合肥市二中九年级数学上册 第六章 反比例函数2 反比例函数的图象与性质第1课时 反比例函数的图象与性

合集下载

人教版初中数学九年级下册 26.1.2 反比例函数的图像和性质(第1课时)课件 【经典初中数学课件】

人教版初中数学九年级下册 26.1.2 反比例函数的图像和性质(第1课时)课件 【经典初中数学课件】
60° 缩小 A1 60°
B
C B1
C1
∠A =∠A1,∠B =∠B1, ∠C =∠C1 AB = BC = AC , A1B1 = B1C1 = A1C1
对应角相等
AB : A1B1 = BC : B1C1 = CD : C1D1 对应边成比例
对应角有什么关系?
正六边形 AF
120° B
放大 B1 E
y= k
K>0
K<0
x
图 象
当k>0时,函数图象 当k<0时,函数图象
性 的两个分支分别在第 的两个分支分别在第

一、三象限,在每个 二、四象限,在每个 象限内,y随x的增大 象限内,y随x的增大
而减小.
而增大.
1.反比例函数y= -
5 x
的图象大致是(
D)
y
y
A.
o
x B.
o x
y
y
C.
o
x D.
y
6
6y
5 4
y
=
6 x
3
y=
6 x
5 4
3
2
2
1
1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-1
-2
-2
-3
-3
-4
-4
-5
-5
-6
-6
你认为作反比例函数图象时应注意哪些问题?
1.列表时,选取的自变量的值,既要易于计算,又要便于描点, 尽量多取一些数值(取互为相反数的一对一对的数),多描一 些点,这样既可以方便连线,又可以使图象精确. 2.描点时要严格按照表中所列的对应值描点,绝对不能把 点的位置描错. 3.线连时一定要养成按自变量从小到大的顺序依次画线,连 线时必须用光滑的曲线连接各点,不能用折线连接. 4.图象是延伸的,注意不要画的有明确端点. 5.曲线的发展趋势只能靠近坐标轴,但不能和坐标轴相交.

《反比例函数》初三数学教案

《反比例函数》初三数学教案

《反比例函数》初三数学教案《反比例函数》初三数学教案作为一名辛苦耕耘的教育工作者,就难以避免地要准备教案,教案是备课向课堂教学转化的关节点。

那要怎么写好教案呢?下面是店铺收集整理的《反比例函数》初三数学教案,仅供参考,希望能够帮助到大家。

《反比例函数》初三数学教案篇1一、创设情境引入课题活动1问题:你们还记得一次函数图象与性质吗?设计意图通过创设问题情境,引导学生复习一次函数图象的知识,激发学生参与课堂学习的热情,为学习反比例函数的图象奠定基础。

师生形为:教师提出问题。

学生思考、交流,回答问题。

教师根据学生活动情况进行补充和完善。

二、类比联想探究交流活动2问题:例2 画出反比例函数y= 与y=- 的图象。

(教师先引导学生思考,示范画出反比例函数y= 的图象,再让学生尝试画出反比例函数y=- 的图象。

)设计意图:通过画反比例函数的图象使学生进一步了解用描点的方法画函数图象的基本步骤,其他函数的图象奠定基础,同时也培养了学生动手操作能力。

师生形为:学生可以先自己动手画图,相互观摩。

在此活动中,教师应重点关注:1学生能否顺利进行三种表示方法的相互转换:2是否熟悉作出函数图象的主要步骤,会作反比例函数的图象;3在动手作图的过程中,能否勤于动手,乐于探索。

