高等数学 教学大纲
《高等数学》教学大纲(本工简单)

《高等数学》教学大纲课程名称:高等数学 课程编号:411001 英文名称:Calculus 学 分:11 授课学时:176教学对象:本科工科类各专业 一、本课程的性质及适用专业:《高等数学》课程在高等学校的教学计划中是一门重要的基础理论课。
它是为培养适应我国社会主义现代化建设所需要的高质量专门人才服务的、要求学生通过对该课程的学习,为今后学习工程数学、专业基础课以及相关专业课程打下必要的数学基础,为这些课程提供所必需的数学概念、理论、方法和运算技能。
作为未来的工程技术或研究人员,也必需通过对这门课程的学习、获得必不可少的数学方法的修养和素质。
本课程适用专业:本科工科类各专业 二、本课程的教学目标:通过本课程的学习,要使学生获得:1、 函数、极限、连续;2、 一元函数微积分学;3、 向量代数和空间解析几何;4、 多元函数微积分学;5、级数(包括付里叶级数);6、常微分方程等多方面的基本概念、基本理论和基本运算技能、为学习后继课程以及进一步获得数学知识奠定必要的数学基础。
在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象概括问题的能力,还要特别注意培养学生具有比较熟练的运算能力和综合运用所学知识分析问题和解决问题的能力。
三、对先修课程的要求本课程的学习要求学生具有初等数学的基本知识。
四、本课程教学内容及基本要求本课程为高等学校本科工科类各专业的基础课程,应在大学一年级第一学期、第二学期实施; 对教学内容的要求分为三级,基本概念的要求分别为:知道、了解、理解;基本运算的要求分别为:会、掌握、熟练掌握; 1.函数、极限、连续1.1 理解函数的概念,了解函数的单调性、周期性、奇偶性和有界性。
1.2 了解反函数、复合函数的概念。
1.3 熟练掌握基本初等函数的性质及图形;理解初等函数的概念。
1.4 能列出简单实际问题中的函数关系。
1.5 了解极限的“N -ε”、“ ε-δ” 定义,(对于给出ε、求N 或δ不作过高要求),并能在学习过程中逐步加深对极限思想的理解。
(完整word版)《高等数学》(下)课程教学大纲

《高等数学》(下)课程教学大纲教研室主任:王树泉执笔人:蔡俊青一、课程基本信息开课单位:经济学院课程名称:高等数学下册课程编号:101001212英文名称:Advanced Mathematics课程类型:专业基础课总学时: 72理论学时: 72 实验学时: 0学分:3开设专业:所有专业先修课程:《高等数学》(上)二、课程任务目标(一)课程任务本课程是理科院校经济管理类专业的一门专业基础课,又是全国硕士研究生入学考试统考科目。
通过本课程的学习,要使学生掌握多元函数微积分学、无穷级数和常微分方程的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。
要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。
(二)课程目标基本了解多元函数微积分学的基础理论;充分理解微积分学的背景思想及数学思想。
掌握多元函数微积分学、无穷级数和常微分方程的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。
能较熟练地应用微积分学、无穷级数和微分方程的思想方法解决应用问题。
三、教学内容和要求第六章多元函数微积分1.内容概要空间解析几何简介,多元函数基本概念,偏导数,全微分,多元复合函数微分法与隐函数微分法,多元函数的极值及其求法,二重积分的概念与性质,直角坐标系下二重积分的计算,极坐标系下二重积分的计算。
2.重点和难点重点:多元函数的概念;偏导数与全微分的概念;多元复合函数的求导法则;多元函数的极值问题;二重积分的概念及其计算难点:全微分的概念;多元复合函数的求导法则与隐函数微分法;二重积分的计算。
3.学习目的与要求(1)理解多元函数的极限与连续性,以及有界闭区域上的连续函数的性质。
(2)理解偏导数、全微分的概念。
(3)熟练掌握复合函数求导法;会求二阶偏导。
(4)会求隐函数的偏导数。
《高等数学(I)和(II)》教学大纲

