空间向量与立体几何知识点和习题(含答案)[1]
空间向量与立体几何例题和知识点总结

空间向量与立体几何例题和知识点总结在高中数学的学习中,空间向量与立体几何是一个重要且具有一定难度的板块。
通过空间向量的方法,我们能够更加简便地解决立体几何中的许多问题。
接下来,让我们一起通过一些例题来深入理解,并总结相关的知识点。
一、空间向量的基本知识点1、空间向量的概念:空间中具有大小和方向的量称为空间向量。
2、空间向量的表示:可以用有向线段表示,也可以用坐标表示。
3、空间向量的运算:包括加法、减法、数乘以及数量积。
加法和减法满足三角形法则和平行四边形法则。
数乘:λ(a + b) =λa +λb数量积:a·b =|a|·|b|·cosθ(θ为两向量的夹角)二、空间向量在立体几何中的应用1、证明线线平行设直线 l₁和 l₂的方向向量分别为 a 和 b,如果 a =λb(λ 为非零实数),则 l₁∥ l₂。
例 1:在长方体 ABCD A₁B₁C₁D₁中,E,F 分别为棱 AA₁,CC₁的中点,求证:BE ∥ DF 。
解:以 D 为原点,分别以 DA,DC,DD₁所在直线为 x,y,z 轴,建立空间直角坐标系。
设长方体的长、宽、高分别为 a,b,c 。
则 B(a,b,0),E(a,0,c/2),D(0,0,0),F(0,b,c/2)BE =(0,b,c/2),DF =(0,b,c/2)因为 BE = DF ,所以 BE ∥ DF 。
2、证明线线垂直设直线 l₁和 l₂的方向向量分别为 a 和 b,如果 a·b = 0,则 l₁⊥l₂。
例 2:在正方体 ABCD A₁B₁C₁D₁中,M,N 分别为棱 AB,CC₁的中点,求证:DM ⊥ MN 。
解:以 D 为原点,分别以 DA,DC,DD₁所在直线为 x,y,z 轴,建立空间直角坐标系。
设正方体的棱长为 2。
则 D(0,0,0),M(2,1,0),N(0,2,1)DM =(2,1,0),MN =(-2,1,1)DM·MN =-4 + 1 + 0 =-3 ≠ 0 ,所以 DM 与 MN 不垂直。
数学第一章空间向量与立体几何1-1第1课时空间向量及其线性运算练习含解析新人教A版选择性必修第一册

第1课时 空间向量及其线性运算学习目标 1.理解空间向量的有关概念.2.类比平面向量,会用平行四边形法则、三角形法则作出向量的和与差.3.理解向量运算的交换律、结合律和分配律.知识点一 空间向量的概念1.定义:在空间,具有大小和方向的量叫做空间向量. 2.长度或模:向量的大小. 3.表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a ,b ,c ,…表示;若向量a 的起点是A ,终点是B ,也可记作AB →,其模记为|a |或|AB →|. 4.几类特殊的空间向量名称 定义及表示零向量 长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量 与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为 -a 共线向量(平行向量) 如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:对于任意向量a ,都有0∥a相等向量 方向相同且模相等的向量称为相等向量思考 空间中的两个向量是不是共面向量?答案 是,空间中的任意两个向量都可以平移到同一个平面内,成为同一平面内的两个向量. 知识点二 空间向量的线性运算空间向量的线性运算加法a +b =OA →+ AB → =OB →减法a -b =OA →-OC →=CA →数乘当λ>0时,λa =λOA →=PQ →; 当λ<0时,λa =λOA →=MN →;当λ=0时,λa =0运算律 交换律:a +b =b +a ;结合律:a +(b +c )=(a +b )+c ,λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa ,λ(a +b )=λa +λb .思考1 怎样作图表示三个向量的和,作出的和向量是否与相加的顺序有关?答案 可以利用三角形法则和平行四边形法则作出三个向量的和.加法运算是对有限个向量求和,交换相加向量的顺序,其和不变. 思考2 由数乘λa =0,可否得出λ=0? 答案 不能.λa =0⇔λ=0或a =0.1.两个有公共终点的向量,一定是共线向量.( × ) 2.在空间中,任意一个向量都可以进行平移.( √ )3.空间两非零向量相加时,一定可以用平行四边形法则运算.( × ) 4.向量AB →与AC →是共线向量,则A ,B ,C 三点必在一条直线上.( √ )一、向量概念的应用例1 (1)下列关于空间向量的说法中正确的是( ) A .方向相反的两个向量是相反向量 B .空间中任意两个单位向量必相等C .若向量AB →,CD →满足|AB →|>|CD →|,则AB →>CD →D .相等向量其方向必相同 答案 D解析 A 中,方向相反,长度相等的两个向量是相反向量;B 中,单位向量模都相等而方向不确定;C 中,向量作为矢量不能比较大小,故选D. (2)(多选)下列说法中正确的是( )A .若|a |=|b |,则a ,b 的长度相同,方向相同或相反B .若向量a 是向量b 的相反向量,则|a |=|b |C .空间向量的加法满足结合律D .任一向量与它的相反向量不相等 答案 BC解析 |a |=|b |,说明a 与b 模相等,但方向不确定;对于a 的相反向量b =-a ,故|a |=|b |,从而B 正确;空间向量的加法满足结合律,C 正确;零向量的相反向量仍是零向量.故选BC.反思感悟 空间向量的概念问题在空间中,向量、向量的模、相等向量的概念和平面中向量的相关概念完全一致,两向量相等的充要条件是两个向量的方向相同、模相等.两向量互为相反向量的充要条件是大小相等,方向相反.跟踪训练1 下列关于空间向量的命题中,正确的命题的序号是________. ①长度相等、方向相同的两个向量是相等向量; ②平行且模相等的两个向量是相等向量; ③若a ≠b ,则|a |≠|b |;④两个向量相等,则它们的起点与终点相同. 答案 ①解析 根据向量的定义,知长度相等、方向相同的两个向量是相等向量,①正确;平行且模相等的两个向量可能是相等向量,也可能是相反向量,②不正确;当a =-b 时,也有|a |=|b |,③不正确;只要模相等、方向相同,两个向量就是相等向量,与向量的起点和终点无关,④不正确.综上可知只有①正确. 二、空间向量的加减运算例2 如图,已知长方体ABCD -A ′B ′C ′D ′,化简下列向量表达式,并在图中标出化简结果的向量.(1)AA ′—→-CB →; (2)AA ′—→+AB →+B ′C ′———→.解 (1)AA ′—→-CB →=AA ′—→-DA →=AA ′—→+AD →=AA ′—→+A ′D ′———→=AD ′—→. (2)AA ′—→+AB →+B ′C ′——→=(AA ′—→+AB →)+B ′C ′———→=AA ′—→+A ′B ′———→+B ′C ′———→ =AB ′—→+B ′C ′———→=AC ′—→. 向量AD ′—→,AC ′—→如图所示.延伸探究试把本例中的体对角线所对应向量AC ′—→用向量AA ′—→,AB →,AD →表示. 解 在平行四边形ACC ′A ′中,由平行四边形法则可得AC ′—→=AC →+AA ′—→, 在平行四边形ABCD 中,由平行四边形法则可得AC →=AB →+AD →. 故AC ′—→=AB →+AD →+AA ′—→.反思感悟 空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.跟踪训练2 (多选)如图,在正方体ABCD -A 1B 1C 1D 1中,下列各式运算结果为BD 1—→的是( )A.A 1D 1—→-A 1A —→-AB →B.BC →+BB 1—→-D 1C 1—→C.AD →-AB →-DD 1—→D.B 1D 1—→-A 1A —→+DD 1—→ 答案 AB解析 A 中,A 1D 1—→-A 1A —→-AB →=AD 1—→-AB →=BD 1—→; B 中,BC →+BB 1—→-D 1C 1—→=BC 1—→+C 1D 1—→=BD 1—→;C 中,AD →-AB →-DD 1—→=BD →-DD 1—→=BD →-BB 1—→=B 1D —→≠BD 1—→;D 中,B 1D 1—→-A 1A —→+DD 1—→=BD →+AA 1—→+DD 1—→=BD 1—→+AA 1—→≠BD 1—→.故选AB. 