比较y= 、y=- 的图象有什么共同特征?它们之间有什么关系?(由学生观察思考,回答问题,并使学生了解反比例函数的图象是一种双曲线。

)设计意图:学生通过观察比较,总结两个反比例函数图象的共同特征(都是双曲线),以及在平面直角坐标系中的位置。

在活动中,让学生自己去观察、类比发现,过程让学生自己去感受,结论让学生自己去总结,实现学生主动参与、探究新知的目的。

师生形为:学生分组针对问题结合画出的图象分类讨论,归纳总结反比例函数图象的共同点,为后面性质的探索打下基础。

教师参与到学生的讨论中去,积极引导。

(三)探索比较发现规律活动3问题:观察反比例函数y= 与y=- 的图象。

九年级数学上册第六章反比例函数2反比例函数的图象与性质教案新版北师大版

九年级数学上册第六章反比例函数2反比例函数的图象与性质教案新版北师大版

2反比例函数的图象与性质1.掌握画出反比例函数图象的基本步骤,会画反比例函数的图象.2.掌握反比例函数的主要性质.3.能利用反比例函数的图象及性质解决一些实际问题.重点画反比例函数的图象,理解反比例函数的性质.难点理解反比例函数的性质,并能灵活应用.一、复习导入1.什么是反比例函数?2.画出一次函数y=4x的图象,图象是什么形状?画一次函数图象的步骤是什么?学生自主思考后给出答案,教师点评.二、探究新知1.反比例函数的图象4教师:反比例函数y=的图象会是什么形状呢?我们可以用什么方法画这个反比例函x数的图象?学生独立画图象,指名板演.教师点评,引导学生归纳画反比例函数图象的基本步骤.教师:你以为画反比例函数图象时应注意哪些问题?引导学生总结:(1)反比例函数的图象是双曲线;(2)画反比例函数的图象要经过列表、描点、连线这三个步骤;(3)双曲线的两端是无限延伸的,画的时候要“出头”;(4)画双曲线时,取的点越密集,描出的图象就越准确,但计算量会越大,故一般在原点的两侧各取3~5个点即可;(5)连线时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接.注意:两个分支不连接.4教师:观察上面的函数图象,如果点P(x,y)在函数y=的图象上,那么与点P关于x004原点成中心对称的P′的坐标应是什么?这个点在函数y=的图象上吗?x学生思考回答后,教师进一步讲解:反比例函数的图象既是一个轴对称图形,又是一个中心对称图形.对称轴有两条,分别是直线y=x与直线y=-x;对称中心是坐标原点,任何一条经过原点的直线只要与双曲线有两个交点,则这两个交点关于原点对称.2.反比例函数的性质课件出示:44画出反比例函数y=与y=-的的图象,探究下列问题:x x(1)这两个反比例函数的图象有什么相同点和不同点?(2)在每个象限内,随着x值的增大y的值是怎样变化的?引导学生思考,得出:表达式图象的位置y随x的变化情况4图象在第一、三象限内在每个象限内,y的值随着x值的增大而减小-4y=图象在第二、四象限内在每个象限内,y的值随着x值的增大而增大x三、举例分析k例1反比例函数y=的图象如图所示.x(1)判断k为正数还是负数.(2)如果A(-3,y)和B(-1,y)为这个函数图象上的两点,那么y与y的大小关系是1221怎样的?学生思考回答,教师讲评并进一步讲解根据反比例函数的增减性比较函数值大小的方法:利用反比例函数的增减性来比较函数值的大小时,如果给定的两点或几点能够确定在同一象限的分支上时,可以直接利用反比例函数的性质解答;如果给定的两点或几点不能够确定在同一象限的分支上时,则不能利用反比例函数的性质比较,需要根据函数的图象和点的位置用数形结合思想来比较或利用特殊值法通过求值来比较.42例2如图,两个反比例函数y=和y=在第一象限内的图象分别是G和G,设点Px x12在G上,PA⊥x轴于点A,交G于点B,则△POB的面积是多少?12学生分小组讨论后给出答案,教师点评,并提问:双曲线的几何特性是什么呢?引导学生总结双曲线的几何特性:k过双曲线y=上的任意一点向两坐标轴作垂线,与两坐标轴围成的矩形面积等于|k|,x||k连接该点与原点,还可得出两个直角三角形,这两个直角三角形的面积都等于.2四、练习巩固1.教材第153页“随堂练习”.2.教材第155页“随堂练习”第1,2题.五、小结1.通过本节课的学习,你有什么收获?2.反比例函数图象的画法及步骤是什么?3.反比例函数图象与位置的关系是什么?4.反比例函数有哪些性质?六、课外作业1.教材第154页习题6.2第1,3题.2.教材第157页习题6.3第1,2题.本节课的内容主要有两点:一是画反比例函数的图象,二是由图象得出反比例函数的性质.在教学中,通过学生自由探究、观察、类比学习,探索得出反比例函数的图象和性质,使学生经历获取新知的成功体验,充分体现了新课程的教学理念和自主探究的学习方法.学生的学习往往从问题开始,因为这样的学习具有方向性与原动力,因此,我把教学设计的主体设计成又若干个有一定逻辑顺序的问题,即通过复习反比例函数的定义——画出反比例函数的图象——根据图象得出反比例函数的性质——利用函数性质解决问题.