20世纪理论和应用力学十大进展

20世纪理论和应用力学十大进展
20世纪理论和应用力学十大进展

20世纪理论和应用力学十大进展

在我们迈步走向新世纪的时候,正值《力学进展》创刊30周年。为纪念这一特殊的历史时刻,《力学进展》举行了“20世纪理论和应用力学十大进展”评选活动。本次活动历时半年多,经过编委会提名、初步筛选,确定出入围的20世纪理论和应用力学进展17项,分别请有关方面专家精心撰写了条目介绍,最后请从事力学及与力学相关学科的研究人员投票。评选活动得到了广大热心读者的极大支持,共发出选票994张,收回有效选票409张。2001年7月3日编辑部进行了计票,得到“20世纪理论和应用力学十大进展”选出结果如下(其中“稳定性、分岔和混沌理论”一条原来是以“混沌理论”和“稳定性与分岔”两条分别投票的,得票分别为337票和210票,考虑一些投票人的建议,现合并为1条,得票按337票计):

序号名称得票数

1 有限元方法384

2 断裂力学343

3 生物力学的创立337

4 稳定性、分岔和混沌理论337

5 边界层理论323

6 塑性力学和位错理论312

7 湍流统计理论259

8 奇异摄动理论222

9 力学的公理化体系199

10 克服声障、热障的力学理论196

参加条目撰写的同志有:戴世强、邓学蓥、段祝平、黄永念、黄筑平、李家春、连淇祥、陆启韶、沈青、谈庆明、陶祖莱、王克仁、王文标、王自强、解伯民、姚振汉、殷有泉、余寿文、张兆顺、周显初、朱如曾、朱照宣,在此深表谢意。

1 有限元方法

有限元法是20世纪60年代逐渐发展起来的对连续体力学和物理问题的一种新的数值求解方法,其做法是,对所要求解的力学或物理问题,通过有限元素的划分将连续体的无限自由度离散为有限自由度,从而基于变分原理或用其它方法将其归结为代数方程组求解。

有限元法不仅具有理论完整可靠,形式单纯、规范,精度和收敛

性得到保证等优点,而且可根据问题的性质构造适用的单元,从而具有比其它数值解法更广的适用范围。随着计算机技术的发展,它已成为涉及力学的科学研究和工程技术所不可或缺的工具。对于力学工作者来说,借助于有限元的工具,可以得到许多难以求得解析解的问题的可靠数值结果;对于工程技术人员来说,很多复杂工程对象的设计可以不依赖或少依赖于耗费巨大的实验。

1943年R.库朗(R. Courant)已从数学上明确提出过有限元的思想;20世纪50年代,J.H.阿吉里斯(J. H. Argyris)、R. W.克拉夫(R. W. Clough) 等人从复杂结构分析发展出了有限元的雏形。1960年克拉夫首次采用有限元的名称。O. C.辛凯维奇(O. C. Zienkiewicz)等许多学者对有限元法的发展做出了重要贡献。

2 断裂力学

1921年Griffith提出了能量释放率理论,认为玻璃等一类脆性材料均含有微小缺陷或裂纹,这一类脆性材料低应力脆断是由于微小裂纹失稳扩展造成的。他指出一旦含裂纹物体能量释放率等于表面能,裂纹就会失稳扩展,导致低应力脆断。

1948年Irwin,Orowan,Mott各自独立地提出了修正的Griffith理论,指出将裂纹尖端区塑性功计入耗散能,就能将Griffith理论用到金属材料。1956年,Irwin提出了应力强度因子理论和断裂韧性新观念,建立了临界应力强度因子准则,认为裂纹尖端应力强度因子达到临界值时,裂纹就会失稳扩展,奠定了线弹性断裂力学理论基础。1962年Paris提出了疲劳裂纹扩展公式,开辟了疲劳寿命预测的新领域。1962年Dugdale提出了窄带屈服区模型,1968年Rice建立了J积分原理,指出了J积分的守恒性,Hutchinson,Rice和Rosengren 独立地提出了弹塑性材料裂纹尖端HRR奇性场,为弹塑性断裂力学奠定了理论基础。

断裂力学是20世纪固体力学重大成就之一,是工程材料与构件强度估算和寿命预测的重要理论基础。在断裂力学原理指导下建立起来的平面应变断裂韧性KIC和JIC以及裂纹尖端张口位移临界值δIC的测定规范及相应的断裂准则,已经成为工程材料与结构设计规范的重要组成部分。

“损伤容限设计”已成为航空航天结构设计的重要原理。“缺陷评定规范”和“先泄漏原理”已经用于压力容器和管道的结构设计。断裂

力学的发展还必然地激发了细观和微观断裂理论研究的蓬勃发展。

3 生物力学的创立

生物力学创立于20世纪60年代后期,其内涵是力学方法和生物学方法相结合,研究不同层次生命体(从个体到生物大分子)结构-功能的定量关系。冯元桢(Y. C. Fung)关于肺微循环的研究(1969)提出了生物力学的独特的方法学原则,这是生物力学作为一门独立的分支学科的标志。而应力-生长关系(冯元桢假说,1983)则是生物力学的活的灵魂。以细胞层面为焦点,上及组织、器官,下至生物大分子的生物力学的研究是当前生物医学工程十分活跃的一个领域。

30余年来生物力学的研究对相关领域的发展起了重大的推动作用。定量解剖学、定量形态学、系统(定量)生理学、血管生物学(Vassel Biology)的形成即为其例。而正在崛起的mechanocytobiology、分子生物力学和mechano-chemical effect等的研究,正在而且必将大大推动21世纪生命科学的进步。同时,对力学本身提出了重大的挑战,并赋予古老的力学以新的生命。

另一方面,生物力学是生物工程(含生物医学工程、生物化学工程、生物技术等)的基础之一。它对21世纪生物工程的前沿,如器官-组织工程、功能生物材料、生物微系统等的发展,具有重要意义。正如冯元桢在论及人工器官时所提出:“莱特兄弟的飞机飞上天时,并不懂得空气动力学。但如果没有空气动力学,就没有‘协和’飞机”。生物力学和生物工程的关系,与此相仿佛。

4 稳定性、分岔和混沌理论

稳定性、分岔和混沌起源于19世纪末Poincarée和Lyapunov,而在20世纪得到长足的进展。运动稳定性的Lyapunov方法在力学中有了广泛的应用。在40年代,林家翘建立了流动稳定性理论,von Kárm án、钱学森、Koiter等开展了板壳等结构的稳定性研究。它们为连续介质力学领域的稳定性分析奠定了基础,并在各类工程技术问题中有重要作用。60年代Thom、Zeeman和Arnold创立了动力系统的分岔理论,成为研究动力系统失稳后行为的基础。分岔是非线性动力学的一个重要内容,它建立了对力学稳定性的全面深刻认识,还提供了用于力学稳定性理论和应用研究的解析和数值手段。

混沌是指非线性确定性系统中由于对初值敏感而出现的貌似随机的运动。1963年Lorenz在对气象预报研究引出的一类非保守系统里发现了这类混沌现象。另一方面,1954年~1962年Kolmogorov、Arnold、Moser从数学上证明的KAM理论,解释了保守的力学系统里出现的混沌现象。60年代以后,对非保守和保守系统中混沌理论及应用的研究得到很大发展,并且认识到混沌往往在参数空间的一系列分叉之后出现。

混沌理论的产生,揭示了牛顿力学中确定性和随机性之间的辩证关系,反映了自然现象的复杂性。

5 边界层理论

1904年L. Prandtl在第三次世界数学大会上发表了题为“über die Flüssig-bewegung bei sehr kleiner Reibung”的论文。他根据实

验观测,提出了大雷诺数(小黏性)的流体运动边界层的概念,即黏性仅在固壁附近的薄边界层内起作用,故层内黏性流体运动方程可以简化,称为边界层方程,该层以外可以用理想无黏流体来处理,从而解决了平板边界层问题。他还研究了在逆压梯度下的边界层的分离,注意到流动一旦分离,边界层便会形成包住尾流的涡面,改变流动的拓扑结构。Prandtl的这一理论可以应用到所有大雷诺数(小黏性)的流体运动上。

