(完整word版)数学物理方法总结(改)(word文档良心出品)

合集下载

数学物理方法第三章-精品文档126页

数学物理方法第三章-精品文档126页

解 级数的部分和为
sn

1

z

z2

z k1

1 zk 1 z
,
(z

1)
26
z 1
z 1
lim
k
sk

1 1
z
lim z k 0
k

级数 zk 收敛,
k0

级数 zk 发散.
k0
由阿贝尔定理知: 收敛范围为一单位圆域 z 1,
在此圆域内, 级数绝对收敛, 收敛半径为1,
从某个k开始,
总有
z k
1, 2
于是有
zk kk


1 2
k
,
故该级数对任意的z均收敛. 11
(2) 对所有的正实数除 z=0 外都发散. 此时, 级数在复平面内除原点外处处发散. 例如,级数 1z22z2kkzk
当z0时, 通项不趋于零, 故级数发散. (3) 既存在使级数发散的正实数, 也存在使级数收 敛的正实数.
[证毕]
18
注意:
定理中极限 lim ak1 存在且不为零 . k ak
如果:

1.0, 则级数 ak zk 在复平面内处处收敛 ,
k0
即 R .
2.(极限不存在),
¥
å 则级数 ak zk 对于复平面内除 z = 0以外的一切 k=0
z 均发散, 即 R0.
19
课堂练习 试求幂级数
n p
wk ,
k n1
绝对收敛
式中 p 为任意正整数



若 wk uk2vk2 收敛,则称 w k 绝对收敛

数学物理方法复习整理

数学物理方法复习整理

数学物理方法复习整理数学物理方法一、本课程的教学内容第1章典型数学物理方程及定解问题第2章分离变量法第3章积分变换法第4章行波法和降维法(达朗贝尔法)第5章数理方程差分法第6章格林函数法第7章bessel方程与函数二、章节重点第一章典型的数学和物理方程及定解问题1。

术语解释:(1)定解条件、定解问题、定解问题的适定性;(2).dirichlet、neumann定解问题;(3)傅立叶热传导定律和胡克弹性定律;(4)演化方程,势方程,拉普拉斯方程,泊松方程;2.简述二阶线性偏微分方程的分类方法。

3.推导一维波和热传导方程。

4.写出二阶偏微分方程的特征方程及其特征曲线。

5.书1.4习题:1,3,4,7,8,96.书中示例1.1.1、1.1.3、1.1.6和1.2.1第二章分离变量方法1。

名词解释:(1)特征值、特征函数、sturm-liouville问题;(2)驻波、腹点、节点、基频、固有频率;(3)三角函数系正交性;(4)fourier级数;(5)矩形和圆形区域上的拉普拉斯问题;2.简述采用分离变量法求解齐次边界条件的齐次线性偏微分方程定解问题的步骤。

3.第2.7册练习:1,4,6,8,15,16(p65-67)。

4.书籍示例:2.1.1、2.1.2、2.2.1。

第三章积分变换方法1。

术语解释:(1)fourier变换;(2)laplace变换;(3)傅里叶变换,线性性质,位移性质;(4)拉普拉斯变换,线性性质,平移性质,微分性质;2.简述用积分变换法求解偏微分方程定解问题的基本步骤。

3.写出傅里叶变换和拉普拉斯变换的存在条件。

4.用傅里叶变换方法导出了无限弦振动的达朗贝尔公式。

5.第3.6册练习:1(1)(2)、6、9(1)(2)、12、13(p93-94)。

6.书籍示例:3.1.1;3.1.2; 3.3.1、2、3、4、6;例3.4.1、3.4.2、3.4.3解的像函数。

第四章行波法与降维法(d’alembert法)1.名词解释:(1)无限长弦自由振动的达朗贝尔公式;(2)行波速度;(3)特征变换,特征线;(4)球对称性,降维法;2.简要描述达朗贝尔公式的物理意义。

(完整word版)小学数学总复习知识点整理(最全)(word文档良心出品)

(完整word版)小学数学总复习知识点整理(最全)(word文档良心出品)

总复习小学数学复习资料第一章数和数的运算一概念(一)整数1 .整数的意义自然数和0都是整数。

2 .自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

3.计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4. 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5.数的整除整数a除以整数b(b ≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

如果数a能被数b(b ≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。

倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。

一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。

例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。

例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

数学物理方法习题解答(完整版)

数学物理方法习题解答(完整版)

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。

证明:令Re z u iv =+。

Re z x =,,0u x v ∴==。

1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。

于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。

2、试证()2f z z=仅在原点有导数。

证明:令()f z u iv =+。

()22222,0f z z x y u x y v ==+ ∴ =+=。

2,2u u x y x y ∂∂= =∂∂。

v vx y∂∂ ==0 ∂∂。

所以除原点以外,,u v 不满足C -R 条件。

而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。

()000000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。

或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。

22***0*00limlim lim()0z z z z z z zzz z z z z z zz z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。

