有限元分析
有限元分析毕业设计

有限元分析毕业设计有限元分析毕业设计毕业设计是大学生在学业结束前的一项重要任务,也是对所学知识的综合应用和实践能力的考验。
在工程类专业中,有限元分析是一种常见的工程设计方法,被广泛应用于各个领域,如机械、土木、航空等。
本文将探讨有限元分析在毕业设计中的应用。
一、有限元分析的基本原理有限元分析是一种基于数值计算的工程设计方法,通过将复杂的结构划分为有限个简单的单元,利用数学方法求解各个单元的力学行为,最终得到整个结构的力学性能。
有限元分析的基本原理是将结构分割为有限个单元,每个单元都有一组未知的位移和应力,通过建立单元之间的关系,利用数值方法求解出这些未知量。
二、有限元分析在毕业设计中的应用1. 结构强度分析在毕业设计中,结构强度分析是一个重要的环节。
通过有限元分析,可以模拟结构在不同载荷下的受力情况,评估结构的强度和稳定性。
例如,在机械工程的毕业设计中,可以利用有限元分析来评估零件的强度,确定合适的材料和尺寸,从而提高产品的可靠性和安全性。
2. 热传导分析热传导分析是另一个常见的应用领域。
在毕业设计中,有时需要对材料或结构在不同温度下的热传导性能进行分析。
有限元分析可以模拟材料的热传导行为,预测温度分布和热流量。
例如,在建筑工程的毕业设计中,可以利用有限元分析来评估建筑物的保温性能,优化建筑材料的选择和结构设计。
3. 流体力学分析流体力学分析是有限元分析的另一个重要应用领域。
在毕业设计中,有时需要对流体在管道、泵站、水利工程等系统中的流动行为进行分析。
有限元分析可以模拟流体的流动特性,预测流速、压力分布和流量。
例如,在水利工程的毕业设计中,可以利用有限元分析来评估水流在河道中的流动情况,优化河道的设计和水利工程的规划。
三、有限元分析的优势和局限性有限元分析作为一种数值计算方法,具有一些明显的优势。
首先,它可以模拟复杂的结构和物理现象,提供准确的数值结果。
其次,有限元分析具有灵活性,可以根据不同的需求进行模型的建立和分析。
有限元法的分析过程

有限元法的分析过程有限元法是一种数值分析方法,用于求解实际问题的物理场或结构的数学模型。
它将连续的实体分割成离散的小单元,通过建立节点和单元之间的关系,对物理问题进行逼近和求解。
以下是一般的有限元法分析过程。
1.问题建模和离散化在有限元分析中,首先需要对实际问题进行建模,确定物理场或结构的几何形状和边界条件。
然后,将几何形状分割成一系列小单元,例如三角形、四边形或四面体等。
2.网格生成根据问题的几何形状和离散化方式,生成网格。
网格是由一系列节点和单元组成的结构,节点用于描述问题的几何形状,单元用于划分问题域。
通常,节点和单元的位置和数量会直接影响有限元法的精度和计算效率。
3.插值函数和基函数的选择有限元法中的节点通常表示问题域中的几何点,而节点之间的关系由插值函数或基函数来描述。
插值函数用于建立节点和单元之间的关系,基函数用于对物理场进行逼近。
选择适当的插值函数和基函数是有限元法分析的关键。
4.定义系统参数和边界条件确定相关物理参数和材料性质,并将其转化为数值形式。
在有限元分析中,还需要定义边界条件,包括约束条件和加载条件。
5.定义数学模型和方程根据问题的物理场或结构和所选择的基函数,建立数学模型和方程。
有限元方法可以用来建立线性方程、非线性方程、静态问题、动态问题等。
具体建立数学模型和方程的过程需要根据问题的特点进行。
6.组装刚度矩阵和力载荷向量根据离散化的节点和单元,组装刚度矩阵和力载荷向量。
刚度矩阵描述节点之间的刚度关系,力载荷向量描述外部加载的作用力。
7.求解代数方程通过求解代数方程,确定节点的位移或物理场的数值解。
通常,使用迭代方法或直接求解线性方程组的方法来求解。
8.后处理和分析得到数值解后,可以进行后处理和分析。
包括计算节点和单元的应变、应力等物理量,进行矫正和验证计算结果的正确性。
还可以通过有限元法的网格适应性来优化问题的计算效率和精度。
以上是一般的有限元法分析过程,具体的步骤和方法可能会因不同的问题而有所不同。
有限元分析——平面问题

Re=
NT
s
Pstds
江西五十铃发动机有限公司
技术中心 12 /33
4、整体分析 整体刚度矩阵 整体刚度矩阵组装的基本步骤:
先求出各个单元的单元刚度矩阵; 将单元刚度矩阵中的每个子块放在整体刚度矩阵中的对应位置上,得到单 元的扩大刚度矩阵; 将全部单元的扩大矩阵相加得到整体刚度矩阵。
