买门票,⼀共应付5500元.(1)甲、⼄两单位各有多少名退休职⼯准备参加游玩?(2)如果甲单位有12名退休职⼯因⾝体原因不能外出游玩,那么你有⼏种购买⽅案,通过⽐较,你该如何购买门票才能最省钱?7.现有120台⼤⼩两种型号的挖掘机同时⼯作,⼤型挖掘机每⼩时可挖掘⼟⽅360⽴⽅⽶,⼩型挖掘机每⼩时可挖掘⼟⽅200⽴⽅⽶,20⼩时共挖掘⼟⽅704000⽴⽅⽶,求⼤⼩型号的挖掘机各多少台?8.重庆育才中学需要为⽼校友们订制80周年纪念吉祥物“陶娃”,原计划订750份,每份50元,订制公司表⽰:如果多订,可以优惠.根据校庆当天前来的校友数量,学校最终订了1000份,并按原价⼋折购买,但订制公司获得了同样的利润.(1)求订制公司⽣产每套“陶娃”的成本;(2)求订制公司获得的利润.9.元旦期间,某超市对出售A、B两种商品开展元旦促销活动,活动⽅案有如下两种:(同⼀种商品不可同时参与两种活动)商品A B标价(单位:元)200 300 ⽅案⼀每件商品出售价格按标价降价20% 按标价降价a%⽅案⼆若所购商品超过100件(不同商品可累计)时,每件商品按标价降价18%后出售(1)某单位购买A商品40件,B商品30件,共花费14050元,试求a的值;(2)在(1)求出的a值的条件下,若某单位购买A商品x件(x为正整数),购买B 商品的件数⽐A商品件数的2倍还多⼀件,请问该单位选择哪种⽅案才能获得最⼤优惠?请说明理由.10.蔬菜商店40元/箱的价格从哈达批发市场购进8箱西红柿,若以每箱西红柿净重25千克为标准,超过千克数记为正数,不⾜千克数记为负数,称重后记录如下:+1,﹣3.5,+2,﹣2.5,﹣3,+2,﹣2,﹣2(1)这8箱西红柿⼀共重多少千克?(2)若把这些西红柿全部以零售的形式卖掉,商店计划共获利160元,那么在销售过程中西红柿的单价应定为每千克多少元?11.我们知道,有理数包括整数、有限⼩数和⽆限循环⼩数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么⽆限循环⼩数如何表⽰为分数形式呢?请看以下⽰例:例:将0.化为分数形式,由于0.=0.777…,设x=0.777…,①得10x=7.777…,②②﹣①得9x=7,解得x=,于是得0.=.同理可得0.==,1.=1+0.=1+=.根据以上阅读,回答下列问题:(以下计算结果均⽤最简分数表⽰)【类⽐应⽤】(1)4.=;(2)将0.化为分数形式,写出推导过程;【迁移提升】(3)0.2=,2.0…18=;(注0.2=0.225225…,2.0…18=2.01818…)【拓展发现】(4)若已知0.1428=,则2.8571=.12.某班原分成两个⼩组进⾏课外体育活动,第⼀组28⼈,第⼆组20⼈,根据学校活动器材的数量,要将第⼀组的⼈数调整为第⼆组的⼀半,应从第⼀组调多少⼈到第⼆组去?13.如图,数轴上A,B,C三点对应的数分别是a,b,14,满⾜BC=6,AC=3BC.动点P 从A点出发,沿数轴以每秒2个单位长度匀速向右运动,同时动点Q从C点出发,沿数轴以每秒1个单位长度匀速向左运动,设运动时间为t.(1)则a=,b=.(2)当P点运动到数2的位置时,Q点对应的数是多少?(3)是否存在t的值使CP=CQ,若存在求出t值,若不存在说明理由.14.百姓商场以每件80元的价格购进某品牌衬衫共500件,加价50%后标价销售,在“庆元旦,迎新春”期间,商场计划降价销售.