E级GPS控制测量技术总结

合集下载

GPS控制网等级

GPS控制网等级

GPS控制网等级1、控制网等级及其用途按照国家标准《全球定位系统(GPS)测量规范》(GB/T13814-2009),GPS测量按其精度分为A、B、C、D、E五级。

其中:1)A级GPS网由卫星定位连续运行基站构成,用于建立国家一等大地控制网,进行全球性的地球动力学研究、地壳变形测量和卫星精密定轨测量。

2)B级GPS测量主要用于建立国家二等大地控制网,建立地方或者城市坐标基准框架、区域性的地球动力学研究、地壳变形测量和各种精密工程测量等。

3)C级GPS测量用于建立三等大地控制网,以及区域、城市及工程测量的基本控制网等。

4)D级GPS测量用于建立四等大地控制网。

5)E级GPS测量用于测图、施工等控制测量。

2、精度要求3、卫星定位连续运行基准站网的布设1)布设原则CORS依据管理形式、任务要求和应用范围,划分为国家基准站网、区域基准站网和专业应用站网。

(1)国家基准站网国家基准站网的布设应顾及社会发展、经济建设和自然条件因素。

在即将实施的国家大地基准基础设施建设项目中,我国将在全国范围内建设360个地基稳定、分布均匀的连续运行基准站(其中:新建150个、改造60个、直接利用已有的站150个)。

(2)区域基准站网区域基准站网是指在省、市地区建立的连续运行基准站网,主要构成高精度、连续运行的区域坐标基准框架,为省、市区域提供不同精度的位置服务和相关信息服务。

区域基准站网的布设按实时定位精度而选择基准站间的距离,当采用网络RTK技术满足厘米级实时定位,其区域基准站布设间距不应超过80KM。

(3)专业应用站网专业应用站网是由专业部门或者机构根据专业需求建立的基准网站,用于开展专业信息服务。

它的布设间距主要根据专业需求,当满足实时定位分米级要求,则基准站布设间距一般在100~150KM之间。

2)基准站设计与选址基准站设计时应根据基准站网布设原则,在图上标出设计基准站站址,同时标明基准站及其周围地区的主要地质构造、地震活动,与设计有关的地震台、人卫站,以及可以利用的GPS、大地测量网站点。

工程测量GPS网平差方法总结

工程测量GPS网平差方法总结

工程测量GPS网平差方法总结摘要:本文针对工程测量平面控制网要求相对精度高的特点,找出GPS网平差需解决的关键问题,给出解决问题的几种具体方法,并对各方法使用条件和精度进行了对比分析,对实际作业有一定的指导意义。

关键词:工程测量GPS网平差独立坐标系1引言GPS技术具有自动化程度高、作业速度快、定位精度高、不受天气条件限制和经济效益高等优势,在航空、航天、军事、交通、运输、水利、资源勘探、通信、气象等几乎所有的领域中都广泛应用,在测绘领域更是迅速普及,测量模式从传统的静态差分相对定位到实时动态测量(RTK)技术,从临时基站RTK 到网络RTK(CORS), 其技术不断发展,日新月异,但GPS技术最典型的用途还是应用静态差分相对定位建立各种精度的控制网。

工程测量对控制网的精度要求有其特殊性,一般对相对精度要求要高于绝对精度,鉴于此,在进行工程测量GPS网平差时就要考虑其自身的特点,尽量提高控制网的相对精度。

本文将从实践的角度对工程测量GPS网平差的具体方法进行总结。

2工程测量GPS网平差需解决的问题及应对措施2.1工程测量GPS网平差需解决的问题GPS网平差,其实质就是在WGS-84坐标系下对基线向量解算和无约束平差后转换为国家或地方坐标系成果,通常采用固定至少2个已知点数据,强制约束到国家或地方坐标系。

因控制点成果的用途不同,对其精度要求不同,采用的平差方法也不同,在工程测量中,GPS网等级分为二、三和四等及一、二级,相对精度要求在1/10000至1/120000之间,特殊工程控制网要求甚至更高。

因国家大地控制网是依高斯投影方法按6°带或3°带进行分带和计算,并把观测成果归算到参考椭球面上,这样做,便于成果的统一、使用和互算。

但倘若直接作为工程测量GPS网的固定点进行平差,就有可能产生以下问题:(1)因早期国家控制点精度不高造成内符合精度高的GPS网精度的降低;(2)当测区远离中央子午线时,因高斯投影变形大,致使控制网点坐标反算边长与实测边长存在误差,影响施工放样;(3)当测区海拔高时,由于实地边长归算到参考椭球面上的长度变形大,也会产生第2条的问题;(4)不满足某些特殊需要,如桥梁控制网采用桥轴线坐标系更加方便、实用。

