对称多项式的因式分解

合集下载

初中数学竞赛专题选讲 对称式(含答案)

初中数学竞赛专题选讲 对称式(含答案)

初中数学竞赛专题选讲(初三.5)对称式一、内容提要一.定义1. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 任意交换两个后,代数式的值不变,则称这个代数式为绝对对称式,简称对称式.例如: 代数式x+y , xy , x 3+y 3+z 3-3xyz, x 5+y 5+xy, yx 11+, xyzx z xyz z y xyz y x +++++. 都是对称式. 其中x+y 和xy 叫做含两个变量的基本对称式.2. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 循环变换后代数式的值不变,则称这个代数式为轮换对称式,简称轮换式.例如:代数式 a 2(b -c)+b 2(c -a)+c 2(a -b), 2x 2y+2y 2z+2z 2x, abc c b a 1111-++, (xy+yz+zx )()111z y x ++, 222222222111b a c a c b c b a -++-++-+. 都是轮换式. 显然,对称式一定是轮换式,而轮换式不一定是对称式.二.性质1.含两个变量x 和y 的对称式,一定可用相同变量的基本对称式来表示.这将在下一讲介绍.2. 对称式中,如果含有某种形式的一式,则必含有,该式由两个变量交换后的一切同型式,且系数相等.例如:在含x, y, z 的齐二次对称多项式中,如果含有x 2项,则必同时有y 2, z 2两项;如含有xy 项,则必同时有yz, zx 两项,且它们的系数,都分别相等. 故可以表示为:m(x 2+y 2+z 2)+n(xy+yz+zx) 其中m, n 是常数.3. 轮换式中,如果含有某种形式的一式,则一定含有,该式由变量字母循环变换后所得的一切同型式,且系数相等.例如:轮换式a 3(b -c)+b 3(c -a)+c 3(a -b)中,有因式a -b 一项, 必有同型式b -c 和 c -a 两项.4. 两个对称式(轮换式)的和,差,积,商(除式不为零),仍然是对称式(轮换式). 例如:∵x+y, xy 都是对称式,∴x+y +xy , (x+y )xy , xyy x +等也都是对称式. ∵xy+yz+zx 和zy x 111++都是轮换式, ∴z y x 111+++xy+yz+z , (zy x 111++)(xy+yz+z ). 也都是轮换式.. 二、例题例1.计算:(xy+yz+zx )()111z y x ++-xyz()111222zy x ++. 分析:∵(xy+yz+zx )()111zy x ++是关于x,y,z 的轮换式,由性质2,在乘法展开时,只要用xy 分别乘以x 1,y 1,z1连同它的同型式一齐写下. 解:原式=(z xy y zx x yz ++)+(z+x +y )+(y+z+x)-(zxy y zx x yz ++) =2x+2y+2z.例2. 已知:a+b+c=0, abc ≠0.求代数式 222222222111ba c a cbc b a -++-++-+的值 分析:这是含a, b, c 的轮换式,化简第一个分式后,其余的两个分式,可直接写出它的同型式. 解:∵2221c b a -+=222)(1b a b a ---+=ab 21-, ∴222222222111b a c a c b c b a -++-++-+=-ab 21-bc 21-ca 21 = -abc b a c 2++=0. 例3. 计算:(a+b+c )3分析:展开式是含字母 a, b, c 的三次齐次的对称式,其同型式的系数相等,可用待定系数法.例4. 解:设(a+b+c )3=m(a 3+b 3+c 3)+n(a 2b+a 2c+b 2c+b 2a+c 2a+c 2b)+pabc.(m, n, p 是待定系数)令 a=1,b=0,c=0 . 比较左右两边系数得 m=1;令 a=1,b=1,c=0 比较左右两边系数得 2m+2n=8;令 a=1,b=1,c=1 比较左右两边系数得 3m+6n+p=27.解方程组⎪⎩⎪⎨⎧=++=+=27638221p n m n m m 得⎪⎩⎪⎨⎧===631p n m∴(a+b+c )3=a 3+b 3+c 3+3a 2b+3a 2c+3b 2c+3b 2a+3c 2a+3c 2b+6abc.例5. 因式分解:① a 3(b -c)+b 3(c -a)+c 3(a -b);② (x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5.解:①∵当a=b 时,a 3(b -c)+b 3(c -a)+c 3(a -b)=0.∴有因式a -b 及其同型式b -c, c -a.∵原式是四次齐次轮换式,除以三次齐次轮换式(a -b )(b -c)(c -a),可得 一次齐次的轮换式a+b+c.用待定系数法:得 a 3(b -c)+b 3(c -a)+c 3(a -b)=m(a+b+c)(a -b )(b -c)(c -a)比较左右两边a 3b 的系数,得m=-1.∴a 3(b -c)+b 3(c -a)+c 3(a -b)=-(a+b+c)(a -b )(b -c)(c -a).② x=0时,(x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5=0∴有因式x ,以及它的同型式y 和z.∵原式是五次齐次轮换式,除以三次轮换式xyz ,其商是二次齐次轮换式.∴用待定系数法:可设(x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5=xyz [m(x+y+z)+n(xy+yz+zx)].令 x=1,y=1,z=1 . 比较左右两边系数, 得 80=m+n ;令 x=1,y=1,z=2. 比较左右两边系数, 得 480=6m+n.解方程组⎩⎨⎧=+=+480680n m n m得⎩⎨⎧==080n m . ∴(x+y+z )5-(y+z -x )5-(z+x -y )5-(x+y -z )5=80xyz(x+y+z).三、练习1.已知含字母x,y,z 的轮换式的三项x 3+x 2y -2xy 2,试接着写完全代数式______ 2. 已知有含字母a,b,c,d 的八项轮换式的前二项是a 3b -(a -b),试接着写完全代数式_________________________________.3. 利用对称式性质做乘法,直接写出结果:① (x 2y+y 2z+z 2x )(xy 2+yz 2+zx 2)=_____________________. ② (x+y+z )(x 2+y 2+z 2-xy -yz -zx )=___________________.4. 计算:(x+y )5.5. 求(x+y )(y+z)(z+x)+xyz 除以x+y+z 所得的商.6. 因式分解:① ab(a -b)+bc(b -c)+ca(c -a);② (x+y+z)3-(x 3+y 3+z 3);③ (ab+bc+ca )(a+b+c)-abc ;④ a(b -c)3+b(c -a)3+c(a -b)3.7. 已知:abcc b a 1111=++. 求证:a, b, c 三者中,至少有两个是互为相反数.8. 计算:bc ac ab a a +--22+ca ba bc b b +--22+abcb ca c c +--22. 9. 已知:S =21(a+b+c ). 求证:16)(416)(416)(4222222222222222b a c a c a c b c b c b a b a -+-+-+-+-+- =3S (S -a )(S -b)(S -c).10. 若x,y 满足等式 x=1+y 1和y=1+x1且xy ≠0,那么y 的值是( ) (A )x -1. (B )1-x. (C )x. (D )1+x.参考答案1. y 3+z 3+y 2z+z 2x -2y 2z -2z 2x2. b 3c+c 3d+d 3a -(b -c)-(c -d)-(d -a)3. ②x 3+y 3+z 3-3xyz4. 设(x+y)5=a(x 5+y 5)+b(x 4y+xy 4)+c(x 3y 2+x 2y 3), a=1, b=5, c=10.5. 设原式=(x+y+z )[a(x 2+y 2+z 2)+b(xy+yz+zx)], a=0, b=1.6 .③当a=-b 时,原式=0, 原式=m(a+b)(b+c)(c+a) m=17. 由已知等式去分母后,使右边为0, 因式分解8. 19. 一个分式化为S (S -a )(S -b)(S -c)10. 选 C。