《高等数学(I )和(II )》教学大纲课程代号:/ 学时数:150~170 学分数: 适用专业:全院工科各专业一、本课程的地位,任务和作用高等数学是人们从事高新技术,知识创新中必不可少的工具,它的内容、思想、方法和语言已广泛渗入自然科学和社会科学,成为现代文化的重要组成部分。
21世纪是信息时代,它不仅给人类生活带来日新月异的变化,也给高等数学课程的教学增添了新的内函。
高等数学是高等工程院校的一门重要的基础课,通过学习使学生受到必要的高等数学教育,使其具有一定的数学素养,为后续课程学习及今后的应用打下良好的数学基础。
二.、本课程的相关课程后续课程:大学物理、概率论与数理统计等三、本课程的基本内容及要求 第一章 函数,极限,连续 教学内容函数的概念及表示法,函数的有界性、单调性、周期性、奇偶性,复合函数,反函数,隐函数,基本初等函数的性质及其图形,初等函数,应用问题的函数关系的建立,数列极限与函数极限的定义及性质,函数的左、右极限,无穷小与无穷大的概念,无穷小的性质及其比较,极限的四则运算,极限存在的两个准则,两个重要极限e x x x xx =+=∞→→)11( 1 sin lim limx 0函数连续的概念,间断点的类型, 初等函数的连续性,闭区间上连续函数的性质. 教学要求1.理解函数的概念,掌握表示法.2.了解函数的有界性,单调性,周期性,奇偶性.3.理解复合函数及分段函数的概念,了解反函数,隐函数概念. 4.掌握简单初等函数的性质及其图形. 5.会建立简单应用问题的函数关系式.《高等数学(Ⅰ) 和(Ⅱ)》教学大纲教学大纲系列·2·6.理解数列极限与函数极限的概念.理解函数的左、右极限概念及极限存在和左、右极限的关系.7.掌握极限的性质,极限的四则运算法则.8.掌握极限存在的两个准则,并会利用它们求极限, 基本掌握利用"两个重要极限"求极限方法.9.理解无穷小与无穷大的概念. 掌握无穷小比较方法,会用等价无穷小求极限.10.理解函数连续的概念,会判别函数间断点的类型.11.了解连续函数的性质,初等函数的连续性, 理解闭区间上连续函数的性质并会利用这些性质.第二章一元函数微分学教学内容导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线和法线,基本初等函数的导数,导数和微分的四则运算,复合函数、反函数、隐函数以及参数方程所确定的函数的微分法,高阶导数的概念,某些简单函数n阶导数,一阶微分形式的不变性,微分在近似计算中的应用,罗尔(Rolle)定理,拉格朗日(Lagrange)中值定理,柯西(Cauchy)中值定理,泰勒(Taylor)展开定理,洛比达(L'Hospital)法则,函数的极值及其求法,函数单调性,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数最大值和最小值的及其简单应用,弧微分,曲率半径,方程近似解的二分法和切线法。
《高等数学II》教学大纲

《高等数学II》课程教学大纲一、课程基本信息课程代码:课程名称:高等数学II英文名称:Higher mathematics II课程类别:公共课学时:64学分:4适用对象: 理工科专业考核方式:考试先修课程:高等数学I二、课程简介《高等数学II》是高等学校理工科专业学生的必修课。
通过本课程的学习,使学生掌握高等数学的基本概念、基本理论和基本运算技能,为学习后续课程和获得进一步的数学知识奠定必要的基础。
通过知识内容的传授,培养学生的运算能力、抽象思维能力、逻辑推理能力、空间想象能力及综合运用所学知识去分析问题和解决问题的能力。
其具体内容包括:空间解析几何与向量代数;多元函数微积分学(多元函数微分学、重积分、曲线积分和曲面积分);无穷级数。
Higher mathematics II is a compulsory course for students majoring in science and engineering in institutions of higher learning. Through learning of this course, make the students master the basic concepts of higher mathematics and the basic theory and basic computing skills, for learning the follow-up courses and further the mathematics knowledge to lay the necessary foundation. Through the knowledge content of teaching, cultivate students' operation ability, abstract thinking ability, logical reasoning ability, space imagination ability and the integrated use of knowledge to the ability to analyze and solve problems. The specific contents include: spatial analytic geometry and vector algebra; Multifunction calculus (multifunction differential calculus, reintegration, curvilinear integral and surface integral); Infinite series.三、课程性质与教学目的目前,《高等数学II》已成为理工科类及部分经济、管理类专业的主干学科基础课程,是教育部审定的核心课程和硕士研究生入学考试“数学1”和“数学2”的必考科目,对学好其它专业课程意义重大。
高等数学教学大纲