不失一般性,仅考虑模型中有四个单元,如图所示,四个单元的整体节点位 移列阵为
τZX z= + t/2 =0
因板很薄,载荷又不沿厚度变化,应力沿板 的厚度方向是连续分布的,可以认为,在整
Z
个板内各点都有
σZ=0 τYZ=0 τZX=0
O
tX
图1 平面应力问题
根据剪应力的互等性、物理方程,可得描述平面应力问题的八个独立的基本变量 为
江西五十铃发动机有限公司
技术中心 4 /33
σ=[σX σY τXY]T ε=[εX εY γXY]T
x2 y2 ɑ1= x 3 y 3
1 y2 b1=- 1 y 3
1 c1= 1
x2 x3
(1,2,3)
上式表示下标轮换,即1 2,2 3,3 1同时更换。
江西五十铃发动机有限公司
技术中心 9 /33
重写位移函数,并以节点位移的形式进行表达,有
uv((xx,,yy))N(x,y)qe
其中形函数矩阵为
Y
江西五十铃发动机有限公司
图2 平面应变问题
技术中心 5 /33
根据几何方程、物理方程可得,描述平面应变问题的独立变量也是八个,且与 平面应力问题的一样。只是弹性矩阵变为
1
D=
E1
1 1 2 1
1
ansys有限元分析原理

ansys有限元分析原理
ANSYS有限元分析原理是一种数值分析方法,广泛应用于工
程领域。
其核心思想是将复杂的物体或结构划分为许多小的几何单元,称为有限元。
每个有限元由节点和单元组成,其中节点为有限元的角点或自由度,而单元则定义了节点之间的连接关系。
在有限元分析中,首先需要建立物体或结构的有限元模型。
这涉及到将物体或结构的几何形状进行离散化,并定义节点和单元。
通常情况下,物体或结构的复杂性越高,所需要的有限元模型就越精细,节点和单元数量也就越多。
接下来,需要定义物体或结构的边界条件和加载条件。
边界条件包括约束条件和固定边界条件,用于限制节点的位移和旋转。
加载条件包括力、热源、压力等外部作用力,用于模拟实际工程中的加载情况。
有限元分析通过求解有限元模型的全局刚度矩阵和加载向量来计算系统的响应。
根据有限元模型的节点和单元之间的连接关系,全局刚度矩阵可以通过将每个单元的刚度矩阵组合而成。
加载向量则是由加载条件决定的。
最后,通过求解线性方程组,即全局刚度矩阵乘以位移向量等于加载向量的形式,可以得到有限元分析的结果。
位移向量记录了每个节点在加载后的位移情况,从而可以计算各个节点的应力、应变等响应参数。
总之,ANSYS有限元分析原理是将复杂的物体或结构划分为小的几何单元,通过离散化、边界条件和加载条件的定义,以及全局刚度矩阵和加载向量的计算,求解线性方程组,最终得到系统的响应结果。
这个方法在解决工程问题中具有广泛的应用。
《有限元分析》课件

迭代初值的选择对收敛速度和稳定性有很大影响。如果初值选择不当,可能会导致迭代不收敛或收敛 速度很慢。因此,需要选择合适的迭代初值,如根据问题的物理性质或经验选择合适的初值。
05
有限元分析的软件介绍
ANSYS
全球知名的有限元分析软件,广泛应用于工程领 域。
提供多种求解器和前后处理功能,支持多种建模 和网格划分方式。
收集与问题相关的数据、资料和背 景信息。
确定模型参数
根据已知条件和假设,确定模型的 参数和变量。
04
建立几何模型
确定模型几何形状
根据问题需求和实际情况,选 择合适的几何形状。
确定模型尺寸
根据已知条件和参数,确定模 型的尺寸和大小。
建立坐标系
根据几何形状和问题需求,建 立合适的坐标系。
绘制几何模型
使用绘图软件或工具,绘制几 何模型的图形表示。
边界条件处理不当
边界条件的处理对求解精度也有很大影响。如果边界条件处理不当,可能会导致 求解误差增大,甚至出现求解不收敛的情况。因此,需要对边界条件进行合理处 理,如采用适当的边界元方法。
收敛性问题
求解方法选择不当
不同的求解方法适用于不同类型的问题,如果选择不当,可能会导致求解不收敛或收敛速度很慢。因 此,需要根据问题的特点选择合适的求解方法,如牛顿法、拟牛顿法等。
施加边界条件
将边界条件应用到模型的边界上。
检查边界条件的正确性
检查边界条件的正确性和一致性,确 保满足分析要求。
分析结果输出
根据边界条件和求解方法,输出分析 结果并进行后处理。
04
有限元分析的常见问题与解决方 法
网格划分问题
网格划分不均匀