对称式与轮换对称式.doc

对称式与轮换对称式.doc

八年级实验班竞赛专题-------对称式与轮换对称式1. 基本概念【定义1】一个n 元代数式12()n f x x x ,,,,如果交换任意两个字母的位置后,代数式不变,即对于任意的i j ,(1i j n ≤<≤),都有11()()i j n j i n f x x x x f x x x x =,,,,,,,,,,,,那么,就称这个代数式为n 元对称式,简称对称式。

例如,222x y x y xy x y z xy yz zx xy++++++,,,,都是对称式。

如果n 元对称式是一个多项式,那么称这个代数式为n 元对称多项式。

由定义1知,在对称式中,必包含任意交换两个字母所得的一切项,例如,在对称多项式()f x y z ,,中,若有3ax 项,则必有33ay az ,项;若有2bx y 项,则必有2bx z ,2222by z by x bz x bz y ,,,项,这些项叫做对称式的同形项,同形项的系数都相同。

根据对称多项式的定义,可以写出含n 个字母的对称多项式的一般形式,例如,含有三个字母x y z ,,的二次对称多项式的般形式是:222()()()a x y z b xy yz zx c x y z d +++++++++【定义2】如果一个n 元多项式的各项的次数均等于同一个常数r ,那么称这个多项式为n 元r 次齐次多项式。

由定义2知,n 元多项式12()n f x x x ,,,是r 次齐次多项式,当且仅当对任意实数t 有 1212()()r n n f tx tx tx t f x x x =,,,,,,。

例如,含三个字母的三元三次齐对称式为:333222222()()a x y z b x y x z y x y z z x z y cxyz +++++++++。

【定义3】一个n 元代数式12()n f x x x ,,,,如果交换任意两个字母的位置后,代数式均改变符号,即对于任意的i j ,()1i j n ≤<≤,都有 11()()i j n j i n f x x x x f x x x x =-,,,,,,,,,,,,那么就称这个代数式为n 元交代式。