三、空间向量的线性运算例3 在空间四边形ABCD 中,G 为△BCD 的重心,E ,F ,H 分别为边CD ,AD 和BC 的中点,化简下列各表达式. (1)AG →+13BE →+12CA →;(2)12(AB →+AC →-AD →).解 (1)因为G 是△BCD 的重心,所以|GE →|=13|BE →|,所以13BE →=GE →,又因为12CA →=EF →,所以由向量的加法法则,可知AG →+13BE →+12CA →=AG →+GE →+EF →=AE →+EF →=AF →.从而AG →+13BE →+12CA →=AF →.(2)如图所示,分别取AB ,AC 的中点P ,Q ,连接PH ,QH ,则四边形APHQ 为平行四边形,且有12AB →=AP →,12AC →=AQ →,而AP →+AQ →=AH →,12AD →=AF →,所以12(AB →+AC →-AD →)=AP →+AQ →-AF →=AH →-AF →=FH →.反思感悟 利用数乘运算进行向量表示的注意点(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙利用线段的中点进行解题.跟踪训练3 在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点.若A 1B 1—→=a ,A 1D 1—→=b ,A 1A —→=c ,则下列向量中与B 1M —→相等的向量是( )A .-12a +12b +cB.12a +12b +c C.12a -12b +c D .-12a -12b +c答案 A解析 B 1M —→=B 1B —→+BM →=A 1A —→+12(BA →+BC →)=c +12(-a +b )=-12a +12b +c .1.“两个非零空间向量的模相等”是“两个空间向量相等”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件 答案 B2.向量a ,b 互为相反向量,已知|b |=3,则下列结论正确的是( ) A .a =bB .a +b 为实数0C .a 与b 方向相同D .|a |=3答案 D解析 向量a ,b 互为相反向量,则a ,b 模相等,方向相反,故选D. 3.设A ,B ,C 是空间任意三点,下列结论错误的是( ) A.AB →+BC →=AC → B.AB →+BC →+CA →=0 C.AB →-AC →=CB → D.AB →=-BA → 答案 B4.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( ) A .平行四边形 B .空间四边形 C .等腰梯形 D .矩形答案 A解析 ∵AO →+OB →=DO →+OC →, ∴AB →=DC →.∴AB →∥DC →且|AB →|=|DC →|. ∴四边形ABCD 为平行四边形.5.化简:5(3a -2b )+4(2b -3a )=________. 答案 3a -2b1.知识清单: (1)向量的概念.(2)向量的线性运算(加法、减法和数乘). (3)向量的线性运算的运算律. 2.方法归纳:三角形法则、平行四边形法则、数形结合思想. 3.常见误区:对空间向量的理解应抓住向量的“大小”和“方向”两个要素,并注意它是一个“量”,而不是一个数.1.(多选)下列说法中,正确的是( ) A .模为0是一个向量方向不确定的充要条件B .若向量AB →,CD →满足|AB →|=|CD →|,AB →与CD →同向,则AB →>CD →C .若两个非零向量AB →,CD →满足AB →+CD →=0,则AB →,CD →互为相反向量 D.AB →=CD →的充要条件是A 与C 重合,B 与D 重合 答案 AC解析 A 正确,模不为0的向量方向是确定的. B 错误,向量的模可以比较大小,但向量不能比较大小. C 正确,由AB →+CD →=0,得AB →=-CD →,所以AB →,CD →互为相反向量.D 错误,AB →=CD →的充要条件是|AB →|=|CD →|,且AB →,CD →同向.但A 与C ,B 与D 不一定重合. 2.化简PM →-PN →+MN →所得的结果是( ) A.PM → B.NP → C .0 D.MN →答案 C解析 PM →-PN →+MN →=NM →+MN →=NM →-NM →=0,故选C. 3.在空间四边形OABC 中,OA →+AB →-CB →等于( ) A.OA → B.AB → C.OC →D.AC →答案 C4.在正方体ABCD -A 1B 1C 1D 1中,下列选项中化简后为零向量的是( ) A.AB →+A 1D 1—→+C 1A 1—→ B.AB →-AC →+BB 1—→ C.AB →+AD →+AA 1—→ D.AC →+CB 1—→答案 A解析 在A 选项中,AB →+A 1D 1—→+C 1A 1—→=(AB →+AD →)+CA →=AC →+CA →=0. 5.如果向量AB →,AC →,BC →满足|AB →|=|AC →|+|BC →|,则( ) A.AB →=AC →+BC → B.AB →=-AC →-BC → C.AC →与BC →同向 D.AC →与CB →同向 答案 D6.设A ,B ,C ,D 为空间任意四点,则AC →-BC →+BD →=________. 答案 AD →解析 AC →-BC →+BD →=AC →+CB →+BD →=AD →.7.在正方体ABCD -A 1B 1C 1D 1中,化简AB →-CD →+BC →-DA →的结果是________. 答案 2AC →解析 AB →-CD →+BC →-DA →=AB →+BC →+DC →-DA →=AC →+AC →=2AC →.8.已知向量a ,b ,c 互相平行,其中a ,c 同向,a ,b 反向,|a |=3,|b |=2,|c |=1,则|a +b +c |=________. 答案 29.如图所示的是平行六面体ABCD -A 1B 1C 1D 1,化简下列各式:(1)AB →+AD →+AA 1→; (2)DD 1—→-AB →+BC →.解 (1)AB →+AD →+AA 1—→=AC →+AA 1—→=AC 1—→.(2)DD 1—→-AB →+BC →=AA 1—→-AB →+BC →=BA 1—→+BC →=BD 1—→.10.如图所示,已知空间四边形ABCD ,连接AC ,BD ,E ,F ,G 分别是BC ,CD ,DB 的中点,请化简:AB →+BC →+CD →,AB →+GD →+EC →,并标出化简结果的向量.解 AB →+BC →+CD →=AC →+CD →=AD →.因为E ,F ,G 分别为BC ,CD ,DB 的中点, 所以BE →=EC →,EF →=GD →.所以AB →+GD →+EC →=AB →+EF →+BE →=AF →. 故所求向量为AD →,AF →,如图所示.11.已知空间中任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A.DB → B.AB → C.AC → D.BA →答案 D解析 方法一 DA →+CD →-CB →=(CD →+DA →)-CB →=CA →-CB →=BA →. 方法二 DA →+CD →-CB →=DA →+(CD →-CB →)=DA →+BD →=BA →.12.在三棱锥A -BCD 中,E 是棱CD 的中点,且BF →=23BE →,则 AF →等于( )A. 12AB →+34AC →-34AD →B. AB →+34AC →-34AD →C .-5AB →+3AC →+3AD →D.13AB →+13AC →+13AD → 答案 D解析 因为 E 是棱 CD 的中点,BF →=23BE →,所以 AF →=AB →+BF →=AB →+23BE →=AB →+23(AE →-AB →)=23AE →+13AB →=13(AC →+AD →)+13AB →=13AB →+13AC →+13AD →. 13.在直三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B →=________. 答案 -c -a +b 解析 如图,A 1B —→=B 1B —→-B 1A 1—→=B 1B —→-BA →=-CC 1—→-(CA →-CB →) =-c -(a -b )=-c -a +b .14.如图,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.(1)化简A 1O —→-12AB →-12AD →=________.(2)用AB →,AD →,AA 1—→表示OC 1—→,则OC 1—→=________. 