层层深入,逐步培养学生的问题意识及利用所学知识解决问题的能力.(2)在每个象限内,随着x值的增大y的值是怎样变化的?引导学生思考,得出:表达式图象的位置y随x的变化情况4图象在第一、三象限内在每个象限内,y的值随着x值的增大而减小-4y=图象在第二、四象限内在每个象限内,y的值随着x值的增大而增大x三、举例分析k例1反比例函数y=的图象如图所示.x(1)判断k为正数还是负数.(2)如果A(-3,y)和B(-1,y)为这个函数图象上的两点,那么y与y的大小关系是1221怎样的?学生思考回答,教师讲评并进一步讲解根据反比例函数的增减性比较函数值大小的方法:利用反比例函数的增减性来比较函数值的大小时,如果给定的两点或几点能够确定在同一象限的分支上时,可以直接利用反比例函数的性质解答;如果给定的两点或几点不能够确定在同一象限的分支上时,则不能利用反比例函数的性质比较,需要根据函数的图象和点的位置用数形结合思想来比较或利用特殊值法通过求值来比较.42例2如图,两个反比例函数y=和y=在第一象限内的图象分别是G和G,设点Px x12在G上,PA⊥x轴于点A,交G于点B,则△POB的面积是多少?12学生分小组讨论后给出答案,教师点评,并提问:双曲线的几何特性是什么呢?引导学生总结双曲线的几何特性:k过双曲线y=上的任意一点向两坐标轴作垂线,与两坐标轴围成的矩形面积等于|k|,x||k连接该点与原点,还可得出两个直角三角形,这两个直角三角形的面积都等于.2四、练习巩固1.教材第153页“随堂练习”.2.教材第155页“随堂练习”第1,2题.五、小结1.通过本节课的学习,你有什么收获?2.反比例函数图象的画法及步骤是什么?3.反比例函数图象与位置的关系是什么?4.反比例函数有哪些性质?六、课外作业1.教材第154页习题6.2第1,3题.2.教材第157页习题6.3第1,2题.本节课的内容主要有两点:一是画反比例函数的图象,二是由图象得出反比例函数的性质.在教学中,通过学生自由探究、观察、类比学习,探索得出反比例函数的图象和性质,使学生经历获取新知的成功体验,充分体现了新课程的教学理念和自主探究的学习方法.学生的学习往往从问题开始,因为这样的学习具有方向性与原动力,因此,我把教学设计的主体设计成又若干个有一定逻辑顺序的问题,即通过复习反比例函数的定义——画出反比例函数的图象——根据图象得出反比例函数的性质——利用函数性质解决问题.层层深入,逐步培养学生的问题意识及利用所学知识解决问题的能力.(2)在每个象限内,随着x值的增大y的值是怎样变化的?引导学生思考,得出:表达式图象的位置y随x的变化情况4图象在第一、三象限内在每个象限内,y的值随着x值的增大而减小-4y=图象在第二、四象限内在每个象限内,y的值随着x值的增大而增大x三、举例分析k例1反比例函数y=的图象如图所示.x(1)判断k为正数还是负数.(2)如果A(-3,y)和B(-1,y)为这个函数图象上的两点,那么y与y的大小关系是1221怎样的?学生思考回答,教师讲评并进一步讲解根据反比例函数的增减性比较函数值大小的方法:利用反比例函数的增减性来比较函数值的大小时,如果给定的两点或几点能够确定在同一象限的分支上时,可以直接利用反比例函数的性质解答;如果给定的两点或几点不能够确定在同一象限的分支上时,则不能利用反比例函数的性质比较,需要根据函数的图象和点的位置用数形结合思想来比较或利用特殊值法通过求值来比较.42例2如图,两个反比例函数y=和y=在第一象限内的图象分别是G和G,设点Px x12在G上,PA⊥x轴于点A,交G于点B,则△POB的面积是多少?12学生分小组讨论后给出答案,教师点评,并提问:双曲线的几何特性是什么呢?引导学生总结双曲线的几何特性:k过双曲线y=上的任意一点向两坐标轴作垂线,与两坐标轴围成的矩形面积等于|k|,x||k连接该点与原点,还可得出两个直角三角形,这两个直角三角形的面积都等于.2四、练习巩固1.教材第153页“随堂练习”.2.教材第155页“随堂练习”第1,2题.五、小结1.通过本节课的学习,你有什么收获?2.反比例函数图象的画法及步骤是什么?3.反比例函数图象与位置的关系是什么?4.反比例函数有哪些性质?六、课外作业1.教材第154页习题6.2第1,3题.2.教材第157页习题6.3第1,2题.本节课的内容主要有两点:一是画反比例函数的图象,二是由图象得出反比例函数的性质.在教学中,通过学生自由探究、观察、类比学习,探索得出反比例函数的图象和性质,使学生经历获取新知的成功体验,充分体现了新课程的教学理念和自主探究的学习方法.学生的学习往往从问题开始,因为这样的学习具有方向性与原动力,因此,我把教学设计的主体设计成又若干个有一定逻辑顺序的问题,即通过复习反比例函数的定义——画出反比例函数的图象——根据图象得出反比例函数的性质——利用函数性质解决问题.层层深入,逐步培养学生的问题意识及利用所学知识解决问题的能力.。