求解上述绕流问题是否可以忽略黏性或者应该考虑黏性而又如何处置,一直困扰着19世纪末的流体力学界,小黏性的流体运动忽略黏性后阻力为零,与实际情况不符,这就是著名的达朗贝尔佯谬。L. Prandtl的边界层理论不仅解决了这个疑难,而且给出了计算物体在流体中运动时阻力的近似方法。在计算机出现以前,人们尚无计算黏性流体绕流的途径,所以边界层理论极大地促进了航空、航天工业的发展。实际上,小黏性的作用是无黏方程的奇异摄动,所以它也是后来发展起来的匹配渐近展开法的原型和物理基础。

6 塑性力学和位错理论

关于固体材料的性质,1951年Drucker提出了Drucker公设,认为对一类稳定材料,附加应力在应力循环上所作的功总是非负的。由此导出两个重要结论:在屈服面光滑点处,屈服面必是凸的;而塑性应变增量方向必与屈服面外法线方向一致。1954年Drucker进一步证实任何材料如果不满足这个公设,就是不稳定的。Drucker公设为塑

性力学奠定了理论基础。1961年Ильюшин在应变空间中提出如下公设:材料微元在任意应变闭循环中应力所作的功均是非负的。该公设不仅适用于稳定材料,而且适用于非稳定材料。由该公设同样可以推出正交性法则。

1923年Taylor提出了晶体变形滑移机制,1934年Orowan,Polanyi,Taylor各自独立地提出了刃型位错新概念,成功地解释了金属材料屈服应力远远低于理论强度的物理机制。

这些理论预测50年代得到实验证实,推动了位错物理蓬勃发展。1935年建立了Schmid定律,指出当作用在滑移系上的分解剪应力达到临界值滑移系就会开动。1954年Kroner提出了位错连续统塑性理论,成功地将位错密度张量与变形非协调联系起来。1955年Kondo,Bilby 等人建立了位错连续统一般理论,成功地将非黎曼几何与变形非协调联系起来。60年代至70年代初Hill,Mandel发展和完善了晶体和多晶体塑性理论。

塑性力学是20世纪固体力学重大成就之一,是金属材料与构件强度估算和塑性成型理论基础。而位错理论乃是20世纪固体物理重大成就之一,为晶体微观力学奠定了基础。

7 湍流统计理论

自雷诺实验发现湍流后,他在系综平均的基础上建立了雷诺方程。如何描述脉动量的无规则性曾是摆在20世纪力学家,以及物理学家、数学家面前的重要课题。1921年,G.I. Taylor首先提出了脉动速度关联函数的概念,并于30年代同von Kármán等一起开创了湍流统计理论的研究工作。1938年G.I. Taylor又进一步提出了湍流能谱的研究思想。1941年前苏联统计数学家Kolmogorov首先提出脉动速度结构函数的重要概念,并导出了均匀各向同性湍流的相似性理论,得到了惯性区的-5/3次能谱幂次标度律,这是一种湍流运动普适的统计规律。由于原来的假定没有考虑湍流运动的间歇性,1962年Kolmogorov又对它进行了修正,由此开创了湍流结构函数普适标度律研究工作的先河。这是20世纪湍流研究的最重大的成果之一,它往往作为检验计算和实验的准绳,也是上世纪湍流研究引用率最高的文章。

如何求解不封闭的雷诺方程是湍流研究的另一个难题。20世纪40年

代初,周培源首先提出同时求解平均速度和脉动速度的动力学方程组,并给出了奠基性的雷诺应力所满足的方程。50年代,他又提出先求解,后平均的旋涡结构湍流统计理论,为克服湍流理论中的封闭性困难提供了新的思路和途径,为现代湍流模式理论奠定了理论基础。50年代初,Rotta 和Davidov进一步阐明了湍流模式理论的研究方向。70年代以后,随着计算机技术的进步和工程应用的迫切需求,在原来的理论框架基础上,湍流模式理论迅猛发展。虽然湍流模式理论在诸如:描述能力,经验成分,适用范围等方面有明显的不足,但由于计算所需资源和费用少,目前仍是解决工程问题的最主要途径。总之,湍流模式理论是湍流统计理论和实际工程应用的桥梁。

8 奇异摄动理论

指的是获得在空间或时间域上一致有效摄动解的理论和方法。19世纪在研究水波和天体运动时解决了奇异摄动的个例。20世纪,在力学和物理中遇到的问题普遍起来。典型的例子有:边界层理论,升力线理论,激波边界层相互作用,圆锥体超声速绕流,圆板的弯曲,非线性振动,量子力学中的隧道效应,几何光学近似等。根据奇异性产生的原因,发展了处理边界层效应的匹配渐近展开法和处理出现长期项的PLK (Poincarè-Lighthill-Kuo)方法。前者用内外变量分别展开、互相匹配,后者用变形参数或变形坐标变换来得到一致有效渐近解。前苏联学派独树一帜,发展了基于平均思想的奇异摄动理论。60年代以后,人们用多尺度的观点来认识奇异摄动问题,提出了应用范围更宽的多重尺度法,并形成了奇异摄动的系统理论。中国或华裔学者郭永怀、钱伟长、林家翘、丁汝等在这一领域有较大的贡献。美国Stanford大学M. Van Dyke将摄动级数延拓,可以扩展参数或变量的适用范围,应用于众多的流动问题,是将理论与计算结合的范例。迄今,奇异摄动理论仍是力学、声学、大气、海洋和工程中解决弱非线性问题的有效理论方法。

9 力学的公理化体系

物理学,尤其是力学的公理化是德国大数学家Hilbert (1900)提出的著名的23个问题的第6问题,即要实现D. Alambert (1743)的设想:“力学必须象几何学那样建立在显然正确的公理上,且力学的结论要有严格的数学证明”。在20世纪50年代,一些杰出的力学数学家开始了力学公理化体系的探索与研究。其中里程碑性的重要工作有:J.G. Oldroyd(1950)提出本构关系必须具有确定不变性的原理;W.

Noll(1958)提出“确定性公理、局部作用公理和客观性公理”是构造本构理论的基础,从而确定了关于力学公理化结构的雏形;Trusedell 和Noll (1965)的名著“力学的非线性场论”总结了关于力学公理化体系的主要研究成果,使连续介质的基础理论进入了一个崭新的时代。A. C. Eringen (1975)的专著“连续统物理,Vol.1~4”更加明确提出:“因果公理、确定性公理、等存在公理、客观性公理、物质不变性公理、邻域公理、记忆公理和相容性公理”等八条公理是构造简单物质本构理论的基础,随后添加了坐标不变性公理和对因次(单位)系统不变性公理,并逐一明确赋予每个公理的数学内涵。Eringen的工作进一步扩充了Noll的公理结构,使之成为工程科学派理论的基石。作为现代理性力学核心内容的力学公理化体系的建立,奠定了现代连续介质力学体系的基础。

它巧妙地运用各种现代数学理论成功地构造了各种非线性物质(包括力-电-磁-热相互耦合)的本构理论框架,并把它进一步推广到广义连续介质和非协调缺陷场论中去,为20世纪整个力学的发展作出了卓越的重大贡献,影响极其深远。

10 克服声障、热障的力学理论

声障一词出现在20世纪40年代。二战中,战斗机的平飞速度已达到声速的一半,俯冲时则可超过声速的0.7倍。这时飞机的阻力随着马赫数的微小上升而急剧增大,飞机会突然受到很大的低头力矩并伴随有剧烈的抖振现象,飞机的安定性和可操纵性急剧下降。飞行员不得不把速度降低下来,以避免飞机的坠毁。这导致当时人们认为声速是不可逾越的,进一步提高飞行速度似乎是不可克服的障碍。空气动力学的研究表明,低头力矩的产生是由于上机翼表面附近有超声速区出现,负压区大大向后扩展,使压力中心向后移动的结果。超声速区还导致激波的产生,进而引起气流的分离。分离流极不稳定,使机翼发生颤振,打到飞机的水平和垂直安定面也会引起尾翼的颤振,又是阻力急速增加的原因。人们通过使用小展弦比、后掠的薄翼和大推力的发动机,成功地实现了超声速飞行,使声障成为历史名词。