【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】 3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。

证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 332222220(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。

(完整word版)高中数学参数方程知识点大全(word文档良心出品)

(完整word版)高中数学参数方程知识点大全(word文档良心出品)

高考复习之参数方程 一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点.二、知识结构 1.直线的参数方程(1)标准式 过点Po(x0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=a t y y at x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α=ab的直线的参数方程是 ⎩⎨⎧+=+=bty y atx x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2+b 2=1,②即为标准式,此时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t |.直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=a t y y a t x x sin cos 00 (t 为参数)若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|;(3)线段P 1P 2的中点P 所对应的参数为t ,则 t=221t t +中点P 到定点P 0的距离|PP 0|=|t |=|221t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.2.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆 椭圆12222=+by a x (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆 12222=+by a y (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数) 3.极坐标极坐标系 在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫 做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标 设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度 ,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图)极坐标和直角坐标的互化 (1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合; ②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位. (2)互化公式⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x ytg y x θρ 三、知识点、能力点提示(一)曲线的参数方程,参数方程与普通方程的互化例1 在圆x 2+y 2-4x-2y-20=0上求两点A 和B ,使它们到直线4x+3y+19=0的距离分别最短和最长.解: 将圆的方程化为参数方程:⎩⎨⎧+=+=θθsin 51cos 52y x (θ为参数) 则圆上点P 坐标为(2+5cos θ,1+5sin θ),它到所给直线之距离d=223430sin 15cos 120+++θθ故当cos(φ-θ)=1,即φ=θ时 ,d 最长,这时,点A 坐标为(6,4);当cos(φ-θ)=-1,即θ=φ-π时,d 最短,这时,点B 坐标为(-2,2).(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明 这部分内容自1986年以来每年都有一个小题,而且都以选择填空题出现.例2 极坐标方程ρ=θθcos sin 321++所确定的图形是( ) A.直线B.椭圆C.双曲D.抛物线解: ρ=)6sin(1211)]cos 2123(1[21πθθ++⋅=++(三)综合例题赏析 例3 椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ( )A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)解:化为普通方程得125)1(9)3(22=++-y x ∴a 2=25,b 2=9,得c 2=16,c=4.∴F(x-3,y+1)=F(0,±4)∴在xOy 坐标系中,两焦点坐标是(3,3)和(3,-5). 应选B.例4 参数方程表示)20()sin 1(212sin 2cos πθθθθ<<⎪⎪⎩⎪⎪⎨⎧+=+=y x A.双曲线的一支,这支过点(1,21) B.抛物线的一部分,这部分过(1,21)C.双曲线的一支,这支过(-1,21) D.抛物线的一部分,这部分过(-1,21) 解:由参数式得x 2=1+sin θ=2y(x >0) 即y=21x 2(x >0). ∴应选B. 例5 在方程⎩⎨⎧==θθcos sin y x (θ为参数)所表示的曲线一个点的坐标是( )A.(2,-7)B.(31,32)C.(21,21) D.(1,0)解:y=cos2θ=1-2sin2θ=1-2x 2 将x=21代入,得y=21∴应选C.例6 下列参数方程(t 为参数)与普通方程x 2-y=0表示同一曲线的方程是( )A.⎩⎨⎧==ty t x B.⎩⎨⎧==t y t x 2cos cos C.⎪⎩⎪⎨⎧-+==t t y tgtx 2cos 12cos 1D.⎪⎩⎪⎨⎧+-==t t y tgtx 2cos 12cos 1解:普通方程x 2-y 中的x ∈R ,y ≥0,A.中x=|t |≥0,B.中x=cost ∈〔-1,1〕,故排除A.和B.C.中y=tt 22sin 2cos 2=ctg 2t=2211x t tg ==,即x 2y=1,故排除C. ∴应选D.例7 曲线的极坐标方程ρ=4sin θ化 成直角坐标方程为( ) A.x 2+(y+2)2=4 B.x 2+(y-2)2=4 C.(x-2)2+y 2=4 D.(x+2)2+y 2=4解:将ρ=22y x +,sin θ=22y x y +代入ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y-2)2=4.∴应选B.例8 极坐标ρ=cos(θπ-4)表示的曲线是( )A.双曲线B.椭圆C.抛物线D.圆解:原极坐标方程化为ρ=21(cos θ+sin θ)⇒22ρ=ρcos θ+ρsin θ,∴普通方程为2(x 2+y 2)=x+y ,表示圆.应选D.例9 在极坐标系中,与圆ρ=4sin θ相切的条直线的方程是( ) A.ρsin θ=2 B.ρcos θ=2C.ρcos θ=-2D.