请根据商场的盈利需求,解答下列问题:(1)如果商场按降价后的价格售完这批衬衫,仍可盈利20%,求应按⼏折销售;(2)请从A,B两题中任选⼀题作答.A.如果商场先按标价售出400件后再降价,那么剩余的衬衫按⼏折销售,才能使售完这批衬衫后盈利35%;B.如果商场先按标价的九折销售300件,但为了尽快销售完,将剩余数量衬衫在九折的基础上每购买⼀件再送打车费.求购买⼀件送多少元打车费,售完这批衬衫后可盈利25%.15.巴南区认真落实“精准扶贫”.某“建卡贫困户”在党和政府的关怀和帮助下投资了⼀个鱼塘,经过⼀年多的精⼼养殖,今年10⽉份从鱼塘⾥捕捞了草鱼和花鲢共2500千克,在市场上草鱼以每千克16元的价格出售,花鲢以每千克24元的价格出售,这样该贫困户10⽉份收⼊52000元,(1)今年10⽉份从鱼塘⾥捕捞草鱼和花鲢各多少千克?(2)该贫困户今年12⽉份再次从鱼塘⾥捕捞.捕捞数量和销售价格上,草鱼数量⽐10⽉份减少了2a千克,销售价格不变;花鲢数量⽐10⽉份减少了a%,销售价格⽐10⽉份减少了,该贫困户在10⽉份和12⽉份两次捕捞中共收⼊了94040元,真正达到了脱贫致富,求a的值.16.研学基地⾼明盈⾹⽣态园的团体票价格如表:数量(张)30~50 51~100 101及以上单价(元/张)80 60 50 某校七年级(1)、(2)班共102⼈去研学,其中(1)班⼈数较少,不⾜50⼈,两个班相差不超过20⼈.经估算,如果两个班都以班为单位购票,则⼀共应付7080元,问:(1)两个班各有多少学⽣?(2)如果两个班联合起来,作为⼀个团体购票,可省多少钱?17.某超市第⼀次⽤3600元购进了甲、⼄两种商品,其中甲种商品80件,⼄种商品120件.已知⼄种商品每件进价⽐甲种商品每件进价贵5元.甲种商品售价为20元/件,⼄种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第⼀次购进甲、⼄两种商品每件各多少元?(2)该超市将第⼀次购进的甲、⼄两种商品全部销售完后⼀共可获得多少利润?(3)该超市第⼆次⼜购进同样数量的甲、⼄两种商品.其中甲种商品每件的进价不变,⼄种商品进价每件少3元;甲种商品按原售价提价a%销售,⼄种商品按原售价降价a%销售,如果第⼆次两种商品都销售完以后获得的总利润⽐第⼀次获得的总利润多260元,那么a的值是多少?18.为了打造“书⾹校园”,明德华兴中学计划购买20张书柜和⼀批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张200元,书架每只80元,A超市的优惠政策为每买⼀张书柜赠送⼀只书架,B超市的优惠政策为所有商品⼋折,设购买书架x只(x≥20).(1)若规定只能到其中⼀个超市购买所有物品,当购买书架多少只时,到两家超市购买所需费⽤⼀样;(2)若学校想购买20张书柜和100只书架,且可到两家超市⾃由选购,你认为⾄少要准备多少货款,请⽤计算的结果来验证你的说法.19.青⽵湖湘⼀外国语学校初2019级全体学⽣从学校统⼀乘车去市科技馆参观学习,然后⼜统⼀乘车原路返回,需租⽤客车若⼲辆.现有甲、⼄两种座位数相同的客车可以租⽤,甲种客车每辆的租⾦为300元,另按实际⾏程每千⽶加收8元;⼄种客车每辆按每千⽶14元收费.(1)当⾏程为多少千⽶时,租⽤两种客车的费⽤相同?