热障是指飞行器在高超声速飞行时其表面产生高温,导致结构的刚度和强度下降,尤其是在再入大气层时产生的高温(约达10000K),不加防护会使飞行器被烧掉的问题。当轨道飞行器以接近第一宇宙速度的高速度进入大气层时,气流的动能在驻点滞止下来转化为热能,导致极高的温度和气流向飞行器表面的极高的热流率产生。为了防护使任何材料均会溶化烧毁的高温,原始的热沉法,即应用一层材料允许

其熔化吸走传至飞行器的热量的方法是不经济的。有效的防热手段是烧蚀法,即用碳酚醛高硅氧、碳石英等高分子材料做飞行器的表面层,在高温下吸收热量,在其分解湿度的高温下分解前吸收更多的热,同时分解气体形成气膜保护层,使飞行器免于烧毁。烧蚀法防热会使飞行器外形改变。能保持飞行器外形的防热方法,有发汗冷却法,即用多孔材料为飞行器的外层,使冷却剂通过此层排出并汽化,达到防热目的而同时保持飞行器的尺寸不变。利用有效的防热方法人类已实现了轨道飞行器包括载人航天器安全再入大气层返回地面。

声障和热障的克服,空气动力学研究起了很大作用,是各国科学家在多种学科领域共同努力的结果。

理论与应用力学概述及就业前景

概述: 本专业培养掌握力学的基本理论、基本知识和基本技能,具有良好的科学素养,能在力学及各工程科学、计算机应用等相关科学领域从事科研、教学、技术开发和管理工作的高级专门人才。 一、专业基本情况 1、培养目标 本专业培养掌握力学的基本理论、基本知识和基本技能,能在力学及相关科学领域从事科研、教学、技术和管理工作的高级专门人才。 2、培养要求 本专业学生主要学习必需的数学、物理的基础知识,学习力学基础理论及某一专业方向的专门知识,加强实验能力和计算机应用能力的训练,注意培养理论分析能力和力学应用的能力。受到科学研究和工程技术应用的初步训练,具有良好的科学素养。毕业生应获得以下几方面的知识和能力: ◆掌握数学、物理的基础知识,具有较强的分析和演算能力; ◆掌握系统的力学基本理论知识,初步掌握力学的基本实验技能和实验分析方法;掌握一定的工程背景知识,初步学会建立简单力学模型的方法; ◆了解相近专业的一般原理和知识; ◆对本专业范围内科学技术的新发展有所了解; ◆了解国家科技、产业政策、知识产权等有关政策和法规; ◆掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。 3、主干学科 力学。 4、主要课程 数学分析、高等代数、数学物理方法、计算方法、程序设计、普通物理学、理论力学、材料力学、弹性力学、流体力学等。 5、实践教学 包括生产实习、科研训练或毕业论文(设计)等,一般安排10—20周。主要专业实验:固体力学实验、流体力学实验。 6、修业时间 4年。 7、学位情况 理学或工学学士。 8、相关专业 数学与应用数学、物理学、应用物理学。 9、原专业名 理论与应用力学。 二、专业综合介绍 古希腊科学家阿基米德说:给我一个支点,我可以翘起整个地球。这就是一个经典而又古老的力学问题。理论与应用力学是基于数学、计算机科学等基础学科,研究一般力学问题的专业,介于理论研究和工程实际之间,分为流体力学和固体力学两个方向。它在强调研究理论问题的同时尽量将其运用到工程实际当中。力学与数学联系紧密,优秀的力学家本身就是数学家,比如牛顿。所以掌握

理论与应用力学专业

理论与应用力学专业本科培养方案 一、培养目标 培养德智体美全面发展与健康个性和谐统一、富有创新精神、实践能力和国际视野的高素质力学专业人才。 学生毕业后,能在力学及相关科学领域从事科研、教学、技术和管理工作。 二、业务培养要求 1.掌握数学、物理的基础知识,具有较强的分析和演算能力; 2.掌握系统的力学基本理论知识,初步掌握力学的基本实验技能和实验分析方法;掌握一定的工程背景知识,初步学会建立简单力学模型的方法; 3.了解相近专业的一般原理和知识; 4.对本专业范围内科学技术的新发展有所了解; 5.了解国家科技、产业政策、知识产权等有关政策和法规; 6.掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。 三、主干学科及主要课程 主干学科:力学。 主要课程:数学分析、高等代数、数学物理方法、科学计算方法、程序设计、普通物理学、理论力学、材料力学、弹性力学、流体力学、振动理论、计算力学、力学实验等。 四、专业特色及专业方向 本专业学生主要学习必需的数学、物理基础知识,学习力学基础理论及某些专业方向的专门知识,加强实验能力和计算机应用能力的训练,注意培养理论分析能力和力学应用的能力,接受科学研究和工程技术应用的初步训练,具有良好的科学素养。 五、学制 一般为4年。 六、学位授予 理学学士。 七、毕业合格标准 1.具有较好的思想和身体素质,符合学校规定的德育和体育标准。 2.通过培养方案的全部教学环节,总学分达到158学分(其中理论教学145 学分,实践教学8 学分,课外培养计划5学分)。

工程力学在工程建设中的应用

主要课程:理论力学、材料力学、弹性力学、流体力学、振动力学、计算力学、实验力学、结构力学、电工与电子技术、计算机基础知识及程序设计。《工程力学》是水利、土木类等专业一门重要的技术基础课程和工程技术人员必备的知识,在人才培养过程中具有重要的地位和作用。该课程的概念和理论不仅是专业课(水工建筑物、水电站、施工技术等)的基础,同时也是其他技术基础课(如工程材料与检测、建筑结构、土力学、地基基础、钢筋混凝土结构、钢结构等)的基础。主要研究水利与土木工程建筑中的工程结构设计、施工和使用中的各种力学问题。通过本课程的学习,使学生掌握必要的力学基础理论知识,具有解决与力学有关的工程技术问题的分析能力、计算能力和实验技能。为后续学习专业课打下良好的力学基础。 《科技导报》关注隧道工程建设

。 先进技术促进隧道工程高效发展 7月10日,连接2010年上海世界博览会浦江两岸园区的专用越江通道——西藏南路越江隧道东线工程竣工。该隧道位于南浦大桥和卢浦大桥之间,全长约2.67 km,江中段隧道长1 170 m,隧道直径11.58 m,设双向4车道,设计时速40 km。该项工程于2005年11月25日开工,分东、西两线施工,西线隧道将于2009年底完成建设,建成后能满足世博会园区每小时6~7万人次的越江需求。 隧道工程始于英国1826年修建的长770 m的泰勒山隧道,它在交通设施、水利工程、探矿采矿、环境工程、能源储备及国防等领域有着非常广泛的应用。鉴于土地资源稀缺、人口压力增大、便捷安全要求提高,从环境条件、空间利用、国民经济可持续发展等角度看,隧道工程有着更加广阔的前景,21世纪将迎来全球地下空间开发的新世纪。 地下施工由开挖支护、出碴运输、通风除尘、防水排水、供电供水等多种作业构成,具有投资巨大、空间有限、环境恶劣,复杂性、隐蔽性、风险性高,作业的综合性、动态性、循环性强,对施工技术、工程机械、建筑材料、运营设备要求高等特征,完成特长隧道和特殊隧道的修建任务更须具备快速准确的施工能力、高水平的机械配套、科学的管理方法等基本条件。 19世纪60年代前,修建隧道都用人工凿孔、黑火药爆破方法,之后风动凿岩机代替人工凿孔、硝化甘油炸药代替黑火药。