ρcos θ=-4例9图解:如图.⊙C 的极坐标方程为ρ=4sin θ,CO ⊥OX,OA 为直径,|OA |=4,l 和圆相切, l 交极轴于B(2,0)点P(ρ,θ)为l 上任意一点,则有 cos θ=ρ2=OPOB ,得ρcos θ=2,∴应选B.例10 4ρsin 22θ=5 表示的曲线是( )A.圆B.椭圆C.双曲线的一支D.抛物线解:4ρsin 22θ=5⇔4ρ·.5cos 2221cos -=⇔-θρρθ把ρ=22y x + ρcos θ=x ,代入上式,得222y x +=2x-5. 平方整理得y 2=-5x+.425.它表示抛物线. ∴应选D.例11 极坐标方程4sin 2θ=3表示曲线是( )A.两条射线B.两条相交直线C.圆D.抛物线解:由4sin 2θ=3,得4·222yx y +=3,即y 2=3 x 2,y=±x 3,它表示两相交直线. ∴应选B.四、能力训练 (一)选择题 1.极坐标方程ρcos θ=34表示( ) A.一条平行于x 轴的直线B.一条垂直于x 轴的直线C.一个圆D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心3.若(x ,y)与(ρ,θ)(ρ∈R)分别是点M 的直角坐标和极坐标,t 表示参数,则下列各组曲 线:①θ=6π和sin θ=21;②θ=6π和tg θ=33,③ρ2-9=0和ρ= 3;④⎩⎨⎧+=+=⎪⎪⎩⎪⎪⎨⎧+=+=t y t x ty t x 322213222和其中表示相同曲线的组数为( )A.1B.2C.3D.44.设M(ρ1,θ1),N(ρ2,θ2)两点的极坐标同时满足下列关系:ρ1+ρ2=0 ,θ1+θ2=0,则M ,N 两点位置关系是( )A.重合B.关于极点对称C.关于直线θ=2πD.关于极轴对称5.极坐标方程ρ=sin θ+2cos θ所表示的曲线是( )A.直线B.圆C.双曲线D.抛物线6.经过点M(1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A .⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211C.⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211 D.⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 215231 7.将参数方⎪⎪⎩⎪⎪⎨⎧+++⋅=+++⋅=2222222222m m m b y m m mm a x (m 是参数,ab ≠0)化为普通方程是( )A.)(12222a xb y a x ≠=+B.)(12222a x b y a x -≠=+ C.)(12222a x by a x ≠=-D.)(12222a x by a x -≠=- 8.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为( ) A.(1,3π),r=2 B.(1,6π),r=1 C.(1, 3π),r=1 D.(1,-3π),r=2 9.参数方程⎪⎩⎪⎨⎧-=+=21y t t x (t 为参数)所表示的曲线是( )A.一条射线B.两条射线C.一条直线D.两条直线10.双曲线⎩⎨⎧+=+-=θθsec 212y tg x (θ为参数)的渐近线方 程为( )A.y-1=)2(21+±x B.y=x 21± C.y-1=)2(2+±xD.y+1=)2(2-±x11.若直线⎩⎨⎧=+=bty at x 4( (t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为( )A. 3πB.32πC.3π或32π D.3π或35π12.已知曲线⎩⎨⎧==pt y pt x 222(t 为参数)上的点M ,N 对应的参数分别为t 1,t 2,且t 1+t 2=0,那么M ,N 间的距离为( )A.2p(t 1+t 2)B.2p(t 21+t 22) C.│2p(t 1-t 2)│ D.2p(t 1-t 2)213.若点P(x ,y)在单位圆上以角速度ω按逆时针方向运动,点M(-2xy ,y 2-x 2)也在单位圆上运动,其运动规律是( )A.角速度ω,顺时针方向B.角速度ω,逆时针方向C.角速度2ω,顺时针方向D.角速度2ω,逆时针方向14.抛物线y=x 2-10xcos θ+25+3sin θ-25sin 2θ与x 轴两个交点距离的最大值是( )A.5B.10C.23D.315.直线ρ=θθsin cos 23+与直线l 关于直线θ=4π(ρ∈R)对称,则l 的方程是( )A .θθρsin cos 23-=B .θθρcos cos 23-=C .θθρsin 2cos 3-=D .θθρsin 2cos 3+=(二)填空题16.若直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=ty t x 532543(t 为参数),则过点(4,-1)且与l 平行的直线在y 轴上的截距为.17.参数方程⎪⎪⎩⎪⎪⎨⎧+=+=θθθθcos 1sin cos 1cos y x (θ为参数)化成普通方程为 .18.极坐标方程ρ=tg θsec θ表示的曲线是 . 19.直线⎩⎨⎧-=+-=ty tx 3231(t 为参数)的倾斜角为 ;直线上一点P(x ,y)与点M(-1,2)的距离为 .(三)解答题20.设椭圆⎩⎨⎧==θθsin 32cos 4y x (θ为参数) 上一点P ,若点P 在第一象限,且∠xOP=3π,求点P 的坐标.21.曲线C 的方程为⎩⎨⎧==pty pt x 222(p >0,t 为参数),当t ∈[-1,2]时 ,曲线C 的端点为A ,B ,设F 是曲线C 的焦点,且S △AFB =14,求P 的值.22.已知椭圆222y x +=1及点B(0,-2),过点B 作直线BD ,与椭圆的左 半部分交于C 、D 两点,又过椭圆的右焦点F 2作平行于BD 的直线,交椭圆于G ,H 两点.(1)试判断满足│BC │·│BD │=3│GF 2│·│F 2H │成立的直线BD 是否存在?并说明理由 .(2)若点M 为弦CD 的中点,S △BMF2=2,试求直线BD 的方程.23.如果椭圆的右焦点和右顶点的分别是双曲线⎩⎨⎧=+=θθtg y x 3sec 48(θ为参数)的左焦点和左顶点,且焦点到相应的准线的距离为49,求这椭圆上的点到双曲线渐近线的最短距离. 24.A ,B 为椭圆2222by a x +=1,(a >b >0) 上的两点,且OA ⊥OB ,求△AOB 的面积的最大值和最小值.25.已知椭圆162422y x +=1,直线l ∶812y x +=1,P 是l 上一点,射线OP 交椭圆于点R ,又点Q 在OP 上且 满足│OQ │·│OP │=│OR │2,当点P 在l 上移动时,求点Q 的轨迹方程.并说明轨迹是什么曲线.参考答案(一)1.B 2.D 3.C 4.C 5.B 6.A 7.A 8.C 9.B 10.C 11.C 12.C 13.C 14.C 15.D(二)16.-4;17.y 2=-2(x-21),(x ≤21);18.抛 物线;19.135°,|32t| (三)20.(5154,558);21.;332 22.(1)不存在,(2)x+y+2=0;23.51(27-341);24.Smax=2ab ,s max=2222b a b a +;25.25)1(25)1(22-+-y x =1(x,y)不同时为零)。