高等数学教学大纲1. 课程简介高等数学作为理工科学生的重要课程之一,是一门基础性较强的数学课程。
本课程为学生打下坚实的数学基础,为进一步的学习和研究提供必备的数学工具。
本课程涉及到的内容较为广泛,包括微积分、线性代数、概率论等多个学科,具有重要的理论意义和实际应用价值。
本教学大纲旨在规范本课程的教学内容和教学要求,提高教学质量。
2. 教学目标•熟悉微积分和线性代数的基本概念、理论和方法•掌握微积分和线性代数的基本技能和方法•具备初步的应用能力•培养科学素养和数学思维,提高学习兴趣3. 课程要求3.1 基本知识要求1.掌握微积分基本概念,包括极限、导数、微分、积分、级数等2.掌握线性代数基本概念,包括向量、矩阵、行列式、特征值和特征向量等3.熟悉概率论和数理统计的基本概念3.2 基本技能要求1.能够通过计算求解微积分中的基本问题2.能够通过矩阵计算求解线性代数中的基本问题3.熟练掌握微积分和线性代数在实际问题中的应用3.3 常识与思维1.具有科学素养和数学思维,能够进行数学推理和证明2.能够认识和理解现代科学技术在广泛领域的应用3.具有独立思考和创新能力,尊重知识和事实,积极探索和实践4. 教学内容及进度安排课程内容学时第一章极限与连续12学时第二章导数及其应用12学时第三章积分12学时第四章常微分方程与级数16学时第五章方程组与矩阵论(含行列式、矩阵、特征值和特征向量、线性方程组等内容)18学时课程内容学时第六章多元函数微分学8学时第七章重积分与曲线积分10学时第八章曲面积分与高斯公式6学时第九章常微分方程8学时第十章概率论和数理统计16学时总计教学总学时108学时5. 学生评估1.平时成绩:包括作业、课堂表现等,占总成绩的30%;2.期末成绩:占总成绩的70%。
6. 教学方法1.授课:以讲授为主,充分发挥教师在教育教学中的主导作用;2.课堂互动:教师和学生进行互动,促进学生思考和表达;3.实例分析:通过实例展示,让学生了解案例应用和解决问题的方法;4.课堂练习和作业:通过课堂练习和作业巩固学生基础知识和解决问题的能力;5.课后辅导:提供个性化辅导,提高学生学习效果。
高等数学教学大纲

高等数学教学大纲课程概述高等数学是大学数学教育的基础课程,旨在为学生提供数学知识和技能,培养其逻辑思维能力、分析问题和解决问题的能力。
本大纲详细说明了高等数学课程的教学目标、教学内容、教学方法和评估方式。
教学目标1.理解高等数学的基本概念和理论,如函数、极限、连续性、微积分等。
2.掌握高等数学的基本方法和技能,包括微分学、积分学及其应用,能够运用数学知识解决实际问题。
3.培养学生的数学素养和逻辑思维能力,提高其分析问题和解决问题的能力。
4.使学生具备初步的研究能力,为后续课程的学习和研究打下基础。
教学内容1.函数与极限:包括函数的定义与性质,数列的极限,函数的极限与连续性。
2.导数与微分:包括导数的定义与性质,求导法则,微分及其应用。
3.积分学:包括不定积分与定积分的定义、性质和计算方法,以及积分的应用。
4.多元函数微积分:包括多元函数的极限、连续性、偏导数与全微分,以及二重积分。
5.无穷级数与常微分方程:包括无穷级数的概念与性质,常微分方程的基本概念与求解方法。
教学方法1.课堂讲解:通过讲解基本概念、理论和例题,使学生了解和掌握高等数学的知识和方法。
2.习题练习:通过大量的习题练习,加深学生对知识的理解,提高其解题能力。
3.案例分析:通过分析实际问题中的数学应用,培养学生的数学应用能力和解决问题的能力。
4.课堂讨论:通过讨论式教学,引导学生主动参与学习,提高其自主学习和合作学习能力。
评估方式1.平时作业:通过定期布置和批改平时作业,了解学生的学习情况,以便及时调整教学策略。
2.期中考试:通过期中考试检查学生对知识的掌握情况,为后续教学提供参考。
3.期末考试:通过期末考试全面评估学生对高等数学知识的掌握情况和应用能力。
4.课堂表现:通过观察学生的课堂表现,了解其学习状态和参与度,及时给予指导和帮助。
教学资源1.教材:选用适合学生学习的高等数学教材,保证教学内容的准确性和系统性。
2.教学辅导材料:提供相应的教学辅导材料,如习题集、案例集等,以便学生巩固和提高。
高等数学教学大纲

高等数学教学大纲I. 前置知识- 线性代数基础概念与运算- 赋范空间与内积空间- 微积分基础知识与运算- 偏微分方程的基本概念II. 实数集与函数- 实数集的基本性质和密度定理- 函数概念及函数的极限和连续性- 一元函数的导数和微分- 函数的级数展开与泰勒级数III. 多元函数- 多元函数的极限和连续性- 多元函数的偏导数与全微分- 隐函数定理和反函数定理- 多元函数的积分和积分变换IV. 向量场与曲线积分- 向量场概念及性质- 向量场的积分和散度- 曲线积分的概念与计算方法- Green公式与Stokes公式V. 线性代数- 线性变换与矩阵- 矩阵的特征值和特征向量- 线性方程组的求解- 线性空间和正交变换VI. 常微分方程- 一阶和高阶常微分方程概念- 常微分方程的解法与分类- 常微分方程的初值问题和边值问题- 振动和稳定性的应用VII. 偏微分方程- 二阶偏微分方程的基本类型及解法- 边值问题和特征值问题- 热方程、波动方程、和亥姆霍兹方程- 偏微分方程在物理和工程中的应用VIII. 算法与工具- MATLAB的基本语法和编程技巧- MATLAB在数学和工程中的应用- 多元函数和偏微分方程的数值方法- 常微分方程和偏微分方程的软件解法该教学大纲旨在为高等数学课程的学习提供一个系统的框架和指导,让学生能够深入理解数学的基本概念和方法,并能够应用数学知识解决实际问题。
该大纲涵盖了实数集与函数、多元函数、向量场与曲线积分、线性代数、常微分方程、偏微分方程以及算法和工具等多个方面,涵盖了高等数学课程的核心内容,可以为学生打下坚实的数学基础。
obe高等数学教学大纲