(2)青⽵湖湘⼀外国语学校距市科技馆约30公⾥,如果你是年级组杨组长,为节省费⽤,你会选择哪种客车?20.某超市计划购进甲、⼄两种型号的节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型25 30⼄型45 60 (1)如果进货款恰好为37000元,那么可以购进甲型节能灯多少只?(2)超市为庆祝元旦进⾏⼤促销活动,决定对⼄型节能灯进⾏打折销售,要求全部售完后,⼄型节能灯的利润率为20%,请问⼄型节能灯需打⼏折?参考答案1.解:(1)∵七年级A班有x⼈,B班⽐A班⼈数的2倍少8⼈,∴B班有(2x﹣8)⼈,则x+2x﹣8=3x﹣8,答:两个班共有(3x﹣8)⼈;(2)调动后A班⼈数:(x+6)⼈;调动后B班⼈数:2x﹣8﹣6=(2x﹣14)⼈,∴(2x﹣14)﹣(x+6)=x﹣20(⼈).答:调动后B班⼈数⽐A班⼈数多(x﹣20)⼈;(3)根据题意得:x+6=2x﹣14,解得:x=20.答:x等于20时,调动后两班⼈数⼀样多.2.解:设⼩龙和⼏个朋友购买了x张优惠票,根据题意列⽅程,得:80x+120(x﹣5)=1400,80 x+120x﹣600=1400,200x=2000,x=10.答:⼩龙和⼏个朋友购买了10张优惠票.3.解:(1)当x=300元,按⽅式⼀应该付的钱为:300﹣60=240(元),按⽅式⼆应该付的钱为:300×0.8=240(元).故答案为:240;240;(2)当400<x<600时,400×0.8+0.5(x﹣400)=x﹣120,故当400<x<600时,x取480时,两种⽅式的优惠相同.4.解:(1)因原线段是中点分成的短线段的2倍,所以线段的中点是这条线段的巧点,故答案为:是;(2)设C点表⽰的数为x,则AC=x+20,BC=40﹣x,AB=40+20=60,根据“巧点”的定义可知:①当AB=2AC时,有60=2(x+20),解得,x=10;②当BC=2AC时,有40﹣x=2(x+20),解得,x=0;③当AC=2BC时,有x+20=2(40﹣x),解得,x=20.综上,C点表⽰的数为10或0或20;(3)由题意得,AP=2t,AQ=60﹣4t,PQ=,i)若0≤t≤10时,点P为AQ的“巧点”,有①当AQ=2AP时,60﹣4t=2×2t,解得,t=;②当PQ=2AP时,60﹣6t=2×2t,解得,t=6;③当AP=2PQ时,2t=2(60﹣6t),解得,t=;ii)若10<t≤15时,点Q为AP的“巧点”,有①当AP=2AQ时,2t=2×(60﹣4t),解得,t=12;②当PQ=2AQ时,6t﹣60=2×(60﹣4t),解得,t=;③当AQ=2PQ时,60﹣4t=2(6t﹣60),解得,t=.综上,所求运动时间t(s)的所有可能取值为,6,,12,,.5.解:设原来数字为x,2x﹣1478=(x﹣2000)×10+2解得,x=2315答:⼩明的考场号是2315.6.解:(1)设甲单位有x名退休职⼯准备参加游玩,则⼄单位有(102﹣x)名退休职⼯准备参加游玩,依题意,得:50x+60(102﹣x)=5500,解得:x=62,答:甲单位有62名退休职⼯准备参加游玩,⼄单位有40名退休职⼯准备参加游玩.