材料力学、结构力学与理论力学的区别与联系

结构力学科技名词定义 中文名称:结构力学英文名称:structural mechanics 定义:研究工程结构在外来因素作用下的强度、刚度和稳定性的学科。应用学科:水利科技(一级学科);工程力学、工程结构、建筑材料(二级学科);工程力学(水利)(二级学科) 《结构力学》是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。结构力学研究的内容包括结构的组成规则,结构在各种效应(外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。结构力学通常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩阵位移法后来发展出有限元法,成为利用计算机进行结构计算的理论基础。 工作任务研究在工程结构(所谓工程结构是指能够承受和传递外载荷的系统,包括杆、板、壳以及它们的组合体,如飞机机身和机翼、桥梁、屋架和承力墙等。)在外载荷作用下的应力、应变和位移等的规律;分析不同形式和不同材料的工程结构,为工程设计提供分析方法和计算公式;确定工程结构承受和传递外力的能力;研究和发展新型工程结构。 观察自然界中的天然结构,如植物的根、茎和叶,动物的骨骼,蛋类的外壳,可以发现它们的强度和刚度不仅与材料有关,而且和它们的造型有密切的关系,很多工程结构就是受到天然结构的启发而创制出来的。结构设计不仅要考虑结构的强度和刚度,还要做到用料省、重量轻.减轻重量对某些工程尤为重要,如减轻飞机的重量就可以使飞机航程远、上升快、速度大、能耗低。 学科体系一般对结构力学可根据其研究性质和对象的不同分为结构静力学、结构动力学、结构稳定理论、结构断裂、疲劳理论和杆系结构理论、薄壁结构理论和整体结构理论等。 结构静力学 结构静力学是结构力学中首先发展起来的分支,它主要研究工程结构在静载荷作用下的弹塑性变形和应力状态,以及结构优化问题。静载荷是指不随时间变化的外加载荷,变化较慢的载荷,也可近似地看作静载荷。结构静力学是结构力学其他分支学科的基础。 结构动力学 结构动力学是研究工程结构在动载荷作用下的响应和性能的分支学科。动载荷是指随时间而改变的载荷。在动载荷作用下,结构内部的应力、应变及位移也必然是时间的函数。由于涉及时间因素,结构动力学的研究内容一般比结构静力学复杂的多。 结构稳定理论 结构稳定理论是研究工程结构稳定性的分支。现代工程中大量使用细长型和薄型结构,如细杆、薄板和薄壳。它们受压时,会在内部应力小于屈服极限的情况下发生失稳(皱损或曲屈),即结构产生过大的变形,从而降低以至完全丧失承载能力。大变形还会影响结构设计的其他要求,例如影响飞行器的空气动力学性能。结构稳定理论中最重要的内容是确定结构的失稳临界载荷。 结构断裂和疲劳理论 结构断裂和疲劳理论是研究因工程结构内部不可避免地存在裂纹,裂纹会在外载荷作用下扩展而引起断裂破坏,也会在幅值较小的交变载荷作用下扩展而引起疲劳破坏的学科。现在我们对断裂和疲劳的研究历史还不长,还不完善,但断裂和疲劳理论目前得发展很快。

北航飞行器设计与应用力学系.doc

航空科学与工程学院 2016年研究生入学考试复试大纲 一、复试方式:笔试+面试 二、复试组织: 1、笔试:由航空学院统一组织,考试科目及复试大纲另见《航空科学与工程学院2013年考研复试安排》。 2、口试:以学科专业组为单位,由3-5位硕士生导师组成面试小组(组长为教授),每位考生的面试时间为20分钟。 三、复试流程和评分标准: 1)检查并核实考生面试所必备的个人证件和材料;考生可以提供有助于证明自己背景和能力的相关材料,证件和材料完备是面试的必要条件。 2)考生用英语口述个人基本情况、兴趣等,面试小组老师就考生基本情况提问,考生用英文回答问题。 3)考生朗读一段考场指定的专业外语短文,并口头翻译成中文。 4)面试小组老师就基础理论知识提问,学生用中文回答问题。 5)面试小组老师就专业知识提问,学生用中文回答问题。 面试结束后考生退场,在3-5个工作日后见航空学院网站“招生就业”栏目的“研究生招生”,会通知出学院的拟录取名单,在7层的研究生教学橱窗也会公布。 四、考场纪律 考生准时到达指定的复试考场,遵守考场秩序,尊重考试教师。 五、各学科专业组具体复试内容及参考书: 1、飞行力学与飞行安全系2016年硕士研究生入学复试程序 方式: 由3~6位硕士生导师组成面试小组,每位考生的面试时间为20分钟。 范围: 面试范围包括英语口语能力、专业英语阅读理解能力、专业基础理论知识和专业知识。具体环节如下: 1)对考生学习背景、心理、爱好和志愿等基本情况的了解。 2)考察考生的英语阅读和口头表达能力。

3)基础理论和专业知识面试。基础理论包括自动控制原理、理论力学和材料力学。专业知识包括飞行力学、飞行安全、飞行器总体设计、空气动力学等。 参考书: 基础理论可以选用任何一本考生熟悉的《自动控制原理》、《理论力学》、《材料力学》教材。专业课可以参考《飞机飞行动力学》(熊海泉编)或《飞机飞行性能》、《飞机的稳定与控制》等方面的参考书。 面试流程和评分标准: 1)检查并核实考生面试所必备的个人证件和材料;证件和材料完备是面试的必要条件。2)考生用英语口述个人基本情况、兴趣等,面试小组老师就考生基本情况提问,考生回答问题。 3)读一段指定的专业外语,并口头翻译成中文。 4)面试小组老师就基础理论知识提问,学生回答问题。 5)面试小组老师就专业知识提问,学生回答问题。 6)问答结束后,考生退场,面试老师根据考核要求和面试情况,对考生进行评分。 7)所有考生面试结束后,面试老师根据总体情况,对所有考生进行综合评估和比较,给出面试成绩。 2、人机与环境工程/制冷及低温工程2016年硕士研究生入学复试程序 方式: 由3~5位硕士生导师组成面试小组,每位考生的面试时间为20分钟。 范围: 1)英语阅读和口头表达能力。 2)对考生心理、基本情况的了解。 3)基础理论和专业知识面试。基础理论包括:自动控制原理,理论力学,流体力学;专业知识包括工程热力学,传热学,人机工程,低温制冷。考生可以选择其中1门基础理论和1门专业课作为面试内容,或者是综合知识。 参考书: 可以选用任何一本考生熟悉的《自动控制原理》、《理论力学》、《流体力学》教材。专业课可以选用考生熟悉的《工程热力学》,《传热学》,《人机工程》,低温制冷等方面的参考书。 面试流程和评分标准: 1)检查并核实考生面试所必备的个人证件和材料;证件和材料完备是面试的必要条件. 2)考生用英语口述个人基本情况、兴趣等,面试小组老师就考生基本情况提问,考生回答问题。 3)读一段指定的专业外语,并口头翻译成中文。 4)面试小组老师就基础理论知识提问,学生回答问题。 5)面试小组老师就专业知识提问,学生回答问题。 6) 问答结束后,考生退场,面试老师根据考核要求和面试情况,对考生进行评分。

【完整版】:力学在土木工程中的应用

力学在土木工程中的应用 1:力学基本内容: 力学是用数学方法研究机械运动的学科。“力学”一词译自英语mechanics源于希腊语一机械,因为机械运动是由力引起的.mechanics在19世纪5O年代作为研究力的作用的学科名词传人中国后沿用至今。 力学是一门基础科学,它所阐明的规律带有普遍的性质.为许多工程技术提供理论基础。力学又是一门技术科学,为许多工程技术提供设计原理,计算方法,试验手段.力学和工程学的结合促使工程力学各个分支的形成和发展.力学按研究对象可划分为固体力学、流体力学和一般力学三个分支.固体力学和流体力学通常采用连续介质模型来研究;余下的部分则组成一般力学.属于固体力学的有弹性力学、塑性力学,近期出现的散体力学、断裂力学等;流体力学由早期的水力学和水动力学两个分支汇合而成,并衍生出空气动力学、多相流体力学、渗流力学、非牛顿流体力学等;力学间的交叉又产生粘弹性理论、流变学、气动弹性力学等分支. 力学在工程技术方面的应用结果则形成了工程力学或应用力学的各种分支,诸如材料力学、结构力学、土力学、岩石力学、爆炸力学、复合材料力学、天体力学、物理力学、等离子体动力学、电流体动力学、磁流体力学、热弹性力学、生物力学、生物流变学、地质力学、地球动力学、地球流体力学、理性力学、计算力学等等. 2:土木是力学应用最早的工程领域之一. 2.1土木工程专业本科教学中涉及到的力学内容