九年级数学上册 第六章 反比例函数 6.2 反比例函数的图象与性质(第2课时)课件

九年级数学上册 第六章 反比例函数 6.2 反比例函数的图象与性质(第2课时)课件

第八页,共十页。
1
3
2
4
6.已知反比例函数
5
6
-7
y=的图象的一支位于第一象限.

关闭
解:(1)该函数图象的另一支所在象限是第三象限.
∵图象过第一、三象限,∴m-7>0,∴m>7.
即 m 的取值范围为 m>7.
(2)设点 A 的坐标为(x,y),
∵点 B 与点 A 关于 x 轴对称,
∴点 B 的坐标为(x,-y).
3
∴B -2, 2 .

∵反比例函数 y= 的图象过点 B,∴k=-3.
3
∴反比例函数表达式为 y=- .
(2)点P在第二象限(xiàngxiàn),点Q在第四象限.
∵k<0,∴在每一个象限内y随x的增大而增大.
又当x1<x2时,y1>y2,
∴x1<0<x2,y1>0>y2.
∴点P在第二象限,点Q在第四象限.
1
PON= |k|.
2
第二页,共十页。
1
2
3
1.在反比例函数
5
4Байду номын сангаас
6
-3
y=图象的每一支曲线(qūxiàn)上,y的值都随x值的增大而减
小,则k的取值范围是(
A.k>3
B.k>0
C.k<3
D.k<0

)
关闭
A
答案(dá
答案
àn)
第三页,共十页。
1
2
3
4
5
6
2.已知P1(x1,y1),P2(x2,y2)两点都在反比例函数(hánshù)y=

专题6_2 反比例函数的图象和性质(第2课时)-九年级数学上册教材配套教学课件(北师大版)

专题6_2 反比例函数的图象和性质(第2课时)-九年级数学上册教材配套教学课件(北师大版)

归纳:
k
对于反比例函数 y ,
x
点 Q 是其图象上的任意一
点,作 QA 垂直于 y 轴,作
QB 垂直于x 轴,矩形AOBQ
的面积与 k 的关系是
S矩形AOBQ= |k| .
y
A
•Q
O B
x
推理:△QAO与△QBO的
面积和 k 的关系是
k
S△QAO=S△QBO=
.
2
反比例函数的
面积不变性
练一练
3
A. 2
ABC
1
,则 k 的值是(
B.3
5
C. 2

D.2
k
k
【详解】解: 如图,反比例函数 y= x (k≠0,x>0)与反比例函数 y=− x (k≠0,x<0)的
图象关于 y 轴对称,延长 GF 交 x 轴于 M,设 AB 交 y 轴于 N.
1
3
5
∴ AN BN 2 AB 2 ,NH=OM= 2 ,
k
∵点 A、C 在反比例函数 y= x 的图象上,
3 2k
5 2k
∴A ( 2 , 3 ) ,C ( 2 , 5 ) ,
又∵ S
ABC
1

∴ 2 AB•CH=1,
1
∵AB=3,
∴CH= 3 ,
2
∵点 A、C 纵坐标的差是 CH,
2k
2k
即35

2
3

5
解得 k= 2 ,
故选 C.
k
5.如图,P 是反比例函数 y = x 图象上一点,过 P 作 x 轴的垂线 PA,若 S
直角坐标系中是怎样一种情况呢?可以试着动手画一画.