GPS控制点等级【精选文档】

GPS控制点等级【精选文档】

3.1观测时段observation session测站上开始接收卫星信号到停止接受,连续观测的时间间隔称为观测时段,简称时段。

3.2同步观测simultaneous observation两台或两台以上接收机同时对一组卫星进行的观测。

3.3同步观测环simultaneous observation loop三台或三台以上接收机同步观测所获得的基线向量构成的闭合环。

3.4独步观测环independent observation loop由非同步观测获得的基线向量构成的闭合环。

3.5数据剔除率percentage of data rejection同一时段中,删除的观测值个数于获得的观测值总数的比值。

3.6天线高antenna height观测时接收机相位中心至测站中心标志面的高度.3。

7参考站Reference station在一定的观测时间内,一台或几台接收机分别固定在一个或几个测站上,一直保持跟踪观测卫星,其余接收机在这些测站的一定范围内流动设站作业,这些固定测站就成为参考站.3。

8流动站roving station在参考站得一定范围内流动作业的接收机所设立的测站。

3.9观测单元observation unit快速静态测量定位时,参考站从开始至停止接收卫星信号连续观测的时间段。

3.10世界大地坐标系1984(GPS84)World Geodetic System 1984 由美国国防部在与WGS72相应的精密星历NSWC—9Z-2基础上,采用1980大地参考数和BIH1980。

0 系统定向所建立的一种地心坐标系。

3.11国际地球参考框架ITRF YY,International Terrestrial Reference Frame由国际地球自转服务局推荐的以国际参考子午面和国际参考极为定向基准,以LERS YY天文常数为基础所定义的一种地球参考系和地心(地球)坐标。

3.12GPS静态定位测量static GPS positioning通过在多个测站上进行若干个时段同步观测,确定测站之间相对位置的GPS定位测量。

城区GPS_E级控制测量技术设计书

城区GPS_E级控制测量技术设计书

城区GPS-E级控制测量技术设计书一、项目及任务概况为加强土地管理和满足城镇规划建设的需要,受**县国土资源局委托,由**信息技术有公司承接**县城区GPS-E级控制测量任务,现根据国家和省有关技术《规》、《规程》制定本技术设计书。

**县,省市辖县,革命老区县,地处省东北部,江上游,是粤东丘陵地带的一部分。

测区位于**城区和城区周边水寨、河东、横陂、转水四镇,施测围由甲方具体划定(详见下图),面积约189平方公里,根据要求施测GPS-E级控制点约32个。

二、采用任意带坐标的建议从**县城所处的地理坐标位置(115°34′-115°42′)来看,正好落在高斯正形投影3°带中央子午线为117°的39带西边缘,基本上位于114°(38带)与117°(39带)的相交处(115°30′),测区偏离中央子午线西向约140KM,其长度变形值很大,按理论计算,长度变形约为27.2CM/KM。

根据《城市测量规》CJJ8-2011规定,当长度变形值大于2.5CM/KM时,可采用高斯正形投影任意带的平面直角坐标系统,投影面可采用城市平均高程面。

为确保测区的成图成果质量,也为用图单位在征地、放桩等工程测量中有精度保证,做到平面控制点坐标反算的边长与实量边长尽可能相符,建意测区采用高斯正形投影任意带的平面直角坐标系统(80坐标系),将中央子午线通过**县城,定为:115°45′。

如本测区所测图幅与原测图幅在技术上有矛盾,可通过平移的办法处理。

以上建议供参考,否测按不予边长变形的考虑进行实测。

三、作业依据1.《全球定位系统(GPS)测量规》 GB/T 18314-20092.《卫星定位城市测量技术规》 CJJ/T 73-20103.《城市测量规》 CJJ/T 8-20114.《国家三、四等水准测量规》 GB/T 12898-20095.《数字测绘成果质量检查与验收》 GB/T 18316-20086.本项目的技术设计书四、已有资料的分析与利用1.平面控制资料测区及周边地区有原国家点和军控点,为1980年坐标系,可作为本次控制测量平面起算点。

采用GPS-RTK定位方法进行控制测量的技术要求

采用GPS-RTK定位方法进行控制测量的技术要求

采用GPS RTK 定位方法进行控制测量的技术要求1 GPS RTK 定位测量的特点GPS RTK (Real Time Kinematic )定位测量具有显著的实时、快捷等优点,但其精度、速度受卫星个数和状况、大气状况、通讯质量、基准站和流动站的距离及其点位情况等多种因素的影响。