在有限元分析中,网格划分的质量对求解精度和稳定性有很大影响。如果网格 划分不均匀,会导致求解误差增大,甚至出现求解不收敛的情况。
有限元分析总结

有限元分析总结引言有限元分析(Finite Element Analysis,简称FEA)是一种广泛应用于工程、物理学等领域的计算方法,用于模拟和分析复杂结构的行为。
通过将复杂结构离散为许多小的有限元件,然后利用数值方法求解这些元件的行为,从而得到整个结构的行为情况。
本文将对有限元分析的原理、应用和优缺点进行总结。
有限元分析原理有限元分析的核心思想是将连续结构离散化,并假设每个小元素的行为是线性的。
然后,通过构建结构的刚度矩阵和荷载向量的方程组,利用数值计算方法求解节点的位移和应力分布。
具体的步骤如下:1.确定要分析的结构的几何形状,将其划分为有限数目的小单元,例如三角形或四边形元素。
2.在每个小单元内,选取适当的插值函数来估计位移和应力分布。
3.根据连续性条件,建立整个结构的刚度矩阵。
刚度矩阵的元素代表了各节点的相互作用关系。
4.构建荷载向量,其中包括外界载荷和边界条件。
5.求解线性方程组,得到结构的节点位移和应力分布。
6.进一步分析节点位移和应力数据,得到结构的各种性能指标。
有限元分析应用有限元分析在工程领域有着广泛的应用,例如:•结构强度分析:通过有限元分析可以评估结构在受载情况下的应力和变形情况,以及可能的破坏模式。
•热传导分析:有限元分析可以模拟热传导过程,预测物体内部的温度分布,以及热传导对结构性能的影响。
•流体力学分析:有限元分析可以描述流体的流动行为,例如流体中的速度、压力分布等。
•多物理场耦合分析:如结构与热传导、流体力学等多个物理领域的耦合问题,可以利用有限元分析进行综合分析。
有限元分析优缺点有限元分析作为一种数值计算方法,具有一些明显的优点和缺点:优点:•可以模拟和分析复杂结构的行为,如非线性和非均匀材料,不规则几何形状等。
•可以提供详细的节点位移和应力分布数据,对结构性能进行深入分析。
•可以快速进行多次迭代计算,探索不同设计参数对结构性能的影响。
•可以进行实时动态仿真和优化,为工程设计提供重要的支持。
有限元分析实例

有限元分析实例引言有限元分析(Finite Element Analysis,简称FEA)是一种工程分析方法,能够将连续体结构分割成有限个小单元,通过在每个小单元内建立方程模型,最终求解整个结构的力学行为。
本文将以一个实例来介绍有限元分析的基本过程和步骤。
实例背景我们将以一个简单的杆件弯曲问题为例来进行有限元分析。
假设有一根长度为L、截面积为A的杆件,材料的弹性模量为E,截面的转动惯性矩为I。
我们希望通过有限元分析来计算杆件在一定加载条件下的弯曲变形。
有限元网格的划分首先,我们需要将杆件划分成有限个小单元,即有限元网格。
常用的网格划分方法有三角形划分、四边形单元划分等。
根据具体问题的要求和复杂度,选择合适的划分方法。
单元的建立划分好网格后,我们需要在每个小单元内建立方程模型。
在弯曲问题中,常见的单元模型有梁单元、壳单元等。
在本实例中,我们选择梁单元作为杆件的单元模型。
对于梁单元,我们需要定义每个节点的位移和约束条件。
根据杆件的几何尺寸和材料属性,可以利用应变能量原理和几何相似原理,得到每个节点的位移和约束条件。
材料特性和加载条件的定义在进行有限元分析之前,我们需要定义材料的特性和加载条件。
对于本实例中的杆件,我们需要定义弹性模量E、截面积A和转动惯性矩I。
加载条件可以包括集中力、均布力、弯矩等。
在本实例中,假设杆件受到均布力,即沿杆件轴向的受力分布是均匀的。
单元方程的建立和求解在定义了材料特性和加载条件之后,我们可以根据每个梁单元的位移和约束条件,建立每个单元的方程模型。
常见的方程模型有刚度矩阵方法、位移法等。
根据所选的单元模型,选择合适的方程模型进行计算。
通过对每个单元的方程模型进行组装,我们可以得到整个结构的方程模型。
将加载条件带入,可以求解出整个结构在给定加载条件下的位移、应力等参数。
结果分析根据求解得到的位移信息,我们可以绘制出结构的变形图。
通过变形图,可以直观地观察到结构在弯曲条件下的变形情况。
机械设计中有限元分析的几个关键问题

机械设计中有限元分析的几个关键问题有限元分析是机械设计中非常重要的技术手段之一,它通过数值计算的方法来模拟和评估物体在作用力下的应变、变形和应力等特性。