答案 (1)A 1A —→ (2)12AB →+12AD →+AA 1—→解析 (1)A 1O —→-12AB →-12AD →=A 1O —→-12(AB →+AD →)=A 1O —→-AO →=A 1O —→+OA →=A 1A —→.(2)因为OC →=12AC →=12(AB →+AD →),所以OC 1—→=OC →+CC 1—→=12(AB →+AD →)+AA 1—→=12AB →+12AD →+AA 1—→.15.在平行六面体ABCD -A ′B ′C ′D ′中,若AC ′——→=xAB →+y 2BC →+z 3CC ′——→,则x +y +z =________.答案 6解析 在平行六面体ABCD -A ′B ′C ′D ′中,AC ′——→=AB →+BC →+CC ′——→,又AC ′——→=xAB →+y 2BC →+z 3CC ′——→, ∴⎩⎪⎨⎪⎧ x =1,y 2=1,z 3=1,∴⎩⎪⎨⎪⎧ x =1,y =2,z =3,∴x +y +z =6.16.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1—→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)A 1N —→;(3)MP →.解 (1)∵P 是C 1D 1的中点,∴AP →=AA 1—→+A 1D 1——→+D 1P —→=a +AD →+12D 1C 1——→ =a +c +12AB →=a +c +12b . (2)∵N 是BC 的中点,∴A 1N —→=A 1A —→+AB →+BN →=-a +b +12BC → =-a +b +12AD →=-a +b +12c . (3)∵M 是AA 1的中点,∴MP →=MA →+AP →=12A 1A —→+AP → =-12a +⎝⎛⎭⎪⎫a +c +12b =12a +12b +c .。
第一章 空间向量与立体几何(6)+答案解析(附后)

第一章空间向量与立体几何单元 2 空间向量在立体几何中的应用B卷关键能力全优一、单选题(本大题共6小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1.已知,,、分别是平面、的法向量,则平面,的位置关系是( )A. 平行B. 垂直C. 所成的二面角为锐角D. 所成的二面角为钝角2.若是平面的一个法向量,且,都与平面平行,则向量等于( )A. B. C. D.3.若两异面直线与的方向向量分别是,,则异面直线与的夹角为( )A. B. C. D.4.直三棱柱中,,,则直线与平面所成角的大小为( )A. B. C. D.5.设空间直角坐标系中有A、B、C、D四个点,其坐标分别为、、、,下列说法正确的是( )A. 存在唯一的一个不过点A、B的平面,使得点A和点B到平面的距离相等B. 存在唯一的一个过点C的平面,使得,C. 存在唯一的一个不过A、B、C、D四点的平面,使得,D. 存在唯一的一个过C、D两点的平面,使得直线AB与平面的夹角的正弦值为6.若二面角为,直线平面,直线平面,直线m,n所成的角为,则的取值范围是( )A. B. C. D.二、多选题(本大题共3小题,共15分。
在每小题有多项符合题目要求)7.设向量是空间一个基底,则下列说法正确的是( )A. 若,,则B. ,,两两共面,但,,不可能共面C. 对空间任一向量,总存在有序实数组,使D. 一定能构成空间的一个基底8.如图,在长方体中,,点P为线段上的动点,则下列结论正确的是( )A. 当时,,P,D三点共线B. 当时,C. 当时,平面D. 当时,平面9.在正方体中,点M在线段上运动,则( )A.直线平面B. 三棱锥的体积为定值C. 异面直线AM与所成角的取值范围是D. 直线与平面所成角的正弦值的最大值为三、填空题(本大题共3小题,共15分)10.平面的一个法向量是,点在平面内,则点到平面的距离为__________.11.如图,二面角等于,A、B是棱l上两点,AC、BD分别在半平面、内,,,且,则CD的长等于__________.12.设圆锥的轴截面为等边三角形,P为圆锥顶点,O为底面圆圆心,AB是底面圆的一条直径,C是底面圆上一点,且,D为AC的中点,则直线OC和平面PAC所成角的正弦值为__________.四、解答题(本大题共4小题,共48分。
高二数学选修2-1第三章 空间向量与立体几何练习题及答案

第三章 空间向量与立体几何空间向量的数乘运算 测试题姓名:_________班级:________ 得分:_______ 1. 下列命题中不正确的命题个数是( )①若A 、B 、C 、D 是空间任意四点,则有AB +BC + CD +DA =0;②对空间任意点O 与不共线的三点A 、B 、C ,若OP =x OA +y OB +z OC (其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面;③若a 、b 共线,则a 与b 所在直线平行。
A .1B .2C .3D .42.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )A .(41,41,41) B .(43,43,43) C .(31,31,31) D .(32,32,32) 3.在平行六面体ABCD -EFGH 中,AG xAC y AF z AH =++,________.x y z ++=则4.已知四边形ABCD 中,AB =a -2c ,CD =5a +6b -8c ,对角线AC 、BD 的中点分别为E 、F ,则EF =_____________.5.已知矩形ABCD ,P 为平面ABCD 外一点,且P A ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分PC 成定比2,N 分PD 成定比1,求满足MN xAB y AD z AP =++的实数x 、y 、z 的值.§3.1.3空间向量的数量积运算1.已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 重点,则异面直线BE 与1CD 所形成角的余弦值为( ) A .1010 B . 15 C .31010 D . 352.如图,设A ,B ,C ,D 是空间不共面的四点,且满足0AB AC ⋅=,0AC AD ⋅=,0AB AD ⋅=,则△BCD 的形状是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定的_ C _ D _ A _ P_ N _ B_ M3.已知ABCD -A 1B 1C 1D 1 为正方体,则下列命题中错误的命题为__________.;221111111①(A A+A D +A B )=3(A B )()0;C ⋅-=1111②A A B A A 60;︒11向量与向量的夹角为AD A B ③ ⋅⋅11111立方体ABCD-A B C D 的体积为|AB AA AD |;④4.如图,已知:平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60° (1)证明:C 1C ⊥BD ; (2)当1CDCC 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.已知向量(2,2,3)OA =-,(,1,4)OB x y z =-,且平行四边形OACB 的对角线的中点坐标为M 31(0,,)22-,则(,,)x y z =( ) A .(2,4,1)--- B .(2,4,1)-- C .(2,4,1)-- D .(2,4,1)--2.已知(2,2,4)a =-,(1,1,2)b =-,(6,6,12)c =--,则向量、、a b c ( ) A .可构成直角三角形 B .可构成锐角三角形 C .可构成钝角三角形 D .不能构成三角形3.若两点的坐标是A (3cosα,3sinα,1),B (2cosθ,2sinθ,1),则|AB |的取值范围是( )A .[0,5]B .[1,5]C .(1,5)D .[1,25] 4.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a 的值为 . 5.如图,正三棱柱ABC -A 1B 1C 1的底边长为a ,侧棱长为2a .建立适当的坐标系,⑴写出A ,B ,A 1,B 1的坐标;⑵求AC 1与侧面ABB 1A 1所成的角.3.2立体几何中的向量方法1.到一定点(1,0,1)的距离小于或等于2的点的集合为( ) A .222{(,,)|(1)(1)4}x y z x y z -++-≤ B .222{(,,)|(1)(1)4}x y z x y z -++-= C .222{(,,)|(1)(1)2}x y z x y z -++-≤ D .222{(,,)|(1)(1)2}x y z x y z -++-=C 1 B 1 A 1B A2. 