另外,所测的RTK 点位相互独立的,缺乏检核条件,个别点可能会出现粗差。

为此,在采用GPS RTK 定位方法进行控制测量时,要求作业员具有良好的专业素质、经验和责任心,严格地按规程操作,加强成果检核,以确保GPS RTK 测量成果的精确性与可靠性。

2 GPS RTK 定位测量的适用范围常用GPS 双频接收机的RTK 测量的标准精度为11cm ppm ,可以满足城市测量一、二级导线控制点的点位中误差±5cm 的要求,但由于测量中用到的坐标转换参数的求解精度,与已知等级控制点点位在测区的分布及其两套坐标(WGS-84坐标和地方坐标)精度有关,且转换参数仅能用于这些已知控制点的控制区域,即这些已知控制点既能满足RTK 控制点测量时的控制范围,又满足RTK 测量的作业距离(一般为10km 半径范围)的要求。

在一般地区一级GPS 控制点较多,很容易找到满足上述两个条件的已知一级GPS 控制点作业基准点,进行RTK 的二级以下的控制点测量,如缺少点位亦很容易用GPS 快速静态方法获得。

因此,按其精度和作业方法,GPS RTK 宜用于二、三级控制测量和图根控制测量。

一级控制宜采用GPS快速静态方法,通过联网平差来确保精度的可靠性。

3 GPS RTK定位测量技术依据·全球定位系统城市测量技术规范(CJJ73-97);·城市地下管线探测技术规程(CJJ61-2003);4 坐标转换参数求解4.1 实时求解在RTK作业前,在测区布设一定数量的静态GPS控制点,与高一级的GPS点联测,获得这些GPS控制点的WGS-84坐标和地方坐标系坐标,并根据测区大小,选取3个以上且分布均匀的GPS控制点作为基准点,直接利用GPS控制器内置的实时处理软件或后处理软件求解坐标转换参数。

GPS_RTK技术在控制测量中应用

GPS_RTK技术在控制测量中应用

GPS_RTK技术在控制测量中的应用摘要:本文介绍了gps_rtk技术工作原理、特点以及作业流程,通过实例说明了gps_rtk技术应用于控制测量能够达到相应的精度,同时提高工作效率、减轻劳动强度、节约成本。

关键词:gps_rtk技术控制测量基准站流动站引言gps_rtk技术即实时动态测量技术,是以载波相位测量与数据传输技术相结合的以载波相位测量为依据的实时差分gps测量技术,是gps测量技术发展的一个标志,主要由三部分组成:①基准站接收机②数据链③流动站接收机。

gps_rtk工作原理是:选择一个已知高等级点作为基准站,在基准站上安置1台gps接收机,对所有可见卫星进行连续地观测,并将其观测数据和测站信息,通过无线电传输设备,实时地发送给流动站,流动站gps接收机在接收gps 卫星信号的同时,通过无线接收设备,接受基准站传输的数据,然后根据相对定位的原理,实时解算出流动站的三维坐标极其精度。

gps_rtk技术特点作业效率高在一般的地形地势下,高质量的gps_rtk设站一次即可测完5~10km半径的测区,大大减少了传统测量所需的控制点数量和测量仪器的“搬站”次数,仅需一人操作,在一般的电磁波环境下几秒钟即得一点坐标,作业速度快,劳动强度低,节省了外业费用,提高了劳动效率。

定位精度高只要满足gps_rtk的基本工作条件,在一定的作业半径范围内,gps_rtk的平面精度和高程精度都能达到厘米级,定位精度高,数据安全可靠,同时没有累积误差。

不要求点与点间的通视gps_rtk技术不要求两点间满足光学通视,只要求满足“电磁波通视”,因此,和传统测量相比,rtk技术受通视条件、能见度、气候、季节等因素的影响和限制较小,在传统测量看来由于地形复杂、地物障碍而造成的难通视地区,只要满足gps_rtk的基本工作条件,它也能轻松地进行快速的高精度定位作业。

使测量工作变得更容易更轻松。

受卫星状况限制当卫星系统位置对美国是最佳的时候,世界上有些国家在某一确定的时间段仍然不能很好地被卫星所覆盖,容易产生假值。

E级GPS平面控制网技术设计书

E级GPS平面控制网技术设计书

E级GPS平⾯控制⽹技术设计书E级GPS平⾯控制⽹技术设计书1、概述本次gps平⾯控制测量任务和作业容是位于北部松花江主航道北侧,为配合本次控制测量课程设计任务,需在江⼼岛开发区约4.2平⽅公⾥的测区围建⽴E级GPS平⾯控制⽹。