(完整word版)高中数学公式及知识点总结大全(精华版)(word文档良心出品)

(完整word版)高中数学公式及知识点总结大全(精华版)(word文档良心出品)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论logmnab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。

数学物理方法(第三版)

数学物理方法(第三版)
方法解决实际问题。
展望
研究前沿
随着科技的发展,数学物理方法 在各个领域的应用越来越广泛, 如量子力学、金融数学、生物信
息学等。
未来趋势
未来,数学物理方法将继续发展, 与其他学科交叉融合,产生新的理 论和方法。
对读者的建议
读者应保持对数学物理方法发展的 关注,不断学习和探索新的理论和 应用。
THANKS
泛函分析方法
总结词
泛函分析是研究函数空间和算子的数学分支,通 过引入抽象的函数空间和算子,泛函分析为解决 复杂的数学问题提供了有力的工具。
总结词
泛函分析方法的应用不仅限于物理学,还涉及到 其他数学领域如微分方程、实变函数、复变函数 等。通过泛函分析的方法,可以更好地揭示数学 问题本质,推动数学的发展。
感谢观看
详细描述
在物理学中,泛函分析方法被广泛应用于量子力 学、统计物理等领域。通过将物理问题转化为泛 函分析问题,可以更好地理解和求解复杂的物理 现象。
详细描述
为了更好地应用泛函分析方法,需要深入理解其 基本概念和性质,如函数空间、算子、谱理论等 。同时,也需要与其他数学方法结合使用,以解 决各种复杂的数学问题。
积分方程方法的应用案例
积分方程在统计学中的应用
01
积分方程被用来描述概率分布,解决统计学中的各种问题,如
参数估计和假设检验。
积分方程在工程学中的应用
02
在解决结构优化、控制系统设计和信号处理等问题时,积分方
程是重要的数学工具。
积分方程在金融学中的应用
03
积分方程被用来描述金融市场的价格变动,评估投资组合的风
都非常重要。
03
促进学科交叉
数学物理方法是一门跨学科的学科,它促进了数学和物理学之间的交叉

(完整word版)生活中的物理现象大总结(word文档良心出品)

(完整word版)生活中的物理现象大总结(word文档良心出品)