包括理论力学、材料力学、结构力学、弹性力学、土力学、岩石力学等几大固体力学学科. 理论力学与大学物理中有关内容相衔接,主要探讨作用力对物体的外效应(物体运动的改变) ,研究的是刚体,是各门力学的基础.其他力学研究的均为变形体(本科要求线性弹性体),研究力系的简化和平衡,点和刚体运动学和复合运动以及质点动力学的一般理论和方法. 材料力学:主要探讨作用力对物体的内效应(物体形状的改变),研究杆件的拉压弯剪扭变形特点,对其进行强度、刚度及稳定性分析计算.结构力学:在理论力学和材料力学基础上进一步研究分析计算杆件结构体系的基本原理和方法,了解各类结构受力性能. 弹性力学:研究用各种精确及近似解法计算弹性体(主要要求实体结构) 在外力作用下的应力、应变和位移. 土力学:研究地基应力、变形、挡土墙和土坡等稳定计算原理和计算方法.岩石力学:研究岩石地基、边坡和地下工程等的稳定性分析方法及其基本设计方法. 2.2土木工程专业之力学可分为两大类,即“结构力学类”和“弹性力学类”. “弹性力学类”的思维方式类似于高等数学体系的建构,由微单元体(高等数学为微分体)人手分析,基本不引入(也难以引入)计算假设,计算思想和理论具有普适特征.在此基础上引入某些针对岩土材料的计算假设则构建了土力学和岩石力学.“结构力学类”(包括理论、材料学和结构力学)则具有更强烈的工程特征,其简化的模型是质点或杆件,在力学体系建立之前就给出了诸

20世纪理论和应用力学十大进展汇总

20世纪理论和应用力学十大进展《力学进展》 在我们迈步走向新世纪的时候,正值《力学进展》创刊30周年。为纪念这一特殊的历史时刻,《力学进展》举行了?20世纪理论和应用力学十大进展?评选活动。本次活动历时半年多,经过编委会提名、初步筛选,确定出入围的20世纪理论和应用力学进展17项,分别请有关方面专家精心撰写了条目介绍,最后请从事力学及与力学相关学科的研究人员投票。评选活动得到了广大热心读者的极大支持,共发出选票994张,收回有效选票409张。2001年7月3日编辑部进行了计票,得到?20世纪理论和应用力学十大进展?选出结果如下(其中?稳定性、分岔和混沌理论?一条原来是以?混沌理论?和?稳定性与分岔?两条分别投票的,得票分别为337票和210票,考虑一些投票人的建议,现合并为1条,得票按337票计): 序号名称得票数 1 有限元方法 384 2 断裂力学 343 3 生物力学的创立 337 4 稳定性、分岔和混沌理论 337 5 边界层理论 323 6 塑性力学和位错理论 312 7 湍流统计理论 259 8 奇异摄动理论 222 9 力学的公理化体系 199 10 克服声障、热障的力学理论 196 参加条目撰写的同志有:戴世强、邓学蓥、段祝平、黄永念、黄筑平、李家春、连淇祥、陆启韶、沈青、谈庆明、陶祖莱、王克仁、王文标、王自强、解伯民、姚振汉、殷有泉、余寿文、张兆顺、周显初、朱如曾、朱照宣,在此深表谢意。 1 有限元方法 有限元法是20世纪60年代逐渐发展起来的对连续体力学和物理问题的一种新的数值求解方法,其做法是,对所要求解的力学或物理问题,通过有限元素的划分将连续体的无限自由度离散为有限自由度,从而基于变分原理或用其它方法将其归结为代数方程组求解。 有限元法不仅具有理论完整可靠,形式单纯、规范,精度和收敛性得到保证等优点,而且可根据问题的性质构造适用的单元,从而具有比其它数值解法更广的适用范围。随着计算机技术的发展,它已成为涉及力学的科学研究和工程技术所不可或缺的工具。对于力学工作者来说,借助于有限元的工具,可以得到许多难以求得解析解的问题的可靠数值结果;对于工程技术人员来说,很多复杂工程对象的设计可以不依赖或少依赖于耗费巨大的实验。 1943年R.库朗(R. Courant)已从数学上明确提出过有限元的思想;20世纪

【完整版】理论与应用力学毕业设计

理论与应用力学 学科:理学 门类:力学 专业名称:理论与应用力学 业务培养目标:本专业培养掌握力学的基本理论、基本知识和基本技能,能在力学及相关科学领域从事科研、教学、技术和管理工作的高级专门人才。 业务培养要求:本专业学生主要学习必需的数学、物理的基础知识,学习力学基础理论及某一专业方向的专门知识,加强实验能力和计算机应用能力的训练,注意培养理论分析能力和力学应用的能力。受到科学研究和工程技术应用的初步训练,具有良好的科学素养。 毕业生应获得以下几方面的知识和能力: 1.掌握数学、物理的基础知识,具有较强的分析和演算能力; 2.掌握系统的力学基本理论知识,初步掌握力学的基本实验技能和实验分析方法;掌握一定的工程背景知识,初步学会建立简单力学模型的方法; 3.了解相近专业的一般原理和知识; 4.对本专业范围内科学技术的新发展有所了解; 5.了解国家科技、产业政策、知识产权等有关政策和法规; 6.掌握资料查询、文献检索以及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件、归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。 主干学科:力学 主要课程:数学分析、高等代数、数学物理方法、计算方法、程序设计、普通物理学、理论力学、材料力学、弹性力学、流体力学等。 主要实践性教学环节:包括生产实习、科研训练或毕业论文(设计)等,一般安排10--20周。 修业年限:四年 授予学位:理学或工学学士 理论与应用力学复旦大学637637河南理科2009本科一批 理论与应用力学中山大学626627河南理科2009本科一批 理论与应用力学哈尔滨工业大学622622河南理科2009本科一批 理论与应用力学吉林大学619623河南理科2009本科提前批 理论与应用力学西北工业大学601610河南理科2009本科一批 理论与应用力学兰州大学599604河南理科2009本科一批 理论与应用力学辽宁工程技术大学586603河南理科2009本科一批 理论与应用力学兰州理工大学552552河南理科2009本科二批 理论与应用力学内蒙古工业大学543567河南理科2009本科二批 10理论与应用力学河南理工大学539553河南理科2009本科二批