2、测区⾃然地理概况和已有资料2.1、测区⾃然地理概况测区位于省市北部松花江主航道北侧,是松花江泛洪区⾃然形成的梭形岛,为河漫滩湿地。

该岛地理位置优越,南北与市区相望,西隔宾洲铁路桥与太阳岛相望。

测区东西长约4.5公⾥,南北最宽约1.3公⾥,⾯积达4.2平⽅公⾥,平均海拔115⽶,位于松花江中游,属中温带⼤陆性季风⽓候,冬长夏短,全年平均降⽔量569.1毫⽶,降⽔主要集中在6-9⽉,夏季占全年降⽔量的60%。

四季分明,冬季1⽉平均⽓温约零下19度;夏季7⽉的平均⽓温约23度。

测区围:测区地理坐标为东经:126度37分—126度40分北纬:45度48分实测围呈不规则形状,围⾯积约4.2平⽅公⾥。

2.2、测区已有资料成果情况测区有google earth卫星遥感图⼀幅,该图可供图上选点。

此外,测区有校区控制三⾓点2个,其数据如下:3、测量技术设计依据(1)GB-T-18314-2009《全球定位系统(GPS)测量规》(2)CJJ 73-97《全球定位系统城市测量技术规程》(3)CH 1002-95《测绘产品检查验收规定》(4)CH 1003-95《测绘产品质量评定标准》(5)CH / T1004《测绘技术设计规定》(5)CJJ -8-99《城市测量规》4、使⽤仪器本次测量采⽤的GPS接收机型号是南⽅北极星GPS 9600,该GPS仪接受的信号是L1-C/A码。

其平⾯精度:5mm+1ppm ,⾼程精度:10mm+2ppm 。

5、布⽹⽅案5.1、布⽹要求GPS ⽹相邻点间基线中误差按下式计算:式中(mm)为固定误差;(ppm)为⽐例误差系数;(km)为相邻点间的距离。

GPS-E 级⽹的主要技术要求应符合表1规定。

GPS控制点等级

GPS控制点等级

3.1观测时段observation session测站上开始接收卫星信号到停止接受,连续观测的时间间隔称为观测时段,简称时段。

3.2同步观测simultaneous observation两台或两台以上接收机同时对一组卫星进行的观测。

3.3同步观测环simultaneous observation loop三台或三台以上接收机同步观测所获得的基线向量构成的闭合环。

3.4独步观测环independent observation loop由非同步观测获得的基线向量构成的闭合环。

3.5数据剔除率percentage of data rejection同一时段中,删除的观测值个数于获得的观测值总数的比值。

3.6天线高antenna height观测时接收机相位中心至测站中心标志面的高度。

3.7参考站Reference station在一定的观测时间内,一台或几台接收机分别固定在一个或几个测站上,一直保持跟踪观测卫星,其余接收机在这些测站的一定范围内流动设站作业,这些固定测站就成为参考站。

3.8流动站roving station在参考站得一定范围内流动作业的接收机所设立的测站。

3.9观测单元observation unit快速静态测量定位时,参考站从开始至停止接收卫星信号连续观测的时间段。

3.10世界大地坐标系1984(GPS84) World Geodetic System 1984由美国国防部在与WGS72相应的精密星历NSWC-9Z-2基础上,采用1980大地参考数和BIH1980.0 系统定向所建立的一种地心坐标系。

3.11国际地球参考框架ITRF YY,International Terrestrial Reference Frame由国际地球自转服务局推荐的以国际参考子午面和国际参考极为定向基准,以LERS YY天文常数为基础所定义的一种地球参考系和地心(地球)坐标。

3.12GPS静态定位测量static GPS positioning通过在多个测站上进行若干个时段同步观测,确定测站之间相对位置的GPS定位测量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

※分类号:教材
新校区控制点测量
E级GPS控制测量技术总结
编写单位名称:11 土管01班第三组
2013年1 月6 日
编号:01密级:秘密
、测区概况
本次实习要求通过GPS定位测量综合训练,掌握布设GPS控制网的方法,培养自身的测量能力,熟悉GPS技术。