正方体ABCD —A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值为( ) A .42 B .32 C .33 D .23 3. 已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥.(1)求证:1AC ⊥平面1A BC ; (2)求1C 到平面1A AB 的距离; (3)求二面角1A A B C --余弦值的大小.B 4. 如图,在直三棱柱111ABC A B C -中, AB =1,13AC AA ==,∠ABC =60°. (1)证明:1AB A C ⊥;(2)求二面角A —1A C —B 的大小.5. 如右图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱S D 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求二面角P-AC-D 的大小 (3)在(2)的条件下,侧棱S C 上是否存在一点E , 使得BE ∥平面P AC .若存在,求S E :EC 的值; 若不存在,试说明理由.参考答案第三章 空间向量与立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算§3.1.2空间向量的数乘运算1.A2.A3.324.3a +3b -5c5.如图所示,取PC 的中点E ,连结NE ,则MN EN EM =-.∵1122EN CD BA ===12AB -,CBA C 1B 1 A1 D 1C 1B 1A 1DABC_ C_ D_ A_S_ F_ B_ P_ N_ EEN PM PE =-=211326PC PC PC -=,连结AC ,则PC AC AP AB AD AP =-=+- ∴11()26MN AB AB AD AP =--+-=211366AB AD AP --+,∴211,,366x y z =-=-=.§3.1.3空间向量的数量积运算1.C2.B3. ③④4.(1)设1,,CB a CD b CC c === ,则||||a b =,BD CD CB b a =-=- ,所以1()||||cos 60||||cos 600CC b a c b c a c b c a c ⋅=-⋅=⋅-⋅=︒-︒=BD ,11BD CC BD CC ∴⊥⊥即 ;(2)1,2,CD x CD CC ==1设则 2CC =x, 111,BD AA C C BD A C ⊥∴⊥ 面 ,11:0x AC CD ∴⋅= 只须求满足, 设1,,A A a AD b DC c ===,11,A C a b c C D a c =++=-,2211242()()6A C C D a b c a c a a b b c c xx ∴⋅=++⋅-=+⋅-⋅-=+-, 令24260x x+-=,则2320x x --=,解得1x =,或23x =-(舍去),111,.A C C BD ∴=⊥1CD时能使平面CC §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.A2.D3.B4.165. (1)建系如图,则A (0,0,0) B (0,a ,0)A 1(0,0,2a ),C 1(-23a ,a 2,2a) (2)解法一:在所建的坐标系中,取A 1B 1的中点M , 于是M (0,a 2,2a),连结AM ,MC 1 则有1(,0,0)2MC =-(0,,0)AB a=,1)AA =, ∴10MC AB ⋅=,110MC AA ⋅=,所以,MC 1⊥平面ABB 1A 1.因此,AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角.1(,)2a AC =-,(0,)2aAM =,A∴2194a AC AM ⋅=,而|13||3,||2AC a AM a ==,由cos<1,AC AM >=1132||||AC AM AC AM ⋅=,∴ <1,AC AM >=30°.∴AC 1与侧面ABB 1A 1所成的角为30°.3.2立体几何中的向量方法1.A2.C3.(1)如右图,取AB 的中点E ,则//DE BC ,因为BC AC ⊥, 所以DE AC ⊥,又1A D ⊥平面ABC , 以1,,DE DC DA 为,,x y z 轴建立空间坐标系, 则()0,1,0A -,()0,1,0C ,()2,1,0B ,()10,0,A t ,()10,2,C t ,()10,3,AC t =,()12,1,BA t =--,()2,0,0CB =,由10AC CB ⋅=,知1A C CB ⊥, 又11BA AC ⊥,从而1AC ⊥平面1A BC .(2)由1AC ⋅2130BA t =-+=,得3t = 设平面1A AB 的法向量为(),,n x y z =,(13AA =,()2,2,0AB =,所以130220n AA y z n AB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,设1z =,则()3,3,1n =-, 所以点1C 到平面1A AB 的距离1AC n d n⋅==221. (3)再设平面1A BC 的法向量为(),,m x y z =,(10,3CA =-,()2,0,0CB =, 所以13020m CA y z m CB x ⎧⋅=-+=⎪⎨⋅==⎪⎩,设1z =,则()0,3,1m =, 故cos ,m n m n m n⋅<>==⋅77-,根据法向量的方向, 可知二面角1A A B C --7. 4.(1)三棱柱111ABC A B C -为直三棱柱,11AB AA AC AA ∴⊥⊥,,Rt ABC ∆,1,3,60AB AC ABC ==∠=︒,由正弦定理030ACB ∠=.090BAC ∴∠=AB AC ⊥即 .如右图,建立空间直角坐标系,则 1(0,0,0),(1,0,0)(0,3,0),(0,0,3)A B C A1(1,0,0),(0,3,3)AB AC ∴==, 110030(3)0AB AC ⋅=⨯+⨯+⨯-=, 1AB A C ∴⊥.(2) 如图可取(1,0,0)m AB ==为平面1AA C 的法向量, 设平面1A BC 的法向量为(,,)n l m n =, 则10,0,130BC n AC n BC ⋅=⋅==-又(,,), 303,330l m l m n m m n ⎧-+=⎪∴∴==⎨-=⎪⎩. 不妨取1,(3,1,1)m n ==则,22222231101015cos ,5(3)11100m n m n m n ⋅⨯+⨯+⨯<>===⋅++⋅++.1A AC BD ∴--15二面角的大小为arccos 5. 5. (1)连结BD ,设AC 交于BD 于O ,由题意知SO ABCD ⊥平面.以O 为坐标原点,OB OC OS ,,分别为x 轴、y 轴、z 轴正方向,建立坐标系O xyz -如右图.设底面边长为a ,则高62SO a =.于是 62(0,0,),(,0,0)22S a D a -,2(0,,0)2C a ,2(0,,0)2OC a =,26(,0,)2SD a =-,0OC SD ⋅= ,故OC SD ⊥.从而 AC SD ⊥. _ C_ A_S_ F_ BO(2)由题设知,平面PAC 的一个法向量(,0,)22DS a a =,平面DAC 的一个法向量002OS =(,,),设所求二面角为θ,则cos 2OS DS OS DSθ⋅==,得所求二面角的大小为30°. (3)在棱SC 上存在一点E 使//BE PAC 平面.由(2)知DS 是平面PAC 的一个法向量,且,0,),(0,,)2222DS a a CS a a ==-(.设,CE tCS = 则(,(1),)222BE BC CE BC tCS a t at =+=+=--,而 103BE DC t ⋅=⇔=.即当:2:1SE EC =时,BE DS ⊥.而BE 不在平面PAC 内,故//BE PAC 平面.(完)。
空间向量与立体几何-答案解析

,
AB 则{
1
⋅
n
=0
− 即{
3x − y + 3z = 0 , 取z = 1,则x =
3,得 n = ( 3, 0, 1),
B1C1 ⋅ n = 0 2y = 0
∵ cos⟨BB1 ,
n⟩ =
BB1 ⋅ n ∣∣∣BB1 ∣∣∣ ∣∣∣ n ∣∣∣
=
3 3×2
=
1 ,
2
1 ∴ BB1与平面AB1C1所成的角的正弦值为 2 ,
3,
2 2
).