反比例函数的图象和性质

反比例函数的图象和性质

18.4.2 反比例函数的图象和性质教学目标1、了解反比例函数图象的形状特征。

2、会画反比例函数的图象。

3、经历探究反比例函数性质的过程,掌握反比例函数的性质。

4、学会利用反比例函数的性质解决简单的实际问题。

教学重点探究反比例函数性质的过程,掌握反比例函数的性质。

教学难点利用反比例函数的性质解决简单的实际问题。

教学过程:一、设疑自探创设情境,引入课题:1、什么叫反比例函数?反比例函数的解析式是什么?2、怎样画函数的图象?3、类比正比例函数的概念和性质,你认为学过了反比例函数的概念,还应该再学习什么内容?发散提问,明确探究方向。

梳理学生提出的问题,形成自探提纲。

自探提示一:6的图象1、根据下列要求画出函数y=x(1)列表(2)描点:根据表中的有序实数对,在坐标系中描出相应的点。

(3)连线:用光滑的曲线依次将各个点连接起来。

观察函数图象的特征思考:①图象有什么特征?图象在哪些象限?②图象从左向右的升降情况怎样?自变量x从左向右怎样变化?函数值y怎样变化?自探提示二:仿照自探一画出函数y=-6的图象。

并做类似的研究。

(1)两个象限,和y =x 6的图象有什么不同?(2)函数y =xk 的图象所在的象限由什么确定?(3)从对以上两个函数的研究结果中,你能否得出关于反比例函数性质的一般结论?二、解疑合探提问学生回答上面的问题,通过交流,使学生明确: 1、画反比例函数的图象的方法步骤与画一次函数图象的方法步骤相同,都是三步:(1)列表;(2)描点;(3)连线。

教师在提问检查学生自学的基础上,利用多媒体幻灯片演示画出函数y=x 6和函数y=-x6的图象,以形成画反比例函数图象的正确方法。

通过操作、讲论与交流,我们发现反比例的图象是两条曲线,且这两条曲线关于原点对称,这种图象通常称为双曲线。

2、通过观察、对比,总结反比例函数y =xk有下列性质: (1)k >0图象在第一、三象限,在每个象限内,曲线从左向右下降,y 随x 的增大而减小。

第一讲:反比例函数的概念和图像性质

第一讲:反比例函数的概念和图像性质

第一讲:反比例函数概念 一、一般地,形如xky =(k 为常数,且0≠k )的函数称为反比例函数。

注意:①分母中含有自变量x ,且指数为1.②比例系数0≠k③自变量x 的取值为一切非零实数。

反比例函数表达式的三种形式① xky =②kx y =1-③ k xy =二、求函数解析式的方法:待定系数法 对于解析式xky =,中只有一个待定系数,因此只需要一对对应的x 、y 的值即可。

例1:下列函数中,是反比例函数的有①x y 5=; ②x y 4.0=; ③2x y =; ④2=xy ; ⑤πx y =; ⑥xy 5-=;⑦12-=x y ; ⑧31-=xy ; ⑨)0(2≠=a a xay 为常数且; ⑩x y 52-=;例2:如果函数222-+=k kkx y 是反比例函数,那么k =________,此函数的解析式是 ;如果自变量取值为—1时,函数值为2,次反比例函数的关系式是 ; 例3:计划修建铁路1200km ,那么铺轨天数y (天)是每日铺轨量x 的反比例函数吗? 解:因为 ,所以y 是x 的反比例函数;例4:一块长方形花圃,长为a 米,宽为b 米,面积为8平方米,那么,列出a 关于b 的函数关系式为例5:在某一电路中,保持电压V (伏特)不变,电流I (安培)与电阻R (欧姆)成反比例,当电阻R=5时,电流I=2安培。

(1)求I 与R 之间的函数关系式;(2)当电流I=0.5安培时,求电阻R 的值。

思考:你还能举出哪些生活中的反比例函数例子?提升训练:1.已知:,21y y y +=1y 与2x 成正比例,2y 与x 成反比例,且当3,1==y x ;当1,1=-=y x ,求21-=x 时,y 的值?2.已知y 与x-1成反比例,并且x =-2时y =7,求:(1)求y 和x 之间的函数关系式; (2)当x=8时,求y 的值(3)y =-2时,x 的值。