能使用GPS 进行静态数据的采集并且数据处理,可以完整的整理出坐标数据。

本次实习的范围为江西应用技术职业学院黄金校区,先布设E级GPS控制网,在测区内布设了5个GPS空制点,再进行GPS控制测量。

黄金校区地势平坦,视野开阔,是一个基本无干扰的测区,所以此次实习较为简单。

二、作业依据
1、CH 2001-92《全球定位系统(GPS测量规范》
2 、CJJ 73-97 《全球定位系统城市测量技术规程》
3 、CH 1002-95《测绘产品检查验收规定》
4 、CH 1003-95《测绘产品质量评定标准》
5 、CJJ 8-85 《城市测量规范》
三、坐标系的选择和已有资料利用情况
本次实习采用1980西安坐标系,高程系采用1985年国家高程基
准。

此次测量任务利用分布在第三食堂和校门口两个已知点,经过对这两点的分析可知,这两点的坐标系统与此次测量所用坐标系统相同,点位保存完整,精度及等级也能达到本次测量要求,无需进行换带计算。

只需将此已知数据引入测区即可。

四、作业流程
1 、仪器设备和软件
GPS空制测量采用3台中海达双频GPS接受机(标称精度
5mm+1pmmD, D以Km计),为双頻接收机,其静态相对定位精
度为:
静态基线±( 5mm +1ppm)D
高程±( 10mm+2ppm)D
中海达GPS测量系统配备有星历预报软件(可预报30天内测区各测点一天24 小时的卫星分布状况及健康状况)、solution 后处理解算软件(包含数据传输、基线向量处理、GPS网平差软件、多种GPS数据格式转换等功能),完全能满足GPS空制测量数据处理的要求。

2、E级GPS网的设计和观测
(1)GPS布网
充分利用GPS测量的优点,实测GPS空制点5个,其中已知点2 个,未知点3 个,组成最小同步环3 个,多边形异步环3 个(计算选取)。

独立基线5条,其中必要基线7条,多余基线0条。

(2)GPS观测
在实际外业观测过程中,使用3中海达型GPS接收机,同时在三个GPS点上进行观测,有效观测卫星数》4颗,时段长度》90分钟。

丈量天线高度, 均从天线的三面丈量三次, 在三次较差不大于
3mm 时, 取平均值为最后结果。

结束观测时, 再丈量一次天线高, 以作校核。

在观测过程中, 自始至终有人值守, 并经常检查有效卫星的历元数是否符合要求, 否则及时通知其它两台仪器, 延长
时段时间, 以保证观测精度。

五、外业数据处理及检核
1. 外业数据处理
外业观测后及时输入计算机, 并进行外业数据的检查。

根据自动处理基线向量的结果,检查基线向量方差比(Ratio) 、中误差
(rms)以及天线高等,方差比> 3,中误差v 20mm参与解算的向量均符合要求。

2. 外业观测质量的检核
根据《GPS规范》要求,各级GPS基线精度计算公式如下
(T =a+b • D
按D级控制网精度要求,取 a < 10mm b< 10ppm D=4.65Km
(平均基线边长)代入上式,经计算得:(T =47.60mm
(1) 同步环检验
根据《GPS规程》要求,其坐标分量应分别w 6ppm(1/166666); 全长闭合差应w 10ppm(1/100000)。

经检核全长闭合差最大为
1/477503 ( 同步环1) ,最小为1/2124777 ( 同步环4), 均符合要求。

(2) 异步环检验
坐标分量闭合差Wx=Wy=W W±3*sqrt(n)* (T
n=3 Wx=Wy=Wz w±247.3mm
异步环全长闭合差:W w 士3*sqrt(3n)* (T
n=3 W w±428.4mm
抽取独立基线异步闭合环2个,经检查其 3 条基线全长闭合差最大为
13mm最小为7mm远小于规定的494.7mm符合要求。

3、平差计算
基线处理成功后,即可进入软件的网平差界面,进行WGS-84坐标系下的自由网平差及三维约束网平差。

GPS点WGS-84^标系自由网平差
(1)GPS点WGS-84坐标系XYZ坐标平差及精度
按《GPS规程》规定,基线向量的改正数:
Vx=Vy=Vz < 3 c =142.8mm
实测基线7条,经检查最大的基线向量改正数为7mm完全符合规程要求。

基线的相对精度最高为1/72755; 最低为1/108440。

(2)GPS点WGS-84^标系大地坐标及其精度
WGS-84^标的点位中误差最小为5.9mm最大为8.7mm
六、上交的资料
1、黄金校区GPS控制测量技术设计书;
2、黄金校区GPS控制点点之记;
3、黄金校区GPS控制点外业观测手簿;
4、黄金校区GPS控制网平差报告;
5、黄金校区GPS控制网网图及坐标成果表;
6、黄金校区GPS控制测量技术总结。

相关文档
最新文档