对称式与轮换对称式_部分完善

对称式与轮换对称式_部分完善

竞赛专题-------对称式与轮换对称式1. 基本概念【定义1】一个n 元代数式12()n f x x x ,,,,如果交换任意两个字母的位置后,代数式不变,即对于任意的i j ,(1i j n ≤<≤),都有11()()i j n j i n f x x x x f x x x x = ,,,,,,,,,,,,那么,就称这个代数式为n 元对称式,简称对称式。

高中定义:如果对n 元多项式),,,(21n x x x f 的变数字母的下标集{1,2,…,n }施行任意一个置换后,),,,(21n x x x f 都不改变,那么就称),,,(21n x x x f 为一个n 元对称多项式.例如,222x y x y xy x y z xy yz zx xy++++++,,,,都是对称式。

如果n 元对称式是一个多项式,那么称这个代数式为n 元对称多项式。

由定义1知,在对称式中,必包含任意交换两个字母所得的一切项,例如,在对称多项式()f x y z ,,中,若有3ax 项,则必有33ay az ,项;若有2b x y 项,则必有2b x z ,2222by z by x bz x bz y ,,,项,这些项叫做对称式的同形项,同形项的系数都相同。

根据对称多项式的定义,可以写出含n 个字母的对称多项式的一般形式,例如,含有三个字母x y z ,,的二次对称多项式的般形式是:222()()()a x y z b xy yz zx c x y z d +++++++++【定义2】如果一个n 元多项式的各项的次数均等于同一个常数r ,那么称这个多项式为n 元r 次齐次多项式。

由定义2知,n 元多项式12()n f x x x ,,,是r 次齐次多项式,当且仅当对任意实数t 有 1212()()rn n f tx tx tx t f x x x =,,...,,,...,。

例如,含三个字母的三元三次齐对称式为:333222222()()a x y z b x y x z y x y z z x z y cxyz +++++++++。

因式分解的方法技巧汇总

因式分解的方法技巧汇总

因式分解的方法技巧汇总 作者:毕严河 来源:《科技视界》 2014年第1期

毕严河 (莱芜市鲁矿中学,山东 莱芜 271113) 【摘 要】本文对初中所学因式分解的方法进行了汇总,主要包括:提公因式法、公式法。又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等,以及注意的原则:分解要彻底;最后结果只有小括号;最后结果中多项式首项系数为正。还有思考顺序:先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适。

【关键词】因式分解;提公因式法、公式法;又有拆项和添减项法;分组分解法和十字相乘法;待定系数法;双十字相乘法;对称多项式轮换对称多项式法

很多同学在做因式分解的题目时,会觉得无从入手。而面临较难题目时,更加摸不着头脑。在此汇总几种因式分解的方法,以供参考。其实,因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。(实际上就是把见到的问题复杂化)注意三原则:一是分解要彻底;二是最后结果只有小括号;三是最后结果中多项式首项系数为正(例如:-3x2+x=x(-3x+1))。

归纳方法 沪科版七下课本上有:1)提公因式法;2)公式法;3)分组分解法;4)凑数法;5)组合分解法;6)十字相乘法[x2+(a+b)x+ab=(x+a)(x+b)];7)双十字相乘法;8)配方法;9)拆项法;10)换元法;11)长除法;12)加减项法;13)求根法;14)图象法;15)主元法;16)待定系数法17)特殊值法;18)因式定理法。

基本方法: 1 提公因式法 各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

因式分解的16种方法凑因式方法

因式分解的16种方法凑因式方法

因式分解的16种方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。

而在竞赛上,又有拆项与添减项法,分组分解法与十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。

注意三原则1分解要彻底2最后结果只有小括号3最后结果中多项式首项系数为正(例如:3x2x x3x 1 ) 分解因式技巧1、分解因式与整式乘法就是互为逆变形。

2、分解因式技巧掌握:①等式左边必须就是多项式;②分解因式的结果必须就是以乘积的形式表示;③每个因式必须就是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。

注:分解因式前先要找到公因式,在确定公因式前,应从系数与因式两个方面考虑。

基本方法⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

具体方法:当各项系数都就是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项就是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。

提出“-” 号时,多项式的各项都要变号。

提公因式法基本步骤:(1) 找出公因式;(2) 提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即就是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。