(2)∵62﹣12=50(名),50+40=90(名),∴有4种购买⽅案,⽅案1:甲、⼄两单位分开购票,甲单位购买50张门票、⼄单位购买40张门票;⽅案2:甲、⼄两单位分开购票,甲单位购买51张门票、⼄单位购买40张门票;⽅案3:甲、⼄两单位联合购票,购买90张门票;⽅案4:甲、⼄两单位联合购票,购买101张门票.⽅案1所需费⽤为60×50+60×40=5400(元);⽅案2所需费⽤为50×51+60×40=4950(元);⽅案3所需费⽤为50×90=4500(元);⽅案4所需费⽤为40×101=4040(元).∵5400>4950>4500>4040,∴甲、⼄两单位联合购票,购买101张门票最省钱.7.解:设⼤型挖掘机x台,则⼩型挖掘机(120﹣x)台.根据题意得:20[360x+200(120﹣x)]=704000,解得x=70,则120﹣x=50,答:⼤型挖掘机70台,⼩型挖掘机50台.8.解:(1)设订制公司⽣产每套“陶娃”的成本是x元,由题意,可得(50﹣x)×750=(50×0.8﹣x)×1000,解得x=10.答:订制公司⽣产每套“陶娃”的成本是10元;(2)(50﹣10)×750=30000(元).答:订制公司获得的利润为30000元.9.解:(1)由题意有,40×200×0.8+30×300×(1﹣a%)=14050,解得a=15.故a的值为15;(2)若某单位购买A商品x件(x为正整数),则购买B商品(2x+1)件.当x+2x+1=100时,解得:x=33,当总数不⾜101时,即只能选择⽅案⼀获得最⼤优惠;当总数达到或超过101,即x>33时,⽅案⼀需付款:200×0.8x+300×0.85(2x+1)=160x+510x+255=670x+255,⽅案⼆需付款:[200x+300(2x+1)]×0.82=656x+246,∵(670x+255)﹣(656x+246)=14x+9>0,∴选⽅案⼆优惠更⼤.综上所述:当x≤33时,只能选择⽅案⼀获得最⼤优惠;当x>33时,采⽤⽅案⼆获得最⼤优惠.10.解:(1)25×8+(+1﹣3.5+2﹣2.5﹣3+2﹣2﹣2)=200﹣8=192(千克).故这8箱西红柿⼀共重192千克;(2)设在销售过程中西红柿的单价应定为每千克x元,根据题意得:192x﹣40×8=160,解得:x=2.5.故在销售过程中西红柿的单价应定为每千克2.5元.11.解:(1)4.=4=4;(2)设x=0.272727…,①∴100x=27.272727…,②②﹣①得:99x=27解得:∴∴0.=;(3)0.2==,∵∴∴;(4)∵0.1428=,∴等号两边同时乘以1000得:714..8571=,∴2.8571=714.8571﹣712=﹣712=.故答案为:4;,;.12.解:设应从第⼀组调x⼈到第⼆组去,依题意,得:28﹣x=(20+x),解得:x=12.答:应从第⼀组调12⼈到第⼆组去,13.解:(1)∵c=14,BC=6,∴b=14﹣6=8;∵AC=3BC,∴AC=18,∴a=14﹣18=﹣4;(2)[2﹣(﹣4)]÷2=3(秒),14﹣1×3=11.故Q点对应的数是11;(3)P在C点的左边,则18﹣2t=t,解得t=6;P在C点的右边,则2t﹣18=t,解得t=18.综上所述,t的值为6或18.故答案为:6;18.14.