故cos ⟨AE, CF ⟩ =
AE ⋅ CF ∣∣∣AE∣∣∣ ∣∣∣CF ∣∣∣
=−
3. 3
3 所以直线AE与直线CF 所成角的余弦值为 3 .
例题4
1
【答案】 3 3
【解析】在矩形ACC1A1中,∵ AC1⊥平面A1BD,∴ AC1⊥A1D,可知△A1AD ∼ △ACC1,
AC 则
可得AC1 = (−2, 2, 2),A1E = (−2, 2, −1).
由题意可知AC 1 即为平面A1 B D 的一个法向量, 设A1 E与平面A1 B D 所成的角为θ ,
则sin θ
=
∣∣cos⟨AC ∣
1
,
A1
E⟩∣∣ ∣
=
AC1 ⋅ A1E ∣∣∣AC1∣∣∣ ⋅ ∣∣∣A1E∣∣∣
=
2
可得A (0, − 3, 0),C (0, 3, 0),
由BE⊥平面ABCD,AB = BC,可知AE = EC.
又AE⊥EC,所以EG = 3,且EG⊥AC.
在Rt△EBG中,可得BE =
2,故DF =
2. 2
所以E (1, 0, 2),F (−1, 0, 2 ), 2
单元复习01 第一章 空间向量与立体几何【过知识】

) D.4 个
2 重点题型
(2)已知正四棱锥 P-ABCD,O 是正方形 ABCD 的中心,Q 是 CD 的中点,求下列各式中 x,y,z 的值.
①O→Q=P→Q+yP→C+zP→A; ②P→A=xP→O+yP→Q+P→D.
2 重点题型
[思路探究] (1)合理根据向量的三角形和平行四边形法则,以及 在平行六面体中,体对角线向量等于从同一起点出发的三条棱向量的 和.如A→C1=A→B+A→D+A→A1.
2 重点题型
在几何体中求空间向量的数量积的步骤 1首先将各向量分解成已知模和夹角的向量的组合形式. 2利用向量的运算律将数量积展开,转化成已知模和夹角的向 量的数量积. 3根据向量的方向,正确求出向量的夹角及向量的模. 4代入公式a·b=|a||b|cos〈a,b〉求解.
2 重点题型
跟踪训练 如图所示,在平行六面体ABCD-A1B1C1D1中,以顶 点A为端点的三条棱长度都为1,且两两夹角为60°. ①求—AC→1 的长; 解 记A→B=a,A→D=b,—AA→1 =c,则|a|=|b|=|c|=1,
2 重点题型
1.空间向量加法、减法运算的两个技巧 (1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、 减法的关键,灵活运用相反向量可使向量首尾相接. (2)巧用平移:利用三角形法则和平行四边形法则进行向量加、 减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向 量的自由平移获得运算结果.
A.-2 B.2 C.-2 3 D.2 3
(2)在四面体OABC中,棱OA,OB,OC两两垂直,且OA=1, OB=2,OC=3,G为△ABC的重心,求O→G·(O→A+O→B+O→C)的值.
2 重点题型
(1)A [∵C→D=A→D-A→C,∴A→B·C→D=A→B·(A→D-A→C)=A→B·A→D- A→B·A→C=0-2×2×cos 60°=-2.]
必修2立体几何+选修2-1空间向量专题复习学案:空间向量与立体几何(含答案,可直接打印)

专题复习:空间向量与立体几何题型一:空间几何体的三视图、表面积和体积1.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()2.如图是某几何体的三视图,则该几何体的体积为()A.9π+42 B.36π+18C.92π+12 D.92π+183.如果圆锥的侧面展开图半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是()A.︒30 B.︒45 C.︒60 D.︒904.球的体积与其表面积的数值相等,则球的半径等于.5.如图是某几何体的三视图,其中正视图为正方形,俯视图是腰长为2的等腰直角三角形,则该几何体的体积是.6.一个水平放置的平面图形的斜二测直观图是一个底角为︒45,腰和上底均为1的等腰梯形,则这个平面图形的面积等于.题型二:空间向量的运算及坐标表示1.已知空间四边形OABC,其对角线OB、AC,M、N分别是边OA、CB的中点,点G在线段MN上,且使MG=2GN,用向量,,OA OB OC表示向量OG是()A.2233OG OA OB OC=++; B.122233OG OA OB OC=++;C.111633OG OA OB OC=++D.112633OG OA OB OC=++2、给出下列命题①已知a b⊥,则()()a b c c b a b c⋅++⋅-=⋅;②A、B、M、N为空间四点,若,,BA BM BN不构成空间的一个基底,则A、B、M、N共面;③已知a b⊥,则,a b与任何向量不构成空间的一个基底;④已知{},,a b c是空间的一个基底,则基向量,a b可以与向量m a c=+构成空间另一个基底.正确命题个数是()A.1 B.2 C.3 D.43、已知平行四边形ABCD中,A(4,1,3)、B(2,-5,1)、C(3,7,-5),则D的坐标为( )A.)1,4,27(-B.(2,3,1) C.(-3,1,5) D.(5,13,-3)4、1,2,,a b c a b===+且c a⊥,则向量a b与的夹角为()A.30︒B.60︒C.120︒D.150︒5.若A)1,2,1(-,B)3,2,4(,C)4,1,6(-,则△ABC的形状是()A.不等边锐角三角形B.直角三角形C.钝角三角形D.等边三角形6.若向量)2,1,2(),2,,1(-==baλ,且a 与b的夹角余弦为98,则λ等于()A.2B.2-C.2-或552D.2或552-7.空间四边形OABC中,OB OC=,3AOB AOCπ∠=∠=,则cos<,OA BC>的值是()A.21B.22C.-21D.08.已知,是空间二向量,若与则,7||,2||,3||=-==的夹角为 .题型三:空间向量在立体几何中的应用例1如图,在棱长为2的正方体ABCD-A1B1C1D1中,M为BC的中点,N为AB的中点,P为BB1的中点.(Ⅰ)求证:BD1⊥B1C;(Ⅱ)求证:BD1⊥平面MNP.变式1、已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=AF=1,M是线段EF的中点.(1)求证:AM//平面BDE;(2)求证:AM⊥平面BDF.例2、如图,四边形ABCD 是正方形,PB ⊥平面ABCD ,MA//PB ,PB=AB=2MA , (Ⅰ)证明:AC//平面PMD ;(Ⅱ)求直线BD 与平面PCD 所成的角的大小;(Ⅲ)求平面PMD 与平面ABCD 所成的二面角(锐角)的正弦值变式2(1)如图,底面ABCD 为矩形,侧棱P A ⊥底面ABCD ,3=AB ,BC =1,P A =2,则直线AC 与PB 所成角的余弦值(2)如图,正三棱柱111ABC A B C -的所有棱长都为2, D 为1CC 中点.(Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --余弦值的大小例3、如图所示,在底面是菱形的四棱锥P-ABCD 中,∠ABC=60︒,PA=AC=a,,点E 在PD 上,且PE :ED=2:1. (1)证明:PA ⊥平面ABCD ; (2)求以AC 为棱,EAC 与DAC 为面的二面角θ的大小; (3)棱PC 上是否存在一点F,使BF ∥平面AEC?证明你的结论. 例4已知斜三棱柱111ABC A B C -,90BCA ∠= ,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥。