在进行有限元分析时,有一些关键问题需要考虑和解决,下面将详细介绍这几个问题。
1. 网格生成网格生成是有限元分析的第一步,它将连续的物体转化为离散的有限元网格。
网格的质量直接影响到分析结果的准确性和可靠性。
在进行网格生成时,需要保证网格的单元形状和尺寸比例适当,避免单元过于扭曲或者尺寸差异过大。
还需要考虑物体的几何特征和实际应力情况,合理地选择不同类型的单元,如三角形单元、四边形单元或六面体单元等。
2. 材料特性在进行有限元分析时,必须准确地定义材料的特性参数,如弹性模量、屈服强度、泊松比等。
这些参数会直接影响到分析结果的准确性。
在选择材料模型和确定参数时,需要进行充分的材料试验和数据分析。
还需要考虑材料的非线性特性,如塑性变形、屈服和断裂等,以便更准确地模拟实际工作条件下的物体行为。
3. 边界条件和加载在有限元分析中,需要合理地设置边界条件和加载,以模拟实际工作条件下的物体行为。
边界条件指的是物体上的约束条件,如固定支撑、应力加载或位移加载等。
加载情况指的是物体在作用力下的响应情况。
在设置边界条件和加载时,需要根据实际情况考虑物体的几何形状、约束和力的大小、方向等因素,以尽可能真实地模拟实际工作条件下的物体行为。
4. 网格收敛性检验在进行有限元分析时,需要进行网格收敛性检验,以验证分析结果的准确性和可靠性。
网格收敛性指的是在网格逐渐细化的过程中,分析结果是否趋于稳定。
一般来说,当网格收敛时,分析结果应该收敛于一个稳定的解。
需要通过逐步细化网格来进行比较分析结果,以确保分析结果的准确性。
5. 结果解释和验证在进行有限元分析后,需要对分析结果进行解释和验证。
解释结果指的是将分析结果转化为实际工程问题的答案,以便为设计决策提供依据。
验证结果指的是将分析结果与实验结果进行比较,以验证分析模型和参数的准确性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元分析6、离散的目的是什么?(6 分)答案要点:将无穷自由度问题转换成有限个自由度问题,从而将连续的微分方程转换为有限个代数方程求解。
7、总刚矩阵是一个奇异阵,其物理意义是什么?(6 分)答案要点:结构在无约束或约束不足时,结构可以可以发生刚体运动,从而在结构的位移中包含刚体位移,而不是变形位移。
8、建立有限元模型应遵循哪两个基本原则?(6 分)答案要点:(1)保证计算结果的精度;(2)控制模型的规模。
每答对1 个得3 分。
9、结构有限元静力分析主要计算什么内容?(6 分)答案要点:(1)结构变形;(2)结构应变;(3)结构应力。
每答对1 个得2 分。
(5)变差缩减性;(6)仿射不变性。
备注:每种性质须给出简要的说明,每个性质各 1 分。
1、比较体素构造法和边界表示法的优缺点,并给出混合表示方法的特点。
(6 分)答案要点:(1)边界表示法边界表示法在图形处理上有明显的优点,因为这种方法与工程图的表示法相近,根据其数据可以迅速转化为线框模型和面模型。
尤其在曲面造型领域,便于计算机处理、交互设计与修改。
对于面的数学描述而言,用边界表示法可以表达平面和自由曲面(如Coons 曲面、NURBS 曲面)。
边界表示法的缺点是数据量庞大,对于简单形体如球体、柱体等的表示显得过于复杂。
(2 分)(2)体素构造法体素构造法在几何形状定义方面具有精确、严格的特点。
其基本定义单位是体和面,但不具备面、环、边、点的拓扑关系,因此其数据结构简单。
在特征造型方面,体素正是零件基本形状的具体表示,因此对于加工过程中的特征识别具有重要作用。
正是由于体素构造法未能建立完整的边界信息,因此难以向线框模型和工程图转化,并且在显示时必须进行形状显示域的大量计算。
同样,对于自由形状形体的描述也难以进行,对于模型的局部形状修改不能进行。
(2 分)(3)混合表示在实践中,体素构造法和边界表示法各有所长,因此目前的几何造型引擎几乎都采用体素构造和边界表示的混合方法来进行实体造型。
通常,体素构造模型作为外部模型,而边界表示模型作为内部模型,即以体素构造模型作为输入数据,在计算机内部转换为边界表示模型的内部数据(或几何数据库),同时也保留了体素构造模型的数据。
这样,二者的信息互补,并确保几何模型信息的完整性和精确性。
(2 分)2、简述贝塞尔曲线的性质。