生活中的物理现象大总结生活中物理现象无处不在。

在平坦的马路上,谁都可以迈开大步向前走。

一个健康的人,走路并不是什么难事,因而也没有想过人是靠什么走路的。

听了这个问题,有的人会觉得好笑。

人只要有气力,抬腿,迈步,不就可以往前走了吗?而事实上,问题并不那么简单。

请你试一个动作:挺直身体,背贴着墙站在地上。

把一只脚抬起来,向前迈步,只要身体不离开墙壁,这只脚是跨不出去的。

如果抬起来的脚向前迈出去一步,那末,回头一望,身体已经离开墙壁。

这说明,身体向前移动了。

人身体向前移动的时候,一定依靠了一种外力。

或者说,是这种力推着人前进的。

如果这种外力比较小,走路就会遇到困难,比如,在光滑的冰面上,人们就不敢迈大步,而只能小心翼翼地挪动双脚。

我们认真观察厨房里燃料、炊具,做饭、做菜等全部过程,回忆厨房中发生的一系列变化,会看到有关的物理现象。

一、与电学知识有关的现象1、电饭堡煮饭、电炒锅煮菜、电水壶烧开水是利用电能转化为内能,都是利用热传递煮饭、煮菜、烧开水的。

2、排气扇(抽油烟机)利用电能转化为机械能,利用空气对流进行空气变换。

3、电饭煲、电炒锅、电水壶的三脚插头,插入三孔插座,防止用电器漏电和触电事故的发生。

二、与力学知识有关的现象1、电水壶的壶嘴与壶肚构成连通器,水面总是相平的。

2、菜刀的刀刃薄是为了减小受力面积,增大压强。

3、菜刀的刀刃有油,为的是在切菜时,使接触面光滑,减小摩擦。

4、菜刀柄、锅铲柄、电水壶把手有凸凹花纹,使接触面粗糙,增大摩擦。

三、与热学知识有关的现象(一)与热学中的热膨胀和热传递有关的现象1、使用炉灶烧水或炒菜,要使锅底放在火苗的外焰,不要让锅底压住火头,可使锅的温度升高快,是因为火苗的外焰温度高。