3.已知y =y 1-y 2,y 1与x 成正比例,y 与x 成反比例,且当x =1时,y =-14,x =4时,y =3.求(1)y 与x 之间的函数关系式.(2)自变量x 的取值范围.(3)当x =14时,y 的值.第二讲:反比例函数的图像和性质 1.通过描点法画x y 2=和xy 3-=的函数图像 2.反比例函数的图像是双曲线。

九年级数学上册 第六章 反比例函数 6.2 反比例函数的图象与性质 第2课时 反比例函数的性质课件

九年级数学上册 第六章 反比例函数 6.2 反比例函数的图象与性质 第2课时 反比例函数的性质课件
) 反比例函数的性质
[解析] (1)根据反比例函数图象的对称性可知,该函数图象位 于第二、四象限,则 m-5<0,据此可以求得 m 的取值范围;
(2)根据函数图象中“在每一个象限内,y 的值随 x 值的增大而 增大”进行判断.
第八页,共十九页。
第六章 反比例函数
2 反比例函数的图象与性质
第一页,共十九页。
第六章 反比例函数(hánshù)
第2课时(kèshí) 反比例函数的性质
知识目标 目标突破 总结反思
第二页,共十九页。
第2课时(kèshí) 反比例函数的性质
知识目标
1.通过探索反比例函数的性质,理解并掌握反比例函 数的性质,能利用反比例函数的性质解决相关的问题. 2.通过探索反比例函数中比例系数 k 的几何意义,理 解图形面积与反比例函数中比例系数 k 的关系,能利 用 k 的几何意义解决有关反比例函数中的面积问题.
①当 y1<y2<0 时,x1<x2; ②当 0<y1<y2 时,x1<x2; ③当 y1<0<y2 时,x2<x1.
第九页,共十九页。
第 课时 2
(kèshí)
反比例函数的性质
【归纳总结】 比较函数值的大小或利用函数值的大小比较 自变量的值的大小的方法: (1)直接把点的坐标代入函数表达式,求出相应的函数值或 自变量的值,比较大小; (2)在函数图象上描出各点,再根据点的位置比较函数值或 自变量的值的大小; (3)利用函数的增减性,比较函数值或自变量的值的大小.
∴矩形 ABCD 的面积为 3-1=2.
第十二页,共十九页。
第2课时 反比例函数(hánshù)的性质
【归纳总结】 (1)反比例函数图象上的点与原点所连的 线段、坐标轴、该点向坐标轴作垂线所围成的直角三角形(如
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 反比例函数的图象与性质第1课时反比例函数的图象与性质(1)【知识与技能】1.会用描点法画反比例函数图象;2.理解反比例函数的性质.【过程与方法】通过观察反比例函数图象,分析和探究反比例函数的性质.【情感态度】在动手画图的过程中体会乐趣,养成勤于动手,乐于探索的习惯.【教学重点】画反比例函数的图象,理解反比例函数的性质.【教学难点】理解反比例函数的性质,并能灵活应用.一、情境导入,初步认识1.一次函数y=kx+b(k、b是常数,k≠0)的图象是什么形状?其性质有哪些?2.反比例函数y =6x的图象会是什么形状呢?请大家猜猜看,我们可以采用什么方法画?【教学说明】学生思考、交流并回答问题,教师根据学生活动情况进行补充和完善.由此引入新课.二、思考探究,获取新知1.教师先引导学生思考,示范画出反比例函数y=6x的图象,再让学生尝试画出反比例函数y=-6x的图象.2.在作图过程中,启发学生类比画一次函数的图象的过程;探索反比例函数的图象作图步骤:①列表;②描点;③连线.【教学说明】教师在活动中应重点关注:(1)启发学生反比例函数与一次函数的作图基本步骤是一致的.但是在具体的作图过程中又有它自己的特点,和学生一起体会其中的共性和特性.(2)①列表时,关注学生是否注意到自变量的取值应使函数有意义(即x≠0),同时,所取的点既要使自变量的取值有一定的代表性,又不至于使自变量或对应的函数值太大或是太小,以便于描点和全面反映图象的特征;②描点时,一般情况下所选的点越多则图象越精细;③连线时,让学生根据已经描好的点先思考:图象有没有可能是直线.学生自主探究发现图象特点后,引导学生用平滑的曲线按照自变量从小到大的顺序连接各点,得到反比例函数的图象.3.比较y=6x与y=-6x的图象,它们有什么共同特征?它们之间有什么关系?【教学说明】引导学生观察思考,回答问题,让学生了解反比例函数的图象是一种双曲线,并且让学生切实认识和理解:反比例函数曲线的两个分支是断开的,延伸部分逐渐靠近坐标轴,但永远不与坐标轴相交.在同一坐标系内两个反比例函数图象的对称关系.4.观察函数y=6x和y=-6x以及y=3x和y=-3x的图象.(1)你能发现它们的共同特征以及不同点吗?(2)每个函数的图象分别位于哪几个象限?(3)在每一个象限内,y随x的变化如何变化?【教学说明】学生小组讨论,观察思考后进行分析、归纳,得到反比例函数的性质. 【归纳结论】反比例函数y=kx(k为常数,k不为零)的图象是一种双曲线;当k >0时,双曲线的两支分别位于第一、三象限,当k < 0时,双曲线的两支分别位于第二、四象限.三、运用新知,深化理解1.如果函数y=2x k+1的图象是双曲线,那么k=-2.2.如果点(1,-2)在双曲线y=kx上,那么该双曲线在第二、四象限.3.如果反比例函数y=3kx-的图象位于第二、四象限内,那么满足条件的正整数k的值是1,2.4.反比例函数y=-1/x的图象大致是图中的(D)5.下列反比例函数图象一定在第一、三象限的是(C)A.y=mxB.y=1mx+C.y=21mx+D.y=-mx6.已知直线y=kx+b的图象经过第一、二、四象限,则函数y=kbx的图象在第二、四象限.7.已知一次函数y=kx+b与反比例函数y=3b kx-的图象交于点(-1,-1),则此一次函数的解析式为y=2x+1,反比例函数的解析式为1yx =.8.作出反比例函数y=12x的图象,并根据图象解答下列问题:(1)当x=4时,求y的值;(2)当y=-2时,求x的值;(3)当y>2时,求x的范围.解:列表:由图知:(1)y=3;(2)x=-6;(3)0<x<6.9.作出反比例函数y=-4x的图象,结合图象回答:(1)当x=2时,y的值;(2)当1<x≤4时,y的取值范围;(3)当1≤y<4时,x的取值范围.解:列表:由图知:(1)y=-2;(2)-4<y≤-1;(3)-4≤x<-1.【教学说明】为了让学生灵活的运用反比例函数的性质解决问题,在研究题目时,要紧扣性质进行分析,达到理解性质的目的.四、师生互动、课堂小结本节课学习了哪些知识?在知识应用过程中要注意什么?你有什么收获?1.布置作业:教材“习题6.2”中第2、3题.2.完成练习册中相应练习.通过本节课的学习使学生理解了反比例函数的意义和性质,并掌握了用描点法画函数图象的方法,同时也为后面的学习奠定了基础.4 圆周角和圆心角的关系第1课时圆周角定理及其推论【知识与技能】理解圆周角的概念,掌握圆周角的两个特征、定理与其推论的内容及简单应用.【过程与方法】通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理和演绎推理的能力.【情感态度】引导学生对图形的观察,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.【教学重点】圆周角的概念和圆周角定理及其推论的应用.【教学难点】圆周角的概念和圆周角定理及其推论的应用.一、情景导入,初步认知1.圆心角定义.2.弦、弧、圆心角的三者关系.3.外角的性质.刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上呢?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题。