解:(1)设应按x折销售,则80×(1+50%)×0.1x﹣80=80×20%解得x=8答:应按8折销售;(2)A、设剩余的衬衫按a折销售,由题意,得80×(1+50%)×400+80×(1+50%)×0.1a×(500﹣400)﹣80×500=80×35%×500.解得a=5.答:剩余的衬衫按5折销售,才能使售完这批衬衫后盈利35%;B、设购买⼀件送b元打车费,由题意,得80×(1+50%)×0.9×500﹣(500﹣300)b﹣80×500=80×25%×500 解得b=20答:购买⼀件送20元打车费,售完这批衬衫后可盈利25%.15.解:(1)设今年10⽉份从鱼塘⾥捕捞草鱼x千克,则捕捞的花鲢是(2500﹣x)千克,由题意,得16x+(2500﹣x)×24=52000解得x=1000所以2500﹣1000=1500(千克)答:今年10⽉份从鱼塘⾥捕捞草鱼1000千克,则捕捞的花鲢是1500千克;(2)由题意,得16(1000﹣2a)+1500(1﹣a%)×24×(1﹣)=94040﹣52000 解得a=30.答:a的值是30.16.解:(1)设七年级(1)班的⼈数为x,则(2)班的⼈数为(102﹣x),由题得:80x+60(102﹣x)=7080化简得:20x=960解得:x=48(⼈)∴102﹣x=102﹣48=54(⼈)答:七年级(1)班有48⼈,(2)班有54⼈.(⽤算术⽅法求解正确同样给分)(2)联合购票应付钱数为:102×50=5100(元)则节省的钱数为:7080﹣5100=1980(元)答:如果两个班联合起来购票可省1980元.17.解:(1)设该超市第⼀次购进甲种商品每件x元,⼄种商品每件(x+5)元.由题意得80x+120(x+5)=3600,解得x=15,x+5=15+5=20.答:该超市第⼀次购进甲种商品每件15元,⼄种商品每件20元.(2)该超市将第⼀次购进的甲、⼄两种商品全部销售完后⼀共可获得的利润=80×(20﹣15)+120×(30﹣20)=1600元.答:该超市将第⼀次购进的甲、⼄两种商品全部销售完后⼀共可获得1600元的利润.(3)由题意80×[20(1+a%)﹣15]+120×[30(1﹣a%)﹣(20﹣3)]=1600+260,解得a=5.答:a的值是5.18.解:(1)设购买书架x只时,到两家超市购买所需费⽤⼀样.根据题意得:20×200+80(x﹣20)=0.8×(20×200+80x),解得:x=50.答:购买书架50只时,到两家超市购买所需费⽤⼀样;(2)到A超市购买20个书柜和20个书架,到B超市购买80只书架,钱数最少,共需货款:20×200+80×(100﹣20)×0.8=9120(元).答:⾄少要准备9120元货款.19.解:(1)设当⾏程为x千⽶时,租⽤两种客车的费⽤相同,依题意有300+8x=14x,解得x=50.故当⾏程为50千⽶时,租⽤两种客车的费⽤相同;(2)300+8×30×2=780(元),14×30×2=840(元),∵840>780,∴为节省费⽤,会选择甲种客车.20.解:(1)设商场购进甲型节能灯x只,则购进⼄型节能灯(1000﹣x)只,由题意,得25x+45(1000﹣x)=37000解得:x=400购进⼄型节能灯1000﹣x=1000﹣400=600(只)答:购进甲型节能灯400只,购进⼄型节能灯600只进货款恰好为37000元.(2)设⼄型节能灯需打a折,0.1×60a﹣45=45×20%,解得a=9,答:⼄型节能灯需打9折.。