(完整word版)空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题一、选择题1 •若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量 的终点构成的图形是()A. —个圆 E. —个点 C.半圆 D.平行四边形答案:A2 .在长方体 ABCD -ABQD i 中,下列关于 AG 的表达中错误的一个是( )答案:E3.若a , b, c 为任意向量, A. (a 亠b ) c =a - (b c )B. (a 亠b )・c =a ・c b-cC.m(a 亠 b ) =m a 亠 m bD. (a ・b )・c=a ・( b-c ) 答案:D1A. 1B. -1C.丄D -22答案:BA.B. AB DD^ De lC. AD CC 1 DC 1D.1(AB i CD i ) - AC im R ,下列等式不一定成立的是(4.若三点A B , e 共线,P 为空间任意一点, 且 PA 叱iPB = 1 PC ,^y - 的值为5. 设 a =(x,4,3), b= (3,2, z),且 a II b , A. -4 B. 9 C. -9答案:B6 . 已知非零向量 e b e 2不共线, 如果A B, C , D ( )A. 一定共圆则四点亠A DB.恰是空间四边形的四个顶点心C. 一定共面D. 肯定不共面答案:C则xz 等于(AB = e AC =2 e 2 8 e AD =3 e -3 e 2,答案:B则x, y , z 的值分别为( )9 .若向量a =(1, ,2)与b= (2, -1,2)的夹角的余弦值为答案:c答案:D12.给出下列命题:① 已知 a _b ,则 a-(b c ) c-(b a ) =b c ;② A, B, M , N 为空间四点,若BA,B M ,BN 不构成空间的一个基底, 那么A , B, M , N 共面; ③ 已知a_b ,则a , b 与任何向量都不构成空间的一个基底; ④ 若a, b 共线,则a, 正确的结论的个数为(A. 1B. 2 答案:C 二、填空题13.已知 a =(3,15), b = (1,2,3),向量 c 与 z 轴垂直,且满足 c-a = 9, c-b - -4,则 c =7.如图1空间四边形 ABCD 的四条边及对 角线长都是a ,点E , F , G 分别是AB, AD , CD 的中点,贝U a 2等于() B. 2AD-BD C. 2FG-CAD. 8 .右 a = e e 2 - e 3, b =e ^ - e 2 ■ e 3, c =e<i • e 2 — e 3,d =e 2 e 2 3 e ,且 d = x a y b z c ,1.1,2 5 厶D1 - 1「25 /1 - 1「2 5 ~1 - 2-A. 2B. -2C.-2或—55D. 2 或-5510 •已知ABCD 为平行四边形,且A(413),A. -,4,12答案:DB. (2,4,1) 11 .在正万体 ABCD - A| B 1C 1D 1 中,A. 60°B. 90°B(2,— 5,1), C(3,7, -5),则顶点D 的坐标为(C. (24,1)D. (513, -3)O 为AC , BD 的交点,则 C品C. arccos ——3GO 与AD 所成角的(D. arccos ——6b 所在直线或者平行或者重合.)D. 4A. 2EF-CB答案:22, -21 , 0 5 514.已知A B, C 三点不共线,O 为平面ABC 外一点,若由向量 ■ OC 确5 3 定的点P 与A, B, C 共面,那么,二 ____________ . 答案:-1515.已知线段 AB_面〉,BC 二卅,CD _BC , DF _ 面〉于点 F , / DCF =30°,且 D , A 在平面:-的同侧,若 AB =BC 二CD =2,则AD 的长为 ____________________ . 答案:2 216.在长方体ABCD —ABQ i D i 中,BQ 和CQ 与底面所成的角分别为 60°和45°,则异面直 线BC 和CQ 所成角的余弦值为 _____________________ . 答案:—4 三、解答题17 .设 a t =2i - j +K 逊=i +3 j -2 k 爲=-2 i + j 弋 k a =3 i +2 j +5 k,试问是否存在实 数-,7,使a 4 a 「;[_a 2 •a 3成立?如果存在,求出 \ ;如果不存在,请写出证明.答案:解:假设a 4 = ■ a^ ''a 2亠、.①成立. •- a 1 =(2, -1,1), a 2 =(13, -2), a 3 =(-21,3), a^(3,2,5), ••• (2 •-2、,-,3二朕:,• -2」- 3、)=(3,2,5).◎人+4-2v=3, j\ = -2, •. -2,解得」=1,■ -2」-3.. =5,- -3.所以存在,=-2, " =1 , v = -3 使得 a 4 = -2a 1 a 2 -3a 3. 理由即为解答过程.18 .如图2,正三棱柱AB^ -A 1B 1C 1的底面边长为a ,侧棱长为 所成的角.解:建立如图所示的空间直角坐标系,则 A(0,0, 0, B(0 , a , 0, A (0,0, V2a) , C 「一亟 a, - , ,7a2 2 由于n = ( -1,0, 0)是面ABB 1A ]的法向量,1*122a ,求AC 1与侧面ABB 1A\故AC i与侧面ABB i A所成的角为30°.19 •如图3,直三棱柱ABC- ABC中,底面是等腰直角三角形, .ACB 二90°,侧棱AA i =2, D, E分别是CC i与AB的中点,点E在平面ABD上的射影是求点A i到平面AED的距离. △ ABD的重心G ,解:建立如图所示的空间直角坐标系,设CA=2a ,则A(2a,0,0, B(0,2a,0, D(0,0,1), A(2a,0,2) E(a, a,),-(0 , -2a,1).由GE_BD=GE・BD=0,得a=1,则A i(2,0,2) A(2,0,0) E(1,1,1).自A1作AH —面AED于M,并延长交xOy面于H,设H (x, y,0), —I则AH =(x —2, y, -2).又AD =(-2,0,1) , AE =(—1,1,1).丄AH _AD, —2(x—2)—2=0, x =1, ZR由1得H (1,1,0)."H _ AE -(x -2) y -2 =0 y =1,又AM =A1A90s A1AAM = AA^cos A1AAH =2 —=20.已知正方体ABCD -ABGD1的棱长为2, P, Q分别是BC, CD上的动点,且PQ = . 2 ,确定P, Q的位置,使QB1 _PD . 解:建立如图所示的空间直角坐标系,设BP =t ,得CQ = 2 -(2 -t)2, DQ =2 - 2 -(2 -t)2.那么B(2,0, 2) D1(0,2,2, P(2 , , 0) Q(2 - 2-(2-t)2,2,0),从而QB =( 2 -(2 -t)2, -2 ,2) , PD1 =(22 -t,2),T —+由QB _ PD = QB^PD t =0 ,即-2 2 -(2 -t)2 -2(2 -t) 4 =0二t =1 .故P, Q分别为BC, CD的中点时,QB i _PD i .21.如图4,在底面是直角梯形的四棱锥S—ABCD中,.ABC=90°,SA_面ABCD ,1SA二AB二BC =1, AD ,求面SCD与面SBA所成二面角的正切2值.解:建立如图所示的空间直角坐标系,(1\则A(0,0,0, B(—1,0,0, C(—1,1,0) D .0, 2 0 , S(0,0,1).延长CD交x轴于点F ,易得F(1,0, 0),作AE _SF于点E ,连结DE ,则ZDEA即为面SCD与面SBA所成二面角的平面角.又由于SA二AF且SA_AF,得E -€5那么从而乩一1,°,」,ED…丄,1,V 2 2 丿V 2 2cos EA, EDEA-ED因此tan EAF , ED 二彳.