泛函分析在力学和工程中的应用

泛函分析在力学和工程中的应用 陆章基 (复旦大学应用力学系) 摘要 本文简单介绍泛函分析方法在力学和工程中的若干应用,包括泛函观点下的结构数学理论、直交投影法、超圆方法、变分法、变分不等式与凸分析、算子的特征值与谱方法、与实验技术有关的泛函方法等。并介绍当前非线性分析中部分动态。 $ 1 泛函分析概述 泛函分析是高度抽象的数学分支,研究各类泛函空间及算子理论。所谓泛函空间是带有某类数学结构(主要是拓扑和代数结构)的抽象集。其元(或点)可以是数、向量、函数、张量场,甚至各种物理状态等。根据不同拓扑和代数结构,泛函空间划分为各个类别。力学和工程中常见的有①:(i)度量(距离)空间。对任意两抽象元引入距离,由此自然地引入开集等拓扑结构。从而,度量空间是一特殊拓扑空间,但尚未赋予代数结构;(ii)线性拓扑空间(拓扑向量空间。同时带有拓扑和代数结构。所谓拓扑无非是在抽象集中规定某些子集为开集),他们满足开集的基本公理。有了拓扑后,即能引入极限、连续、紧致和收敛等初等分析的重要概念。这里所述的代数结构指的是线性结构(加法和数乘运算)。由此可讨论线性无关、基和维数等代数概念。泛函分析的空间(尤其各类函数空间)绝大部分是无限维的。线性空间(带有线性结构的度量空间)是线性拓扑空间的一例。但最重要的线性拓扑空间应是下列线性赋范空间;(iii)线性赋范空间。每个元(常称向量)配有番薯||x||(是普通向量长度的推广)。线性空间配上范数后,能自然地诱导出度量和拓扑。就这个意义而言,它是特殊的线性拓扑和度量空间。于是,具有这两个空间中所有概念。例如可以讨论该空间(或其子集)是否完备。即任何柯西序列是否为收敛序列。(iv)Banach空间。它是完备的线性赋范空间。完备性使该空间具有十分良好的性质。例如闭图像定理、共鸣定理、逆算子定理和开映照原理等。(v)内积空间。内积的引入使该空间更直观形象,内容格外丰富。内积把普通的几何术语差不多全带到抽象空间中。例如:长度、两向量交角、直交性、直交投影、就范直交系、点(向量)和子空间的距离等。使抽象泛函空间涂上浓厚的几何色彩。力学家和工程师对此尤感兴趣。由于内积可诱导番薯,内积空间是特殊线性赋范空间,但反之不然。与普通欧式空间最相像的应数下述Hilbert空间;(vi)Hilbert空间。它是完备的内积空间,内容最丰富。例如Fourier展开、Bessel不等式和Parseval等式等。由于本文讨论泛函的力学应用,必须提及的最后一类空间是Sobolev空间。(vii)Sobolev空间W m,p(Ω)(p (Ω)空间中可以连续求m阶分布导数的函数u组成的子空间,≥1,m≥0)[3]。它是由L p 并配上Sobolev空间。它是特殊的线性赋范空间。其中,分布导数是普通导数的推广,对于性质极差的Dirac delta之类的广义函数,也能求分布导数。因此,对函数的“光滑程度”提供更一般、更精确的含义。由于Sobolev嵌入定理,可以通过找弱解来讨论偏微分方程的定解问题。p=2这类Sobolev空间特别重要,它是特殊的Hilbert空间,记之为H m(Ω),称作Hilbert-Sobolev空间。 泛函分析另一内容是算子理论,可以讲更为重要。它研究上述各类泛函空间上线性与非线性算子的各种特性。对于单个算子,可引入连续、有界、下有界、闭、紧致和全连续等性质。对于算子集(线性连续算子集或线性连续泛函集等)又可引入新的线性结构和范数等,构成高层的算子空间。其中对偶(共轭)空间尤为重要。据此,可引入自共轭(自伴)算子、投影算子、酉算子、正常算子、自反空间、强和弱收敛等。在初等分析中卓见成效的微分运算

工程力学的应用和发展

题目:工程力学的应用和发展 学生姓名:*** 学号:********** 专业:工程力学专业 学院(系):力学与工程科学学院 2012 年11 月17 日

摘要 随着当代社会的进步和发展,随着改革开放的深入,我们国家的经济得到快速的发展,各行各业都步入快速的发展过程中,作为当代大学生我们有责任也有义务为国家的发展和繁荣做出自己的贡献。然而,当今社会就业竞争压力大已然成为不争的事实,怎样才能让自己学有所有,让自己所学的知识应用到生产生活里面,让自己能够找到一份合适的工作,使自己的专业知识得到最大程度的应用,使自己的人生观的以实现。我认为,作为一名在校大学生,应该了解自己所在专业的应用与发展,为将来的职业规划起到一定的铺垫作用。从自身来讲,作为工程力学系的一名学生,对于本专业的研究是必要的。 1.绪论 1.1工程力学专业的基本特征 工程力学专业作为一门基础学科,主要研究力学方面的知识,而正是因为基础学科的特性,所以在很多方面他并不是那么引人注目。但力学既是基础学科,又是应用学科:作为基础学科它与数理化天地生同样重要,是机械、土木、交通、能源、材料、仪器仪表等相关工科的基础;作为应用学科,它几乎与所有工科专业交叉,直接解决工科专业发展和工程实际中的力学难题。现在的工程力学专业,与时俱进,多增加了使用大型工程力学分析软件解决实际问题以及利用计算机辅助测试系统进行工程测试和分析的学习。可以说,它亦理亦工,同时精通计算机。学理工的人都知道,力学是现代工程技术的基础,力学不好学,学得好的人必定能够在工程领域中游刃有余,无论在哪一行,机械、土建、材料、能源、交通、航空航天、船舶、水利、化工,都可以一点即通,是最为典型的“厚基础、宽口径”专业。就时代而言,工程力学也是碰到了好年头,百业俱兴,各类基础建设开展得轰轰烈烈,工程力学无论参与到建筑设计还是土木施工中都大有可为,能源采掘、船舶制造和航天器制造,也都要充分用到力学知识,力学是工科中的“万金油”专业。从这里我们就可以清楚地看到工程力学专业大致的研究方向。从而对于他的发展及应用有大致认识[1]。 2.工程力学专业的应用和发展 2.1工程力学专业的大致就业前景 工程力学专业大致的就业方向有下面五点 1 学校和科研单位 选择研究所的人占了很大一部分比例。大多数是航空集团下属的研究所。这种单位的工资水平不是很高,但是也是比较安稳的。工作地点主要在沈阳、西安、北京、上海。去学校当老师的相对少一些,主要是由于目前硕士生的扩招,学校对老师的学历要求也随之提高。 2 继续读博 这也是很多工程力学硕士生的选择。而且很大一部分选择了继续在南航读博,除了南航的工程力学实力比较雄厚原因之外,导师因素和本身对硕士课题比较了解

上海大学工程力学专业考研

上海大学工程力学专业考研 本学科为一级学科博士、硕士学位授予点,包括一般力学与力学基础(080101)、固体力学(080102)、流体力学(080103)和工程力学(080104)四个二级学科。 本学科现有中国科学院院士2名、教授20余名。现有固体力学实验中心、流体力学实验中心、专业资料室及先进的通用软件包,具有培养高级专门人才的良好环境。所设课程和研究方向反映了当前国内外学科发展的前沿,研究课题属国际前沿或结合国家特别是上海市重点科研或工程项目,培养学生既有坚实的数学和力学基础理论知识及较强科研能力,又能掌握计算机技术,并具有解决工程问题的高级专门技术。 一、研究方向 01.非线性板壳及波纹管力学 02.计算力学及其应用软件 03.非线性固体力学的理论和方法 04.材料和结构的力学理论、方法和实验 05.实验力学及现代测试技术 06.工程及城市环境流体力学 07.叶轮机流体力学中的反命题和优化命题的变分 原理 08.湍流与流动稳定性理论 09.交通流动力学 10.内外流气动力学及流动控制的理论、计算和实验 11.非线性波的理论和方法 12.多物理场耦合分析和控制理论 13.非线性动力学和振动控制 14.力学中的数学理论和方法

二、指导教师 钱伟长院士、刘高联院士、周哲玮研究员、黄黔教授、程昌钧教授、戴世强教授、刘宇陆教授、叶志明教授、王道增教授、夏南教授、翁培奋教授、冯伟教授、郭平教授、程玉民教授、郭兴明教授、马杭教授、陈立群教授、陈红勋教授和20余名副教授 小提示:目前本科生就业市场竞争激烈,就业主体是研究生,在如今考研竞争日渐激烈的情况下,我们想要不在考研大军中变成分母,我们需要:早开始+好计划+正确的复习思路+好的辅导班(如果经济条件允许的情况下)。2017考研开始准备复习啦,早起的鸟儿有虫吃,一分耕耘一分收获。加油!