(6 分)答案要点:(1)端点性质,包括端点位置、切矢以及二阶导矢;(2)对称性;(3)凸包性;(4)几何不变性;10、建立有限元模型的基本步骤包括哪些?(8 分)答案要点:(1)问题定义;(2)几何模型建立;(3)单元类型选择;(4)单元特性定义;(5)网格划分;(6)模型检查;(7)边界条件定义每答对1 个得1 分,顺序正确得 1 分。
5、有限元法的主要思想是什么?(6 分)答案要点:(1)离散:应答出离散(3 分);(2)答出离散的目的(3 分)(3)6、什么是位移函数,它应满足哪些条件?(6 分)答案要点:(1)位移函数是单元上的实际结构的位移插值函数,即位移的近似位移分布;(2 分)(2)应包括常数项、一次项、连续性和几何各项同性(每答出1 个得1 分)。
7、结构总刚矩阵有什么特点?(6 分)答案要点:总刚矩阵具有对称性、稀疏性、带状性和奇异性4 个特点(每答出1 个得1.5 分)。
8、有限元模型主要包括哪些类型的数据?(6 分)答案要点:包括节点数据、单元数据和边界条件数据(每答出1 个得2 分)9、试列举有限元法在机械工程领域中的主要应用。
(8 分)答案要点:有限元法在工程中的应用很多,没答出1 个给2 分,最多得8 分。
5、简述圣维南原理。
如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受的影响可以不计。
6、简述按应力求解平面问题时的逆解法。
答:所谓逆解法,就是先设定各种形式的、满足相容方程的应力函数;并由应力分量与应力函数之间的关系求得应力分量;然后再根据应力边界条件和弹性体的边界形状,看这些应力分量对应于边界上什么样的面力,从而可以得知所选取的应力函数可以解决的问题。
7、以三节点三角形单元为例,简述有限单元法求解离散化结构的具体步骤。
(1)取三角形单元的结点位移为基本未知量。
(2)应用插值公式,由单元的结点位移求出单元的位移函数。
(3)应用几何方程,由单元的位移函数求出单元的应变。
(4)应用物理方程,由单元的应变求出单元的应力。
(5)应用虚功方程,由单元的应力出单元的结点力。
(6)应用虚功方程,将单元中的各种外力荷载向结点移置,求出单元的结点荷载。
(7)列出各结点的平衡方程,组成整个结构的平衡方程组。
8、为了保证有限单元法解答的收敛性,位移模式应满足哪些条件?答:为了保证有限单元法解答的收敛性,位移模式应满足下列条件:(1)位移模式必须能反映单元的刚体位移;(2)位移模式必须能反映单元的常量应变;(3)位移模式应尽可能反映位移的连续性。
9、在有限单元法中,为什么要求位移模式必须能反映单元的刚体位移?每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是本单元的形变无关的,即刚体位移,它是由于其他单元发生了形变而连带引起的。
甚至在弹性体的某些部位,例如在靠近悬臂梁的自由端处,单元的形变很小,单元的位移主要是由于其他单元发生形变而引起的刚体位移。
因此,为了正确反映单元的位移形态,位移模式必须能反映该单元的刚体位移。
10、在有限单元法中,为什么要求位移模式必须能反映单元的常量应变?答:每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。
而且,当单元的尺寸较小时,单元中各点的应变趋于相等,也就是单元的应变趋于均匀,因而常量应变就成为应变的主要部分。
因此,为了正确反映单元的形变状态,位移模式必须能反映该单元的常量应变。
11、在平面三结点三角形单元中,能否选取如下的位移模式并说明理由:(1)y x y x u 3221),(ααα++=,2654),(y x y x v ααα++=(2)23221),(y xy x y x u ααα++=,26524),(y xy x y x v ααα++=答:(1)不能采用。
因为位移模式没有反映全部的刚体位移和常量应变项;对坐标x ,y 不对等;在单元边界上的连续性条件也未能完全满足。
(2)不能采用。
因为,位移模式没有反映刚体位移和常量应变项;在单元边界上的连续性条件也不满足。