obe高等数学教学大纲
一、课程概述
OBE高等数学课程是一门基于成果导向的教育模式(Outcome-Based Education)的课程。
它以学生的最终学习成果为目标,设计相关的教学环节,使学生能够掌握高等数学的基本概念、方法和技能,并能将其应用于实际问题中。
二、课程目标
通过本课程的学习,学生将能够:
1. 掌握高等数学的基本概念、定理和公式;
2. 掌握微积分、线性代数和微分方程等基本内容;
3. 培养分析问题、解决问题的能力;
4. 能够将高等数学知识应用于实际问题中。
三、教学内容与方法
1. 教学内容:本课程主要包括微积分、线性代数和微分方程等内容。
具体包括极限、导数、积分、多元函数、微分方程等知识点。
2. 教学方法:采用讲授、讨论、案例分析等多种教学方法,注重启发学生的思维,培养其独立思考和解决问题的能力。
四、课程评估
1. 平时成绩:包括作业、课堂表现和小组讨论等;
2. 期末考试:通过闭卷考试的形式,检查学生对课程内容的掌握程度和应用能力。
五、课程资源
1. 教材:选用适合OBE教育模式的教材;
2. 辅导资料:提供相关的辅导书籍和在线资源;
3. 教学团队:具备丰富教学经验和专业知识的教师团队。
六、课程特色
1. 强调实际应用:本课程注重高等数学在实际问题中的应用,使学生能够更好地理解数学知识的实际意义;
2. 注重思维能力培养:通过案例分析和讨论等形式,培养学生的分析问题和解决问题的能力,提高其思维能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学教学大纲
高等数学教学大纲
高等数学是大学理工科专业中的一门重要课程,它是对初等数学知识的深入拓展和扩展,是培养学生数学思维和解决实际问题能力的重要途径。
高等数学的教学大纲是制定和规范高等数学课程的重要依据,它既要保证教学的广度和深度,也要与时俱进,符合学生的学习需求。
一、课程目标
高等数学的教学大纲首先需要明确课程的目标。
高等数学作为一门理论性较强的学科,目标应该包括培养学生的数学思维能力、分析和解决实际问题的能力以及数学语言和符号的运用能力。
同时,还应该培养学生的抽象思维、逻辑思维和创新思维能力,使他们能够在未来的学习和工作中灵活运用数学知识。
二、课程内容
高等数学的教学大纲需要明确课程的内容范围。
高等数学的内容非常广泛,包括微积分、线性代数、概率统计等多个模块。
在制定教学大纲时,需要综合考虑学生的基础知识和学习能力,合理安排各个模块的内容,并注重各个模块之间的联系和衔接。
此外,还要根据学科发展的最新动态,及时更新教学内容,引入一些前沿的数学理论和应用。
三、教学方法
高等数学的教学大纲还需要明确教学方法。
传统的数学教学往往注重概念和定理的讲解,但这种教学方法容易使学生产生学习兴趣的疲劳和厌倦。
因此,在制定教学大纲时,可以适当引入一些互动式教学方法,如小组讨论、案例分析等,鼓励学生主动参与课堂,培养他们的合作精神和团队意识。
同时,还可以
借助现代教育技术,如多媒体教学、网络教学等,提高教学效果。
四、教学评估
高等数学的教学大纲还需要明确教学评估的方式和标准。
教学评估是对学生学习成果的检验和评价,它应该既注重学生的知识掌握程度,也注重学生的能力培养和综合素质的提高。
因此,在制定教学大纲时,可以采用多种评估方式,如考试、作业、课堂表现等,并结合学生的实际情况,制定相应的评估标准。
此外,还可以鼓励学生参加数学竞赛和科研项目,提高他们的学习动力和创新能力。
总之,高等数学的教学大纲是指导和规范高等数学教学的重要文件,它对于提高教学质量和培养学生的数学素养具有重要意义。
在制定教学大纲时,需要明确课程目标、内容范围、教学方法和评估方式,以确保教学的有效性和可持续发展。
同时,还应该关注学科发展的最新动态,及时更新教学内容,培养学生的创新思维和实践能力。
只有如此,才能更好地适应社会需求,为学生的未来发展打下坚实的数学基础。