工程力学中四种强度理论

为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容 一、四大强度理论基本内容介绍: 1、最大拉应力理论(第一强度理论): 这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是: σ1=σb。σb/s=[σ] 所以按第一强度理论建立的强度条件为: σ1≤[σ]。 2、最大伸长线应变理论(第二强度理论): 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。 εu=σb/E;ε1=σb/E。由广义虎克定律得: ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。 按第二强度理论建立的强度条件为: σ1-u(σ2+σ3)≤[σ]。 3、最大切应力理论(第三强度理论): 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。 依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力) 由公式得:τmax=τ1s=(σ1-σ3)/2。 所以破坏条件改写为σ1-σ3=σs。 按第三强度理论的强度条件为:σ1-σ3≤[σ]。 4、形状改变比能理论(第四强度理论): 这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力

状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。 二、四大强度理论适用的范围 1、各种强度理论的适用范围及其应用 第一理论的应用和局限 1、应用 材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。 2、局限 没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。 第二理论的应用和局限 1、应用 脆性材料的二向应力状态且压应力很大的情况。 2、局限 与极少数的脆性材料在某些受力形势下的实验结果相吻合。 第三理论的应用和局限 1、应用 材料的屈服失效形势。 2、局限 没考虑σ2对材料的破坏影响,计算结果偏于安全。 第四理论的应用和局限 1、应用 材料的屈服失效形势。 2、局限 与第三强度理论相比更符合实际,但公式过于复杂。 2、总结来讲: 第一和第二强度理论适用于:铸铁、石料、混凝土、玻璃等,通常以断裂形式失效的脆性材料。 第三和第四强度理论适用于:碳钢、铜、铝等,通常以屈服形式失效的塑性材料。 以上是通常的说法,在实际中,有复杂受力条件下,哪怕同种材料的失效形

材料力学、结构力学与理论力学的区别与联系

中文名称:结构力学英文名称:structural mechanics 定义:研究工程结构在外来因素作用下的强度、刚度和稳定性的学科。应用学科:水利科技(一级学科);工程力学、工程结构、建筑材料(二级学科);工程力学(水利)(二级学科) 《结构力学》是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。结构力学研究的内容包括结构的组成规则,结构在各种效应(外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。结构力学通常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩阵位移法后来发展出有限元法,成为利用计算机进行结构计算的理论基础。 工作任务研究在工程结构(所谓工程结构是指能够承受和传递外载荷的系统,包括杆、板、壳以及它们的组合体,如飞机机身和机翼、桥梁、屋架和承力墙等。)在外载荷作用下的应力、应变和位移等的规律;分析不同形式和不同材料的工程结构,为工程设计提供分析方法和计算公式;确定工程结构承受和传递外力的能力;研究和发展新型工程结构。 观察自然界中的天然结构,如植物的根、茎和叶,动物的骨骼,蛋类的外壳,可以发现它们的强度和刚度不仅与材料有关,而且和它们的造型有密切的关系,很多工程结构就是受到天然结构的启发而创制出来的。结构设计不仅要考虑结构的强度和刚度,还要做到用料省、重量轻.减轻重量对某些工程尤为重要,如减轻飞机的重量就可以使飞机航程远、上升快、速度大、能耗低。 学科体系一般对结构力学可根据其研究性质和对象的不同分为结构静力学、结构动力学、结构稳定理论、结构断裂、疲劳理论和杆系结构理论、薄壁结构理论和整体结构理论等。 结构静力学 结构静力学是结构力学中首先发展起来的分支,它主要研究工程结构在静载荷作用下的弹塑性变形和应力状态,以及结构优化问题。静载荷是指不随时间变化的外加载荷,变化较慢的载荷,也可近似地看作静载荷。结构静力学是结构力学其他分支学科的基础。 结构动力学 结构动力学是研究工程结构在动载荷作用下的响应和性能的分支学科。动载荷是指随时间而改变的载荷。在动载荷作用下,结构内部的应力、应变及位移也必然是时间的函数。由于涉及时间因素,结构动力学的研究内容一般比结构静力学复杂的多。 结构稳定理论 结构稳定理论是研究工程结构稳定性的分支。现代工程中大量使用细长型和薄型结构,如细杆、薄板和薄壳。它们受压时,会在内部应力小于屈服极限的情况下发生失稳(皱损或曲屈),即结构产生过大的变形,从而降低以至完全丧失承载能力。大变形还会影响结构设计的其他要求,例如影响飞行器的空气动力学性能。结构稳定理论中最重要的内容是确定结构的失稳临界载荷。 结构断裂和疲劳理论 结构断裂和疲劳理论是研究因工程结构内部不可避免地存在裂纹,裂纹会在外载荷作用下扩展而引起断裂破坏,也会在幅值较小的交变载荷作用下扩展而引起疲劳破坏的学科。现在我们对断裂和疲劳的研究历史还不长,还不完善,但断裂和疲劳理论目前得发展很快。 在固体力学领域中,材料力学为结构力学的发展提供了必要的基本知识,弹性力学和塑性力

工程力学专业介绍及发展方向

工程力学专业介绍及发展方向 摘要:工程力学是力学的一个分支,它主要涉及机械、土建、材料、能源、交通、航空、船舶、水利、化工等各种工程与力学结合的领域,分为六大研究方向:非线性力学与工程、工程稳定性分析及控制技术、应力与变形测量理论和破坏检测技术、数值分析方法与工程应用、工程材料物理力学性质、工程动力学与工程爆破。学制一般为四年,毕业后授予工学学士。就业面相当广泛,可以继续读博、从事科学研究、教师、公务员,或到国防单位工作,去外企等等。总的来说,工程力学专业具有现代工程与理论相结合的的特点,有很大的知识面和灵活性,对国家现代化建设具有重大意义。 关键词:产生、专业介绍、研究方向、发展前景、就业 一、引言 工程力学是研究有关物质宏观运动规律,及其应用的科学。工程给力学提出问题,力学的研究成果改进工程设计思想。从工程上的应用来说,工程力学包括:质点及刚体力学,固体力学,流体力学,流变学,土力学,岩体力学等。[0] (1)产生 工程力学作为力学的一个分支,是20世纪50年代末出现的。首先提出这一名称并对这个学科做了开创性工作的是中国学者钱学森。 在20世纪50年代,出现了一些极端条件下的工程技术问题,所涉及的温度高达几千度到几百万度,压力达几万到几百万大气压,应变率达百万分之一~亿分之一秒等。在这样的条件下,介质和材料的性质很难用实验方法来直接测定。为了减少耗时费钱的实验工作,需要用微观分析的方法阐明介质和材料的性质; 在一些力学问题中,出现了特征尺度与微观结构的特征尺度可比拟的情况,因而必须从微观结构分析入手处理宏观问题;出现一些远离平衡态的力学问题,必须从微观分析出发,以求了解耗散过程的高阶项; 由于对新材料的需求以及大批新型材料的出现,要求寻找一种从微观理论出发合成具有特殊性能材料的“配方”或预见新型材料力学性能的计算方法。 在这样的背景条件下,促使了工程力学的建立。工程力学之所以出现,一方面是迫切要求能有一种有效的手段,预知介质和材料在极端条件下的性质及其随状态参量变化的规律;另一方面是近代科学的发展,特别是原子分子物理和统计力学的建立和发展,物质的微观结构及其运动规律已经比较清楚,为从微观状态推算出宏观特性提供了基础和可能。