有限元复习重点掌握一般问题的描述、模型简化、有限元的基本思想及分析原理、位移法求解基本过程、位移函数构造、单元特性、有限元计算的具体操作(单元刚阵形成、总纲阵组装)、边界条件处理(载荷等效/边界约束施加)、有限元分析的具体操作一、基本概念1、平面应力/平面应变问题;空间问题/轴对称问题;板壳问题;杆梁问题;温度场;线性问题/非线性问题(材料非线性/几何非线性)等2、不同类型单元的节点自由度的理解和不同单元连接的处理3、有限元法的基本思想(二次近似)与有限元分析的基本步骤(5步)P214、里兹法的基本思想及与有限元法区别P45、有限元法的基本定义(节点、单元、节点力、节点载荷)P46、位移函数的构造方法及基本条件—p247、位移函数的收敛性条件(协调元、非协调元)及单元协调性的判断P248、有限元解得性质P69、弹性力学的几个基本概念(位移、应力、应变等)P1110、弹性力学的基本方程(平衡方程、几何方程、物理方程)(注意基本假设/与非线性对比),弹性力学基本方程的求解方法P1311、虚功原理、最小势能原理及变分法(里兹法)P1712、形函数特性P2313、单元刚度矩阵的性质及元素的物理意义P2714、常用单元的特性(如单元内部边界位移/应变/应力分布,相邻单元边界的协调性分析)(常应变单元三角形/四面体;矩形单元;等参四边形单元;矩形板单元)15、等参单元定义、存在条件及特性16、边界条件处理(载荷等效移置集中力/均布力/线性分布力边界位移约束处理固定/指定位移等)P3017、总体刚度矩阵组装原则及总刚阵特点P3018、固有频率与特征向量(振型)定义及理解、振型特性二、基本计算及证明1、等效载荷计算2、单元刚阵计算3、总体刚度矩阵及载荷向量组装,约束条件的引入、整体方程的求解(包括约束反力计算)4、单元形函数特性及单元协调性证明5、振型正交性证明三、工程结构的有限元建模与结果分析(教程12-14)1、影响有限元分析精度和成本的因素2、有限元模型的基本构成(节点数据、单元数据、边界条件等)3、有限元建模的常用方法理解及应用(如细节处理、分步计算、局部计算、子结构法、对称性简化等)4、边界约束条件的处理5、单元类型选择的一般原则6、网格划分的基本原则及网格划分方案分析、网格形态基本要求(如不同划分方案优劣比较)7、不同单元连接自由度的处理(杆-梁-板、平面-梁等)8、有限元结果的分析效验及解释出师表两汉:诸葛亮先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。
诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。
宫中府中,俱为一体;陟罚臧否,不宜异同。
若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。
侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑忠纯,是以先帝简拔以遗陛下:愚以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。
将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰“能”,是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。
亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。
先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。
侍中、尚书、长史、参军,此悉贞良死节之臣,愿陛下亲之、信之,则汉室之隆,可计日而待也。
臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。
先帝不以臣卑鄙,猥自枉屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。
后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。
先帝知臣谨慎,故临崩寄臣以大事也。
受命以来,夙夜忧叹,恐托付不效,以伤先帝之明;故五月渡泸,深入不毛。
今南方已定,兵甲已足,当奖率三军,北定中原,庶竭驽钝,攘除奸凶,兴复汉室,还于旧都。
此臣所以报先帝而忠陛下之职分也。
至于斟酌损益,进尽忠言,则攸之、祎、允之任也。
愿陛下托臣以讨贼兴复之效,不效,则治臣之罪,以告先帝之灵。