2、锅铲、汤勺、漏勺、铝锅等炊具的柄用木料制成,是因为木料是热的不良导体,以便在烹任过程中不烫手。

3、炉灶上方安装排风扇,是为了加快空气对流,使厨房油烟及时排出去,避免污染空间。

4、滚烫的砂锅放在湿地上易破裂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学物理方法总结第一章 复变函数复数的代数式:z=x+iy复数的三角式和指数式:(cos sin )z ρϕϕ=+和i z e ϕρ=欧拉公式:{1sin ()21cos ()2iz iz iz izz e e iz e e --=-=+柯西-黎曼方程(或称为柯西-黎曼条件):{u u x yv v x y∂∂=∂∂∂∂=-∂∂ (其中f(z)=u+iv)函数f(z)=u+iv 在点0z 及其领域上处处可导,则称f(z)在0z 点解析.在区域B 上每一点都解析,则称f(z)是在区域B 上的解析函数.解析函数的性质:1.若函数f(z)=u+iv 在区域B 上解析,则12(,),(,)u x y C v x y C ==(12,C C 为常数)是B 上的两组正交曲线族.2.若函数在区域B 上解析,则u,v 均为B 上的调和函数,即22220u vx y∂∂+=∂∂ 例题: 已知某解析函数f(z)的实部22(,)u x y x y =-,求虚部和这个解析函数.解答: 由于22ux∂∂=2;22v y ∂∂=-2;则22220u v x y ∂∂+=∂∂曲线积分法u x ∂∂=2x;u y ∂∂=-2y.根据C-R 条件有:v x∂∂=2y;v y ∂∂=2x.于是 22dv ydx xdy =+;(,0)(,)(0,0)(,0)(,)(,)(,0)(22)(22)(22)22x x y x x y x y x v ydx xdy C ydx xdy ydx xdy Cxdy C xy C=++=++++=+=+⎰⎰⎰⎰凑全微分显式法 由上式可知 22dv ydx xdy =+ 则易得 (2)dv d xy = 则显然 2v xy C =+不定积分法 上面已有v x∂∂=2y;v y ∂∂=2x则第一式对y 积分,x 视为参数,有 2()2()v xy x xy x ϕϕ=+=+⎰. 上式对x 求导有2'()vy x xϕ∂=+∂,而由C-R 条件可知 '()0x ϕ=, 从而 ()x C ϕ=.故 v=2xy+C.222()(2)f z x y i x y C z i C=-++=+第二章 复变函数的积分单连通区域柯西定理 如果函数f(z)在闭单连通区域B 上解析,则沿B 上任意一分段光滑闭合闭合曲线l(也可以是B 的边界),有()0lf z dz =⎰.复连通区域柯西定理 如果f(z)是闭复连通区域上的单值解析函数,则1()()0inll i f z dz f z dz =+=∑⎰⎰.式中l 为区域外边界线,诸i l 为区域内边界线,积分均沿边界线的正方向进行.即1()()inll i f z dz f z dz ==∑⎰⎰.柯西公式 1()()2lf z f dz iz απα=-⎰n 次求导后的柯西公式 ()1!()()2()n n l n f fz d i z ζζπζ+=-⎰第三章 幂级数展开幂级数200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-++-+∑其中0a ,1a ,2a ,3a ,……都是复常数. 比值判别法(达朗贝尔判别法) 1.若有110100limlim1k k k kk k kk a z z a z z a a z z +++→∞→∞-=-<- 则 2010200............kk a a z z a z z a z z +-+-++-+收敛,200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-+-+∑绝对收敛.若极限1lim /k k k a a +→∞存在,则可引入记号R,1limkk k a R a →∞+=,于是,若0z z R -<,则 200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-+-+∑绝对收敛.2.若0z z R ->,则后项与前项的模之比的极限11010l i m l i m 1k k k k k k kk a z z aR a a z z +++→∞→∞->=-,即说明20102000()()()......()......k k k k k a z za a z z a z z a z z ∞=-=+-+-+-+∑发散.例题: 求幂级数2461.....z z z -+-+的收敛圆,z 为复变数. 解答: 由题意可得 1l i m1kk k a R a →∞+== 故 246211......1z z z z -+-+=+ (1z <). 泰勒级数展开 设f(z)在以0z 为圆心的圆R C 内解析,则对圆内的任意z 点,f(z)可展为幂级数,0()()kkk f z a z z ∞==-∑,其中1()010()1()2()!R n k k C f z f a d iz k ζζπζ+==-⎰,1R C 为圆R C 内包含z 且与R C 同心的圆.例题: 在00z =的领域上将()zf z e =展开 解答: 函数()zf z e =的各阶导数()()n z fz e =,而()()0()(0)1k k f z f ==.则ze 在00z =的领域上的泰勒展开23401............1!2!3!4!!!k kzk z z z z z z e k k ∞==++++++=∑. 双边幂级数212010010220......()()()()......a z z a z z a a z z a z z ----+-+-++-+-+洛朗级数展开 设f(z)在环形区域201R z z R <-<的内部单值解析,则对环域上的任一点z,f(z)可展为幂级数0()()kkk f z a z z ∞=-∞=-∑.其中101()2()k k Cf a d iz ζζπζ+=-⎰, 积分路径C 为位于环域内按逆时针方向绕内圆一周的任一闭合曲线.例题1: 在1z <<∞的环域上将2()1/(1)f z z =-展为洛朗级数.解答: 22222460211111111......111kk z z zz z z z z ∞=⎛⎫===+++ ⎪-⎝⎭-∑ 例题2: 在01z =的领域上将2()1/(1)f z z =-展为洛朗级数. 解答: 由题意得21111()()1211f z z z z ==---+ 则有z-1的-1次项,而0111111(1)()111222212kk k z z z z ∞=-===--+-++∑ (12z -<) 故 01111()(1)()2142k kk z f z z ∞=-=---∑.第四章 留数定理留数定理 设函数f(z)在回路l 所围区域B 上除有限个孤立奇点1b ,2b ,……,n b 解析,在闭区域B 上除1b ,2b ,……, n b 外连续,则11()2R e ()2nj lj f z d z i s f b i aππ-===∑⎰. 