故面SCD与面SBA所成二面角的正切值为22.平行六面体ABCD -A1B1C1D1的底面ABCD是菱形,且.GCB =. GCD = BCD ,试问:CD的值为多少时,AQ _面GBD ?请予以证明.当CG解:欲使AQ _面GBD ,只须AC _GD ,且AC _GB .欲证AC丄GD ,只须证CA・CD =0 ,t —t T 即(CA AA)・(CD -CG) =0 ,也就是(CD CB CC)(CD _CCJ =0,|C^2 -|C CJ2+|CB|C D|COS^BCD由于• GCB =/BCD , 显然,当CD |CC1时,上式成立;cos _GCB = 0 .同理可得,当时,AC —GB .CD因此,当时, AC _面G BD ..选择题:(10小题共40分)定共面的是2.直三棱柱 ABC — A B i G 中,若 CA = a, CB = b, CC r = C,则 A )B =3.若向量m 垂直向量a 和b ,向量n = ■ a h :b(',」:=只且■、,北0)则A. m 〃 nB. m _ nC. mi 不平行于n,m 也不垂直于nD.以上三种情况都可台匕 冃匕4.以下四个命题中,正确的是C. (a b)c5.对空间任意两个向量 a,b(b o),a//b 的充要条件是6.已知向量a =(0,2,1),b =(-1,1,-2),则a 与b 的夹角为A B i = a, A i D i = b, A A = c ,则下列向量中与B 1M 相等的是1.已知A B C 三点不共线,对平面ABC 外的任一点O,下列条件中能确定点 M 与点A. OM = OA 亠 OB 亠 OCB . OM = 2OA _ OB _ OCC . OM =OA !OB !OC2 3D.OM =1OA 」0B -OC3 3 3A. a b —cB. a — b eC. 一 a b cD. - a b - cA.若00=丄0入+丄0目 则P 、 2 3 'A 、E 三点共线 B.设向量{a,b,c }是空间一个基底,c + a }构成空间的另一个基底D. △ ABC 是直角三角形的充要条件是 AB AC =0A. a 二 bB. a - -bC. b - ■ aA.0 °B.45C.90o.D.180 °7.在平行六面体 ABCD - A 1B 1C 1D 1中,M 为AC 与 BD 的A. -lalb lc B. la 」b 」c C. 2 2 2 28.已知 a =(• 1,0,2 Jb =(6,2」 -1,2),若a 〃b,则•与•啲值分别为9.已知a =3i 2j - k,b = i - j 2k,则5a 与3b 勺数量积等于10.在棱长为1的正方体ABC —A i B i CD 中,M 和N 分别为AB 和BB 的中点,那么直线CN所成角的余弦值是二.填空题:(4 小题共16分)11.若 A(m+1,n-1,3),B(2m,n,m-2n),c(m+3,n-3,9) 12.已知 A(0, 2, 3), B(-2 , 1, 6), C( 1, -1 , 5),若|a |二.3,且a _ AB,a _ AC,则向量 a的坐标为13.已知a,b 是空间二向量,若心|=3,闪|=2扁4卜.7,则a 与b 的夹角为 14.已知点 G 是厶ABC 的重心,O 是空间任一点,若 OA • OB • OC 」OG,贝,的值三.解答题:(10+8+12+14=44 分)15. 如图:ABCD 为矩形,PAL 平面 ABCD PA=AD M N 分别是PC AB 中点,16. 一条线段夹在一个直二面角的两个面内, 它和两个面所成的角都是300,求这条线段与这个二面角的棱所成的角的大小B.5, 2D.-5 , -2-b c 2A.-15B.-5C.-3D.-1AM 与2 B.-5C.35 D 」10三点共线,则 m+n= (1)求证:MN L 平面PCD (2)求NM 与平面 ABCD 所成的角的大小•17. 正四棱锥S—ABCD中,所有棱长都是2, P为SA的中点,如图(1) 求二面角B—SC- D的大小;(2)求DP与SC所成的角的大小18. 如图,直三棱柱ABC-A1B1C1,底面△ ABC中,CA=CB=1 / BCA=90,棱AA=2, M N分别是A1B1, AA的中点;(1)求BN的长;⑵求cos ::: BA1,CB1的值;⑶求证:AB _CM•(4)求CB与平面AABB所成的角的余弦值高中数学选修2-1测试题(10)—空间向量⑴参考答案DDBB DCDA AB 11.0 12.(1 ,1 , 1) 13.60 0 14.315.(1) 略⑵45 016.45 0 17.(1) 1 3⑵18.(1) 3 (2) ■ 30(3) 略(4) 3 1010 1018.如图,建立空间直角坐标系O—xyz. (1 )依题意得B ( 0, 1, 0)、N( 1, 0, 1) •••I BN |= .(1 一0)2(0 一1)2 (1 - 0)2「3.(2) 依题意得A1 (1, 0, 2)、B ( 0, 1 , 0)、C (0, 0, 0)、B…BA ={ —1, —1, 2}, CB1 ={0, 1, 2, }, BA| • CB1 =3,BA. CB 11CB 1 |= J5 ••• cos< BA 1 , CB 1 >=(3)证明:依题意,得 G (0, 0, 2)、M( 1,1,2), A 1B ={ - 1 , 1 , 2} , CM,2 2 1 2 2评述:本题主要考查空间向量的概念及运算的基本知识 .考查空间两向量垂直的充要条件——-1 . 30. |BAJ|CB i |102‘20}. • A , B • C 1M =-1 12+ 2+0=0,AB 丄 C 1M ,• AB 丄CM.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 空间向量与立体几何 【知识要点】 1.空间向量及其运算: (1)空间向量的线性运算: ①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立. ②空间向量的线性运算的运算律: 加法交换律:a+b=b+a; 加法结合律:(a+b+c)=a+(b+c); 分配律:(+)a=a+a;(a+b)=a+b. (2)空间向量的基本定理: ①共线(平行)向量定理:对空间两个向量a,b(b≠0),a∥b的充要条件是存在实数,使得a∥b. ②共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是存在惟一一对实数,,使得c=a+b. ③空间向量分解定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在惟一的有序实数组1,2,3,使得p=1a+2b+3c. (3)空间向量的数量积运算: ①空间向量的数量积的定义:a·b=|a||b|cos〈a,b〉; ②空间向量的数量积的性质: a·e=|a|cos<a,e>;a⊥ba·b=0; |a|2=a·a;|a·b|≤|a||b|. ③空间向量的数量积的运算律: (a)·b=(a·b); 交换律:a·b=b·a; 分配律:(a+b)·c=a·c+b·c. (4)空间向量运算的坐标表示: ①空间向量的正交分解:建立空间直角坐标系Oxyz,分别沿x轴,y轴,z轴的正方向引单位向量i,j,k,则这三个互相垂直的单位向量构成空间向量的一个基底{i,j,k},由空间向量分解定理,对于空间任一向量a,存在惟一数组(a1,a2,a3),使a=a1i+a2j+a3k,那么有序数组(a1,a2,a3)就叫做空间向量a的坐标,即a=(a1,a2,a3). ②空间向量线性运算及数量积的坐标表示: 设a=(a1,a2,a3),b=(b1,b2,b3),则 a+b=(a1+b1,a2+b2,a3+b3);a-b=(a1-b1,a2-b2,a3-b3); a=(a1,a2,a3);a·b=a1b1+a2b2+a3b3.