【教学说明】复习相关知识,为本节课作准备.二、思考探究,获取新知探究1:观察∠ACB、∠ADB、∠AEB,这样的角有什么特点?分析讨论:点C,D,E在什么位置?【归纳结论】通过观察,我们可以发现像∠EAD、∠EBD、∠EBC这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.探究2: 在圆上任取一个圆周角,观察圆心角顶点与圆周角的位置关系有几种情况?共有三种情况:①圆心在圆周角的一边上; ②圆心在圆周角的内部;③圆心在圆周角的外部.如下图:同弧BC 所对的圆周角与圆心角有什么关系?你能证明吗?【归纳结论】圆周角的度数等于它所对弧上的圆心角的度数一半.在同圆或等圆中,同弧或等弧所对的圆周角相等.【教学说明】引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心. 三、运用新知,深化理解上,AB BC =,∠AOB=601.如图,已知BD 是⊙0的直径,点A 、C 在⊙O °,则∠BDC 的度数是( ) A. 20° B. 25° C. 30° D. 40°AB BC =,∠A0B=60°,解析:由BD 是⊙0的直径,点A 、C 在⊙O 上,利用在同圆或等圆中同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BDC 的度数:2. 如图,已知A ,B ,C 在⊙0上,ACB 为优弧,下列选项中与∠AOB 相等的是( )A. 2∠CB. 4∠BC. 4∠AD. ∠B+∠C解析:如图,由圆周角定理可得:∠AOB=2∠C.答案:A.3.⊙O半径OA丄OB,弦AC丄BD于E.求证:AD//BC.解:∵OA丄OB∴∠AOB=90°∴∠C=∠D=45∵AC丄BD∴∠AED=90°∴∠DAE=45°∴∠C=∠DAE∴AD//BC【教学说明】这些练习题比较简单,主要是对圆周角定理的有关应用,可放手让学生独立完成.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.1. 作业:教材“习题3.4”中第1、2题.2. 完成练习册中本课时的练习.本节课主要讲述了圆周角定义、定理及其推论,其定义是在圆心角定义基础上结合示意图构造出来的,对定义的理解从教学实际来看学生们掌握的都较好,对圆周角定理在证明过程中所应用的分类讨论、转换化归思想略显难度,第一种情况证明后,证明第二、第三种情况时辅助线的添加问题学生思考、运用起来较为困难,在今后的教学中应多注意激发学生自己先划分圆心与圆周角的位置关系,而后用分组讨论的办法来让学生自行解决第二、第三种情况的证明,注意适时引导学生运用由特殊到一般的转化方法(即连接圆周角顶点与圆心并延长),可以收到较好地教学效果.但也存在一些不足之处,讲的时间过长,学生练习时间过少,学生也存在不足,有相当一部分学生区分不出圆周角是哪条弧所对的圆周角,在找出同弧所对的圆周角时出现困难。