其中,1111Re ()lim{[()()]}(1)!j m m j j m z b d a sf b z b f z m dz---→==--. 推论1: 单极点的留数为000Re ()lim[()()]z z sf z z z f z →=-.推论2: 若f(z)可以表示为P(z)/Q(z)的特殊形式,其中P(z)和Q(z)都在0z 点解析,0z 是Q(z)的一阶零点(0()0Q z =).0()0P z ≠,则000000()()'()()()Re ()lim()lim ()'()'()z z z z P z z z P z P z P z sf z z z Q z Q z Q z →→+-=-==. 上式最后一步应用了罗毕达法则.留数定理的应用 类型一20(cos ,sin )R x x dx π⎰.作自变量代换 ix z e =.则式子变为111(,)22z z z z z dzI R iz--=+-=⎰.例题: 计算 202cos dxI xπ=+⎰.解答: 21201122cos 41(2)2z z dxdz dzI i i z z xz zz π-====-=-+++++⎰⎰⎰,Z的单极点为1,22z ==- 则221Re (22241z s i z z z π→--=+=++, 由于2-1z =内.故 I =. 类型二()f x dx ∞-∞⎰.积分区间是(,)-∞∞;复变函数f(z)在实轴上没有奇点,在上半平面除了有限个奇点外是解析的;当z 在上半平面及实轴上→∞时,zf(z)一致地0→.则式子可以变为()2I f x d x i π∞-∞==⎰{f(z)在上半平面所有奇点的留数之和}.例题: 计算21dx x ∞-∞+⎰. 解答: 21dzI z ∞-∞=+⎰的单极点为1,2z i =±.21Re ()2lim()1z i sf i i z i z ππ→=-=+,故21dxx π∞-∞=+⎰.类型三()cos F x mxdx ∞⎰,0()sin G x mxdx ∞⎰,积分区间是[0,]+∞;偶函数F(x)和奇函数G(x)在实轴上没有奇点,在上半平面除了有限个奇点外是解析的;当z 在上半平面或实轴上→∞,F(z)及G(z)一致地0→.则式子可以变为0()c o s {()}i m xF x m x d x i F x e π∞=⎰在上半平面所有奇点的留数之和;()s i n {()}i m x G x m x d x G x e π∞=⎰在上半平面所有奇点的留数之和. 若类型二,类型三的实轴上有有限个奇点,则有()2Re ()Re ()f x dx isf z isf z ππ∞-∞=+∑∑⎰在上平面实轴上.其中,在类型三中f(x)应理解为()imzF x e或()imxG x e.第五章 Fourier 变换傅里叶级数 周期为2l 的函数f(x)可以展开为级数01()(c o s s i n )k kk k x k x f x a a b llππ∞==++∑. 其中,{1()cos1()sin lk lk lk l k a f d l lk b f d l lπξξξδπξξξ--==⎰⎰, k δ={2(0)1(0)k k =≠.注: 积分上下限只要满足 上-下=2l 即可. 复数形式的傅里叶级数 ()k xilkk f x c eπ∞=-∞=∑其中 *1()[]2k x i l lk l c f e d lπξξ-=⎰. 傅里叶积分 0()()cos ()sin f x A xd B xd ωωωωωω∞∞=+⎰⎰傅里叶变换式 {1()()cos 1()()sin A f d B f d ωξωξξπωξωξξπ∞-∞∞-∞==⎰⎰复数形式的傅里叶积分{*()()()()[]i xi x f x F e d F f x e dx ωωωωω∞-∞∞-∞==傅里叶变换的性质(1) 导数定理 F [f ’(x)]=iwF(w)(2) 积分定理 F [()()x f d ξξ⎰]=1()F w iw(3) 相似性定理 F [f(ax)]=1()wF a a(4) 延迟定理 F [0()f x x -]=0()iwx e F w -(5) 位移定理 F [0()iw xef x ]=0()f w w -(6) 卷积定理 若F [1()f x ]=1()F w ,F [2()f x ]=2()F w ,则 F [1()f x *2()f x ]=122()()F w F w π. 其中1212()*()()()f x f x f f x d ξξξ∞-∞=-⎰称为1()f x 和2()f x 的卷积.δ函数()x δ={0(0)(0)x x ≠∞=.()bax dx δ=⎰{0(,0,0)1(a<0<b)a b <>都或都.δ函数的一些性质1. ()x δ是偶函数.()()'()'()x x x x δδδδ-=-=-2. ()()xH x t dt δ-∞==⎰{0(0)1(0)x x <>.3.00()()()f t d f t τδττ∞-∞-=⎰.第六章 Laplace 变换拉普拉斯变换 0()()ptf p f t e dt ∞-=⎰拉普拉斯变换的一些性质 (1) 线性定理 若11()()f t f p ,22()()f t f p ,则 1121122()()()()c f t c f t c f pc fp ++. (2) 导数定理 '()()(0)f t p f p f -.(3) 积分定理1()td p ϕττ⎰L [()p ϕ]. (4) 相似性定理 1()()p f at f p a . (5) 位移定理 ()()te f t f p λλ-+.(6) 延迟定理 00()()pt f t t e f p --. (7) 卷积定理 若11()()f t f p ,22()()f t f p ,则1212()*()()()f t f t f p f p , 其中12120()*()()()tf t f t f f t d τττ=-⎰称为1()f t 和2()f t 的卷积.第七章 数学物理定解问题(1) 均匀弦的微小振动,均匀杆的纵振动,传输线方程,均匀薄膜的微小横振动,流体力学与声学方程,电磁波方程的形式为20tt xx u a u -=或220tt u a u -∆=或230tt u a u -∆=.(2) 扩散方程,热传导方程的形式为20t xx u a u -=或20t u a u -∆=.(3) 稳定浓度分布,稳定温度分布,静电场,稳定电流场方程的形式为(拉普拉斯方程)0u ∆=.(4) 以上方程中x u 意为ux∂∂,xx u 意为22u x ∂∂.若以上各方程均为有源,则方程为 各方程=f(x,y,z,t).定解条件初始条件 初始”位移” 0(,,,)(,,)t u x y z t x y z ϕ==, 初始”速度” 0(,,,)(,,)t t u x y z t x y z ψ==. 