③空间向量平行和垂直的条件: a∥b(b≠0)a=ba1=b1,a2=b2,a3=b3(∈R); a⊥ba·b=0a1b1+a2b2+a3b3=0. ④向量的夹角与向量长度的坐标计算公式: 设a=(a1,a2,a3),b=(b1,b2,b3),则
;||,||232221232221bbbaaabbbaaa
;||||,cos232221232221332211bbbaaababababababa 在空间直角坐标系中,点A(a1,a2,a3),B(b1,b2,b3),则A,B两点间的距离是 2
.)()()(||233222211bababaAB 2.空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量: ①如图,l为经过已知点A且平行于已知非零向量a的直线,对空间任意一点O,点P在直线l上的
充要条件是存在实数t,使得atOAOP,其中向量a叫做直线的方向向量.
由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l⊥平面,取直线l的方向向量a,则向量a叫做平面的法向量. 由此可知,给定一点A及一个向量a,那么经过点A以向量a为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l,m的方向向量分别是a,b,平面,的法向量分别是u,v,则 ①l∥ma∥ba=kb,k∈R; ②l⊥ma⊥ba·b=0; ③l∥a⊥ua·u=0; ④l⊥a∥ua=ku,k∈R; ⑤∥u∥vu=kv,k∈R; ⑥⊥u⊥vu·v=0. (3)用空间向量解决线线、线面、面面的夹角问题: ①异面直线所成的角:设a,b是两条异面直线,过空间任意一点O作直线a′∥a,b′∥b,则a′与b′所夹的锐角或直角叫做异面直线a与b所成的角.
设异面直线a与b的方向向量分别是v1,v2,a与b的夹角为,显然],2π,0(则
|||||||,cos|212121vvvvvv ②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角. 设直线a的方向向量是u,平面的法向量是v,直线a与平面的夹角为,显然
]2π,0[,则|||||||,cos|vuvuvu
③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作-l-在二面角的棱上任取一点O,在两个半平面内分别作射线OA⊥l,OB⊥l,则∠AOB叫做二面角-l-的平面角. 利用向量求二面角的平面角有两种方法: 方法一: 如图,若AB,CD分别是二面角-l-的两个面内与棱l垂直的异面直线,则二面角-l-的大 3
小就是向量CDAB与的夹角的大小. 方法二: 如图,m1,m2分别是二面角的两个半平面,的法向量,则〈m1,m2〉与该二面角的大小相等或互补.
(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【复习要求】 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示. 2.掌握空间向量的线性运算及其坐标表示. 3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量. 5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】 例1 如图,在长方体OAEB-O1A1E1B1中,OA=3,OB=4,OO1=2,点P在棱AA1上,且AP=2PA1,点S在棱BB1上,且B1S=2SB,点Q,R分别是O1B1,AE的中点,求证:PQ∥RS.
【分析】建立空间直角坐标系,设法证明存在实数k,使得.RSkPQ 解:如图建立空间直角坐标系,则O(0,0,0),A(3,0,0),B(0,4,0),O1(0,0,2),A1(3,0,2),B1(0,4,2),E(3,4,0).
∵AP=2PA1, ∴),34,0,0()2,0,0(32321AAAP
∴)34,0,3(P 4
同理可得:Q(0,2,2),R(3,2,0),)32,4,0(S ,)3
2,2,3(RSPQ
RSPQ//,又RPQ,
∴PQ∥RS. 【评述】1、证明线线平行的步骤: (1)证明两向量共线; (2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可. 2、本体还可采用综合法证明,连接PR,QS,证明PQRS是平行四边形即可,请完成这个证明. 例2 已知正方体ABCD-A1B1C1D1中,M,N,E,F分别是棱A1D1,A1B1,D1C1,B1C1的中点,求证:平面AMN∥平面EFBD.
【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行. 解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D(0,0,0),A(4,0,0),M(2,0,4),N(4,2,4),B(4,4,0),E(0,2,4),F(2,4,4). 取MN的中点K,EF的中点G,BD的中点O,则O(2,2,0),K(3,1,4),G(1,3,4).
MN=(2,2,0),EF=(2,2,0),AK=(-1,1,4),OG=(-1,1,4),
∴MN∥EF,OGAK,∴MN//EF,AK//OG, ∴MN∥平面EFBD,AK∥平面EFBD, ∴平面AMN∥平面EFBD. 解法二:设平面AMN的法向量是a=(a1,a2,a3),平面EFBD的法向量是 b=(b1,b2,b3).
由,0,0ANAMaa
得,042,0423231aaaa取a3=1,得a=(2,-2,1). 由,0,0BFDEbb 得,042,0423132bbbb取b3=1,得b=(2,-2,1). ∵a∥b,∴平面AMN∥平面EFBD. 注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试. 5
例3 在正方体ABCD-A1B1C1D1中,M,N是棱A1B1,B1B的中点,求异面直线AM和CN所成角的余弦值.
解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D(0,0,0),A(2,0,0),M(2,1,2),C(0,2,0),N(2,2,1).
),1,0,2(),2,1,0(CNAM
设AM和CN所成的角为,则,52||||cosCNAMCNAM ∴异面直线AM和CN所成角的余弦值是52 解法二:取AB的中点P,CC1的中点Q,连接B1P,B1Q,PQ,PC. 易证明:B1P∥MA,B1Q∥NC, ∴∠PB1Q是异面直线AM和CN所成的角.
设正方体的棱长为2,易知,6,52211QCPCPQQBPB
∴,522cos11221211QBPBPQQBPBQPB ∴异面直线AM和CN所成角的余弦值是52
【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).
例4 如图,正三棱柱ABC-A1B1C1的底面边长为a,侧棱长为a2,求直线AC1与平面ABB1A1所成角的大小.