专题4.2 一元一次方程(情境应用题)(专项拔高卷)教师版

2023-2024学年苏科版数学七年级上册同步专题热点难点专项练习专题4.2 一元一次方程(情境应用题)(专项拔高卷)考试时间:90分钟 试卷满分:100分 难度:0.48一、选择题(共10题;每题2分,共20分)1.(2分)(2023七上·桂平期末)幻方是相当古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1,2,3,4,5,6,7,8,9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m 的值为( ) 3 85 mA .6B .2C .1D .4【答案】C 【规范解答】解:设第一行第一个数是x ,第三行第三个数是y ,依题意得15384x =--=,15456y =--=,∴6815m ++=,解得1m =.故答案为:C.【思路点拨】设第一行第一个数是x ,第三行第三个数是y ,根据“ 每一横行、每一竖行以及两条斜对角线上的数字之和都是15 ”先求出x 、y 值,再求出m 即可.2.(2分)(2023七上·温州期末)甲单位到药店购买了一箱消毒水和60元的口罩,乙单位在同一药店购买了一箱消毒水和25元的口罩,乙单位购买总价只相当于甲单位购买总价的712,一箱消毒水多少元?设一箱消毒水为x 元,则下列方程正确的是( )A .712(25+x)=60+xB .60+712x=25+xC .60-712x=25+xD .712(60+x)=25+x 【答案】D【规范解答】解:设一箱消毒水为x 元,根据题意得712(60+x)=25+x .故答案为:D【思路点拨】此题的等量关系为:乙单位购买总价=甲单位购买总价×712,列方程即可.3.(2分)(2022七上·永城期末)某电商平台将一件商品按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利78元,这件商品的进价是多少元?若设这种商品每件的进价为x 元,那么所列方程为( )A .80%(140%)78x x +-=B .80%(140%)78x +=C .80%(140%)78x x -+=D .80%(140%)78x x --=【答案】A【规范解答】解:由题意得:一件这种商品的标价为(140%)x +元,售价为80%(140%)x +,则可列方程为80%(140%)78x x +-=,故A 正确.故答案为:A.【思路点拨】根据标价×折扣-进价=利润列出方程即可.4.(2分)(2022七上·城阳期末)为使全国人民都过上幸福的小康生活,近年来各地扶贫办致力于帮扶当地区特色产品走进市民的菜篮子,助力更多优质农产品走出地区、走向全国.已知有一扶贫农产品去年和今年两年的销售总额为180万元,其中该扶贫农产品去年的价格为15元/千克,今年的价格为12元/千克,今年的销售产量比去年增长了25%.今年该扶贫农产品销售( )千克.A .60000B .75000C .6000D .7500【答案】B【规范解答】解:设去年该扶贫农产品销售x 千克,则今年该扶贫农产品销售()125%x +千克,根据题意得:()1512125%1800000x x ++=,解得60000x =,∴()125%75000x +=,∴今年该扶贫农产品销售75000千克,故答案为:B .【思路点拨】设去年该扶贫农产品销售x 千克,则今年该扶贫农产品销售()125%x +千克,根据题意列出方程()1512125%1800000x x ++=,再求解即可。

七年级数学上册第一章有理数应用题专项练习

七年级数学上册第一章有理数应用题专项练习1.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.1)A处在岗亭何方?距离岗亭多远?2)若摩托车每行驶1千米耗油a升,这一天上午共耗油多少升?2.某工厂生产一批零件,根据要求,圆柱体的内径可以有毫米的误差,抽查5个零件,超过规定内径的记作正数,不足的记作负数,检查结果如下:+,﹣,+,﹣,+1)指出哪些产品合乎要求?2)指出合乎要求的产品中哪个质量好一些?3.某奶粉每袋的标准质量为454克,在质量检测中,若超出标准质量2克,记作为+2克,若质量低于3克以上的,则这袋奶粉为不合格,现在抽取10袋样品进行质量检测,结果如下(单位:克).袋号xxxxxxxx910记作﹣23﹣4﹣3﹣5+4+4﹣6﹣31)这10袋奶粉中有哪几袋不合格?2)质量最多的是哪袋?它的实践质量是几何?3)质量最少的是哪袋?它的实践质量是几何?4.蜗牛从某点开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):+4,﹣3,+10,﹣9,﹣6,+12,﹣10.①求蜗牛最后的位置在点的哪个方向,距离多远?②在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?③蜗牛离开出发点最远时是多少厘米?5.某巡警车在一条南北大道上巡查,某天巡警车从岗位A处动身,规定向北方向为正,当天行驶记录以下(单位:千米)10,﹣9,+7,﹣15,+6,﹣5,+4,﹣21)最终巡警车是否回到岗亭A处?若没有,在岗亭何方,距岗亭多远?2)摩托车行驶1千米耗油升,油箱有油10升,够不够?若不够,途中还需补充多少升油?16.XXX在一条自西向东的道路旁边设置了人民公园、XXX、XXX、科技馆、花园小区站点,相邻两个站点之间的距离依次为3km。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 1 七年级上册应用题专题讲解 一、列方程解应用题的一般步骤(解题思路) (1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系). (2)设—设出未知数:根据提问,巧设未知数. (3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程. (4)解—解方程:解所列的方程,求出未知数的值. (5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位) 二、各类题型解法分析 一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析 ,古典数学,浓度问题等。

(一)和、差、倍、分问题——读题分析法 这类问题主要应搞清各量之间的关系,注意关键词语。仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程. 1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。 2.多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。 增长量=原有量×增长率 现在量=原有量+增长量

例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?