边界条件 第一类边界条件 (,)(,)u r t f M t ∑=第二类边界条件(,)u f M t n∑∂=∂第三类边界条件 ()(,)uu Hf M t n ∑∂+=∂ 衔接条件 00(0,)(0,)u x t u x t -=+00(0,)(0,)()x x Tu x t Tu x t F t +--=-.(T 为张力) 达朗贝尔公式 定界问题 达朗贝尔公式 11(,)[()()]()22x at x at u x t x at x at d aϕϕψξξ+-=++-+⎰. 其中0()t u x ϕ==,0()tt u x ψ==.()x -∞<<∞第八章 分离变数法泛定方程 20tt xx u a u -=(若该方程可以使用分离变量法,则可以化成2''()''()()()T t X x a T t X x λ==-). ''()()0X x X x λ+=在不同的边界条件下解不同.边界条件(1) {(0)0()0X X l == , X(x)的解为 {2()()sinn n n ln X x C x lπλπ== 其中 n=1,2,3……(2) {'(0)0()0X X l ==, X(x)的解为 {21()2[]1()2()cosn n k lk X x C x lπλπ+=+= 其中 k=0,1,2……(3) {(0)0'()0X X l ==, X(x)的解为 {21()2[]1()2()sinn n k l k X x C x lπλπ+=+= 其中 k=0,1,2…… (4) {'(0)0'()0X X l ==, X(x)的解为 {2()()cosn n n ln X x C x lπλπ== 其中 n=0,1,2……T(t)的方程在有n 且n=0时的解为 ()T t At B =+; 在0n ≠时的解为()sincos n a n aT t A t B t l lππ=+; 在有k 的情况下为(21)(21)()sincos 22k a k aT t A t B t l lππ++=+. 初始条件 将u(x,t)=T(t)X(x)带入初始条件,确定u(x,t)中的常数项.欧拉型常微分方程 22220d R dRm R d d ρρρρ+-=. 解法为做代换t e ρ=.第九章 二阶常微分方程级数解法 本征值问题拉普拉斯方程 0u ∆=(1) 球坐标系下 2222222111()(sin )0sin sin u u ur r r r r r θθθθθϕ∂∂∂∂∂++=∂∂∂∂∂. 分解为 2222(1)0R R r r l l R r r ∂∂+-+=∂∂ 其解为 11()ll R r Cr D r+=+. 和22211(sin )(1)0sin sin Y Y l l θθθθθϕ∂∂∂+++=∂∂∂(球方程,(,)()()Y θϕθϕ=ΘΦ) 球方程又可以分离为 ''()()0ϕλϕΦ+Φ= 其中有 ()(2)ϕϕπΦ=Φ+,其方程解为 {2()cos sin m A m B m λϕϕϕ=Φ=+ 其中 m=0,1,2……和 22222(1)2[(1)]01d d m x x l l dx dx x ΘΘ--++-Θ=- (连带勒让德方程).(2) 柱坐标系下 2222211()0u u u z ρρρρρϕ∂∂∂∂++=∂∂∂∂.分解为 ''()()0ϕλϕΦ+Φ= 其中有 ()(2)ϕϕπΦ=Φ+,其方程解为{2()cos sin m A m B m λϕϕϕ=Φ=+ 其中 m=0,1,2…… 和 ''0Z Z μ-=和 22221()0d R dR m R d d μρρρρ++-=. 当0μ=时,Z=C+Dz,()R ρ={ln (0)/(1,2,3......)m m E F m E F m ρρρ+=+=; 当0μ>时,()Z z De =+,方程R 转换为 22222()0d R dR x x x m R dx dx++-=(x =,m 阶贝塞尔方程). 当0μ<时,()Z z C D =+,方程R 转换为22222()0d R dR x x x m R dx dx +-+=(x =,m 阶虚宗量贝塞尔方程). 亥姆霍兹方程 20v k v ∆+=.在00x =的领域上l 阶勒让德方程的解为 0011()y x a y a y =+ 其中 2402()(1)(2)()(1)(3)1...2!4!(22)(24)...()(1)(3)...(21)......(2)!k l l l l l l y x x k l k l l l l l k x k -+--++=+++-----+++-++ 35121(1)(2)(3)(1)(2)(4)...3!5!(21)(23)...(1)(2)(4)...(2)......(21)!k l l l l l l y x x x k l k l l l l l k x k +-+--++=+++-----++++++第十章 球函数高次项l x 的系数 2(2)!2(!)l l l a l = (在乘以适当的常数之后),用递推公式改写后为2(2)(1)()(1)k k k k a a k l k l +++=-++,则 22(22)!(1)!2()!(2)!l n l l n a n l n l n --=---.则勒让德多项式为 [/2]20(22)!()(1)!2()!(2)!l kl k l l k l k P x x k l k l k -=-=---∑.[/2]l ={/2()(1)/2()l l l l -为偶数为奇数. ()1o P x =1()cos P x x θ==2211()(31)(3cos 21)24P x x θ=-=+ 3311()(53)(5cos33cos )28P x x x θθ=-=+ 42411()(35303)(35cos 420cos 29)864P x x x θθ=-+=++…… 勒让德多项式是正交的例题1: 以勒让德多项式为基,在区间[-1,1]上把f(x)=3234x x ++展开为广义傅里叶级数.解答: 3234x x ++=00112233()()()()f P x f P x f P x f P x +++ = 23012311(31)(53)22f f x f x f x x ++-+- 则有 02142f f -=, 13332f f -=, 2302f =, 3522f =. 故有3234x x ++=0132144()()()55P x P x P x ++. 例题2: 在半径0r r =的球的内部求解拉普拉斯方程使满足边界条件02cos r r u θ==. 解答: 边界条件与ϕ无关,故选择球坐标,则有10(,)()(c o s )l l l l l l B u r A r P r θθ∞+==+∑. 又有自然边界条件 0r u =有限故0l B =.则有(,)(c o s )ll ll u r A r P θθ∞==∑. 而02202012cos (cos )()()33l l lr r l u A r P x P x P x θθ∞======+∑,则 22200121(,)(c o s )(c o s )33l l l l u r A r P r P r θθθ∞===+∑.。

相关文档
最新文档