工程力学专业、航空航天工程专业、能源与动力工程专业 本科

工程力学专业、航空航天工程专业、能源与动力工程专业 本科培养方案 一、培养目标 清华航院的使命是为国家航空航天及力学和能源动力等相关专业领域的发展培养高层次、复合型的人才。“工程力学、航空航天工程、能源与动力工程”人才培养的建设目标是:面向现代航空航天,培养高素质、高层次、多样化、创造性的骨干人才。 二、基本要求 本科毕业生应达到如下知识、能力与素质的要求: (1)道德和人文素养。具有良好的职业道德、坚定追求卓越的态度、强烈的爱国敬业精神、社会 责任感和丰富的人文科学素养; (2)基础知识。具有理工科人才所应具有的数学、物理、生物、化学、电子、计算机应用基础知 识; (3)本专业核心工程理论知识。从事航空宇航科学与技术、力学、动力工程及工程热物理领域的 核心工程理论知识,基本掌握所学领域的专门知识; (4)了解学科前沿。了解航空宇航科学与技术、力学、动力工程及工程热物理领域的发展现状和 未来的趋势; (5)系统思维和综合分析能力。能区分主要因素与次要因素,确定优先级。具备综合运用所学科 学理论、分析提出和解决问题的方案,并解决工程实际问题的能力,能够参与生产及运作系统的设计、并具有运行和维护能力;在决策时能权衡、判断和平衡。 (6)创新意识和设计能力。具有较强的创新意识和进行产品开发和设计、技术改造与创新的初步 能力; (7)终生学习。具有终生学习的信心和动力,主动获取信息和追求职业进步的学习能力; (8)管理组织、团队协作能力。具有较好的组织管理能力、较强的交流沟通、环境适应和团队合 作的能力; (9)心理素质。具有健康的心理素质,能承受项目压力,沉着冷静,管理好时间和资源,应对危 机与突发事件的初步能力; (10)国际视野。具有一定的国际视野和跨文化环境下的交流、竞争与合作的初步能力。 三、学制与学位授予 学制:本科学制四年,按照学分制管理机制,实行弹性学习年限。 授予学位:工学学士学位。 四、基本学分学时 本科培养总学分172,其中春、秋季学期课程总学分143,夏季学期实践教学环节14学分,综合论文训练15学分。 五、专业核心课程22门 电工与电子技术(4学分)、信号与系统(4学分)、机械设计基础(1)(3学分)、机械设计基础B(2)(2学分)、机械设计基础B(3)(2学分)、制造工程基础(2学分)、程序设计基础(3学分)、理论力学(4学分)、材料力学(4学分)、工程材料(3学分)、工程热力学(4学分)、传热学(3学分)、流体力学(4学分)、基础力学系列实验(2学分)、力学实验技术(3学分)、热物理量测技术(3学分)、飞行器基础实验(3学分)、航空航天基础系列实验(2学分)、飞行器结构力学(3学分)、推进原理与技术(3学分)、空气动力学(3学分)、航天器动力学(3学分)。 六、课程设置与学分分布 1.公共基础课程 26学分 (1) 思想政治理论课 14学分 10610183 思想道德修养与法律基础3学分 1

力学在生活中的应用

力学在生活中的应用 通过这几天教授们的讲解,不仅使我明白了自己专业的发展方向,同时也让我明白了力学在生产生活中的重要性,生命本来就充满了无数的巧合,不记得是哪位教授说过“不是你选择了力学,而是力学选择了你”,或许我能来到这个专业,遇到这些同学和教授们就是一种缘分,珍惜这缘分,同时去热爱一个专业。 力学是一门基础科学,它所阐明的规律带有普遍的性质.为许多工程技术提供理论基础。力学又是一门技术科学,为许多工程技术提供设计原理,计算方法,试验手段.力学和工程学的结合促使工程力学各个分支的形成和发展. 力学按研究对象可划分为固体力学、流体力学和一般力学三个分支.固体力学和流体力学通常采用连续介质模型来研究;余下的部分则组成一般力学.属于固体力学的有弹性力学、塑性力学,近期出现的散体力学、断裂力学等;流体力学由早期的水力学和水动力学两个分支汇合而成,并衍生出空气动力学、多相流体力学、渗流力学、非牛顿流体力学等;力学间的交叉又产生粘弹性理论、流变学、气动弹性力学等分支.力学在工程技术方面的应用结果则形成了工程力学或应用力学的各种分支,诸如材料力学、结构力学、土力学、岩石力学、爆炸力学、复合材料力学、天体力学、物理力学、等离子体动力学、电流体动力学、磁流体力学、热弹性力学、生物力学、生物流变学、地质力学、地球动力学、地球流体力学、理性力学、计算力学等等。 教授们研究的方向覆盖了力学大部分分支,这也给了我们继续深造的有利条件,有的时候看着教授们的研究成果和所做的项目也会想,是不是有一天自己也能完成这样的工作。 从亚里士多德时代的自然哲学,到牛顿时代的经典力学,直至现代物理中的相对论和量子力学等,都是物理学家科学素质、科学精神以及科学思维的有形体现。随着科技的发展,社会的进步,物理已渗入到人类生活的各个领域。 物理学作为一门最基础的自然学科,贯穿着人类文明的发展历程,从远古燧人氏钻木生火到如今的信息化社会的建设,都少不了物理的参与。燧人钻木取火的基本原理正是摩擦生热原理,在热量积蓄到一定程度时就可以使木头与氧气发生剧烈反应产生火焰。而物理在如今的生活中拥有着更加广泛的应用,小到我们的生活,大至航空航天,人走路是利用了鞋与地面的摩擦力,向后蹬是给地施加了一个向后的作用力,然后由于物体间作用力是相互的,所以地也给人一个向前的作用力。给气球充上密度比空气小的气体,如氢气、一氧化碳,

理论力学专业概论

专业概论报告 姓名:123 一、西北工业大学工程力学培养计划

工程力学涉及航空、航天、航海、机械、土建、材料、能源、交通、水利、化工等各种工程与力学结合的领域,主要包括一般力学与力学基础、固体力学、流体力学等学科方向。工程力学专业主要培养具备力学基础理论知识、计算和试验能力,能在各种工程项目中从事科研、技术开发、工程设计和力学教学工作的高级工程科学技术人才。 1、培养目标 培养德、智、体全面发展,掌握工程力学专业的基础理论、计算技术与实验技能的专门人才,能够在有关工程领域中(如航空、航天、航海、机械、土建、材料、能源、交通、水利、化工等)从事与力学问题相关的工程设计与分析、技术开发及技术管理工作,或继续攻读硕士、博士学位成为力学及相关学科的高层次研究人才或高校教师。 2、培养要求 本专业学生主要学习工程力学的基本理论和基本知识,接受必要的工程技能训练,具有应用计算机和现代实验技术手段解决与力学有关的工程问题的基本能力。 本专业毕业生将获得以下几方面的知识和能力: (1).具有扎实的自然科学基础,较系统地掌握本专业领域宽广的技术理论基础知识。 (2).具有较强的解决与力学有关的工程技术问题的理论分析能力与实验技能。 (3).初步具备从事与力学相关的科研工作的能力。 (4).具有较强的计算机和外语应用能力。 (5).具有较强的自学能力、创新意识和较高的综合素质。 3、学制与学位 修业年限:四年 授予学位:工学学士 4、学时与学分 总学分:170 课内教学学时/学分:2334/140 占总学分的比例:82.35% 其中:

通识教育基础课学时/学分:1158/66.5 占总学分的比例:39.1% 学科基础课学时/学分:608/38 占总学分的比例:22.35% 专业课学时/学分:568/35.5 占总学分的比例:20.9% 集中性实践环节周数/学分:30周/30 占总学分的比例:17.65% 5、主干学科: 力学Mechanics,航空宇航科学与技术Aeronautical and Astronautical Science and Technology,机械工程 Mechanical Engineering,材料科学与工程 Materials Science and Engineering 6、专业核心课程: 理论力学Theoretical Mechanics,材料力学Materials Mechanics,弹性力学Elasticity,塑性力学Plasticity,机械振动Mechanical Vibration,流体力学Fluid Mechanics,计算力学Computational Mechanics,实验力学Experimental Mechanics,板壳理论 Theory of plate and shells,高等动力学 Advanced Dynamics,疲劳与断裂Fatigue and Fracture,空气动力学基础 Aerodynamics,飞行器原理principle of aircraft,机械设计基础The Fundamental of Machinery Design,电工技术Electrical Technology。 7、总周时分配 学 期 周 数 项 目 VII、The Distribution of Total Weeks

相关文档
最新文档