例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?

(二)等积变形问题 1 / 1

等积变形是以形状改变而体积不变为前提。 常用等量关系为:原料体积=成品体积。常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. ①圆柱体的体积公式 V=底面积×高=S·h= ②长方体的体积 V=长×宽×高=abc

例3.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?

(三)数字问题 1.要搞清楚数的表示方法:一个三位数,一般可设百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9),则这个三位数表示为:100a+10b+c. 2.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n—1表示。

例4.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。

例5.一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数 是十位上的数

的3倍,求这个三位数.

(四)商品利润问题(市场经济问题或利润赢亏问题) (1)销售问题中常出现的量有:进价(或成本)、售价、标价(或定价)、利润等。 (2)利润问题常用等量关系: 1 / 1

商品利润=商品售价-商品进价=商品标价×折扣率-商品进价 (3)商品销售额=商品销售价×商品销售量 商品的销售利润=(销售价-成本价)× 销售量 (4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.即商品售价=商品标价×折扣率.

例6:一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获 利15元,这种服装每件的进价是多少?

例6*:某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保

持利润率不低于5%,则至多打几折?

(五)行程问题——画图分析法 利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础. 1.行程问题中的三个基本量及其关系: 路程=速度×时间 时间=路程÷速度 速度=路程÷时间 2.行程问题基本类型 (1)相遇问题: 快行距+慢行距=原距 (2)追及问题: 快行距-慢行距=原距 (3)航行问题: 顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度 水流速度=(顺水速度-逆水速度)÷2 (4)环路问题

甲乙同时同地背向而行:甲路程—乙路程=环路一周的距离

甲乙同时同地同向而行:快者的路程—慢者的路程=环路一周的距离 1 / 1

抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程. 常见的还有:相背而行;行船问题;环形跑道问题。

例7:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。 (1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? (2)两车同时开出,相背而行多少小时后两车相距600公里? (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车? (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。)

例8:一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/

时,求甲、乙两码头之间的距离。

(六)工程问题 1.工程问题中的三个量及其关系为:

工作总量=工作效率×工作时间 2.经常在题目中未给出工作总量时,设工作总量为单位1。即完成某项任务的各工作量的和 1 / 1

=总工作量=1.

工程问题常用等量关系:先做的+后做的=完成量.

例9:将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?

例10:一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?

例11:一项工程甲单独做需要10天,乙需要12天,丙单独做需要15天,甲、丙先做3天后,甲因事离去,

乙参与工作,问还需几天完成?

(七)储蓄问题 1.顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率. 2.储蓄问题中的量及其关系为: 利息=本金×利率×期数 本息和=本金+利息

利息税=利息×税率(20%)

例12:某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税) 1 / 1

(八)配套问题: 这类问题的关键是找对配套的两类物体的数量关系。 例13:某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?

例14:机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?

(九)劳力调配问题 这类问题要搞清人数的变化,常见题型有: (1)既有调入又有调出; (2)只有调入没有调出,调入部分变化,其余不变; (3)只有调出没有调入,调出部分变化,其余不变。

例15.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间? 1 / 1

例16.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。

(十)比例分配问题 比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。 常用等量关系:各部分之和=总量。

例17:甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件?

(十一)年龄问题 例19:兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?

例20:三位同学甲乙丙,甲比乙大1岁,乙比丙大2岁,三人的年龄之和是41,求乙同学的年龄。 1 / 1

(十二)比赛积分问题 例21:某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了 道题。

例22:某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?

(十三)方案选择问题 例23:某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元. (1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案. (2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?

(十四)古典数学问题 例24:100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚?多少小和尚?

相关文档
最新文档