口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形瞧奇偶。

例女口:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。

因式分解的7种方法和4种思路

因式分解的7种方法和4种思路

因式分解的7种方法和4种思路因式分解是数学中的重要概念,它在代数运算和方程求解中起着重要的作用。

在因式分解问题中,常用的方法有7种,思路有4种。

本文将详细介绍这7种方法和4种思路,并给出相应的例子进行说明。

方法一:公因式提取法如果一个多项式中所有的项都有一个公因式,我们可以从每一项中提取出这个公因式,然后将剩下的部分进行合并。

这个过程又叫公因式提取法。

例如,对于一个多项式3x+6y,我们可以提取出公因式3,得到3(x+2y)。

方法二:配方法配方法又叫做两项平方差公式法,它适用于一个多项式是两项的平方差的情况。

对于a²-b²这种形式的多项式,我们可以使用公式(a+b)(a-b)把它分解。

例如,对于多项式x²-4,我们可以使用配方法得到(x+2)(x-2)。

方法三:分组法当一个多项式中存在多个项时,我们可以将这些项分成若干组,然后将每个组内的项进行合并。

这个过程叫做分组法。

例如,对于多项式3ab + 2ac + 6bd + 4cd,我们可以将它分为两组:(3ab + 2ac)和(6bd + 4cd),然后将每个组内的项提取公因式。

最后得到a(3b + 2c) + 2d(3b + 2c)。

方法四:差的平方公式当一个多项式是两个数的平方差的情况,我们可以使用差的平方公式进行因式分解。

对于a² - 2ab + b²或者a² + 2ab + b²这种形式的多项式,我们可以使用公式(a - b)²或(a + b)²来分解。

例如,对于多项式x² - 4xy + 4y²,我们可以使用差的平方公式得到(x - 2y)²。

方法五:三项平方差公式当一个多项式是三个数的平方差的情况,我们可以使用三项平方差公式进行因式分解。

对于a³ - 3a²b + 3ab² - b³或者a³ + 3a²b + 3ab² + b³这种形式的多项式,我们可以使用公式(a - b)³或(a + b)³来分解。

因式分解的16种方法凑因式方法

因式分解的16种方法凑因式方法

因式分解的16种方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法•而在竞赛上,乂有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。

注意三原则1分解要彻底2最后结果只有小括号3最后结果中多项式首项系数为正(例如:-+ x = -x(3x-1) )分解因式技巧1•分解因式与整式乘法是互为逆变形。

2.分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数:④分解因式必须分解到每个多项式因式都不能再分解为止。

注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

基本方法⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式.如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数.提出“一” 号时,多项式的各项都要变号。

提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。

口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。

例如:-am+bm+cm=-m(a-b —);a(x-y)+b (y-x)=a(x—-b (x-y)= (x—O (a-b)o注意:把2/+丄变成2(/+丄)不叫提公因式2 4⑵公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:用一宀(血)(a~b);完全平方公式±2ab ~bb2=(a ±b)2注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.立方和公式:a" + b' = (a+h) ( a~ -ab+ b2 ):立方差公式:a3 -b' =(a—-b) ( a2 +ab+b2 );完全立方公式:a' ±3a2 b ~/~3ab2±b' =(a±b) 2 .公式:+ c3-3abc=(a+b+c)( a2 +b2 + c2 -ab—be—a)例如:a~ +4ab+4b~ = (ci+2b) 2。

分解因式全部方法

分解因式全部方法

分解因式全部方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。

而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。

注意三原则1 分解要彻底2 最后结果只有小括号3 最后结果中多项式首项系数为正(例如:-3x^2+x=-x(3x-1))[编辑本段]基本方法⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。

提出“-”号时,多项式的各项都要变号。

口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。

例如:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。

注意:把2a^2+1/2变成2(a^2+1/4)不叫提公因式⑵公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。

平方差公式:a^2-b^2=(a+b)(a-b);完全平方公式:a^2±2ab+b^2=(a±b)^2;注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。

立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)例如:a^2 +4ab+4b^2 =(a+2b)^2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对称多项式的因式分解
1、基本方法
(1 )赋值法:先选择一个字母为主元,将多项式看成是一元多项式,再试验字母(主元)的某些取值使多项式的值为零,由此发现多项式含有的因式。

( 2 )待定系数法:先根据多项式的特征,发现它含有的某些因式,再根据多项式的次数及多项式的对称性确定它的其他因式,进而将多项式表示成若干多项式的积(含有待定系数)的形式,最后通过比较系数或幅值确定待定系数。

2、基本问题
( 1 )对称多项式的因式分解,通常采用赋值法,先通过试验,发现对称多项式含有某些特殊因式,然后将因式中的某两个字母互换,得到的式子仍是多项式的因式。

此外,对称多项式也可先将其用基本对称多项式表示,然后再分解。

( 2 )轮换对称多项式的因式分解,如果一个轮换对称多项式含有某种因式,那么将这个因式中的所有字母按一定顺序轮换(第一个字母换成第二个字母,第二个字母换成第三个字母,……,最后一个字母换成第一个字母) , 得到的式子仍是原多项式的因式。

( 3 )交代多项式的因式分解,任何交代多项式一定被它含有的任何两个字母的差整除。

相关文档
最新文档