点与圆的位置关系教学目标知识与技能 理解并掌握点和圆的三种位置关系及数量间的关系。

过程与方法 通过生活中实际例子,探求点和圆的三种位置关系,并提炼出相关的数学知识,从而渗透数形结合、分类讨论等数学思想。

情感、态度与价值观 通过本节知识的学习,体验点和圆的位置关系与生活中的射击、投掷等活动紧密相连,感知数学就在身边,从而更加热爱生活,激发学生学习数学的兴趣。

教学重点难点重点:点和圆的三种位置关系。

难点:点和圆的三种位置关系及数量关系。

教学过程(一)创设情境 导入新课 活动一:观察我国射击运动员在奥运会上获金牌,为我国赢得荣誉,图是射击靶的示意图,它是由许多同心圆(圆心相同,半径不相同)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?提示:解决这个问题要研究点和圆的位置关系. 活动二:问题探究问题1:观察图中点A ,点B ,点C 与圆的位置关系? 点A 在圆内,点B 在圆上,点C 在圆外问题2:设⊙O 半径为r ,说出来点A ,点B ,点C 与圆心O 的距离与半径的关系:OA < r ,OB = r ,OC > r问题3:反过来,已知点到圆心的距离和圆的半径,能否判断点和圆的位置关系? 设⊙O 的半径为r ,点P 到圆心的距离OP = d ,则有: 点P 在圆内⇔d<r 点P 在圆上⇔d=r 点P 在圆外⇔d>r (二)合作交流 解读探究 活动三CB AO rAO PP Pr你知道击中靶上不同位置的成绩是如何计算的吗?射击靶图上,有一组以靶心为圆心的大小不同的圆,他们把靶图由内到外分成几个区域,这些区域用由高到底的环数来表示,射击成绩用弹着点位置对应的环数来表示.弹着点与靶心的距离决定了它在哪个圆内,弹着点离靶心越近,它所在的区域就越靠内,对应的环数也就越高,射击的成绩越好.(三)应用迁移巩固提高例1、如图在Rt△ABC中,∠C=900,BC=3㎝,AC=4㎝,以B为圆心。

以BC为半径做⊙B。

问点A.C及AB.AC的中点D.E与⊙B有怎样的位置关系?(四)总结反思拓展升华总结:1、本节学习的数学知识:点和圆的位置关系;2、本节学习的数学方法是数形结合。

反思:点和圆有三种位置关系:点在圆内,点在圆上,点在圆外;它是由点P到圆心的距离d和圆的半径r的数量关系决定的,在运用这一性质时应注意“形”与“数”之间的转化。

相关文档
最新文档