纳米金属粉在火炸药中应用进展

纳米金属粉在火炸药中应用进展
纳米金属粉在火炸药中应用进展

纳米金属用途简介

纳米金属用途简介 钴(Co) 高密度磁记录材料:利用纳米钴粉记录密度高、矫顽力高(可达119.4KA/m)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。 磁流体:用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等。吸波材料:金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材 料、可见光--红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。 铜(Cu) 金属和非金属的表面导电涂层处理:纳米铝、铜、镍粉体有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。此技术可应用于微电子器件的生产。 高效催化剂:铜及其合金纳米粉体用作催化剂,效率高、选择性强,可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。 导电浆料:用纳米铜粉替代贵金属粉末制备性能优越的电子浆料,可大大降低成本。此技术可促进微电子工艺的进一步优化。

铁 (Fe) 高性能磁记录材料:利用纳米铁粉的矫顽力高、饱和磁化强度大(可达1477km2/kg)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。 磁流体:用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等领域。 吸波材料:金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材料、可见光--红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。 导磁浆料:利用纳米铁粉的高饱和磁化强度和高磁导率的特性,可制成导磁浆料,用于精细磁头的粘结结构等。 纳米导向剂:一些纳米颗粒具有磁性,以其为载体制成导向剂,可使药物在外磁场的作用下聚集于体内的局部,从而对病理位置进行高浓度的药物治疗,特别适于癌症、结核等有固定病灶的疾病。 镍(Ni) 磁流体:用铁、钴、镍及其合金粉末生产的磁流体性能优异,广泛应用于密封减震、医疗器械、声音调节、光显示等。 高效催化剂:由于比表面巨大和高活性,纳米镍粉具有极强的催化效果,可用于有机物氢化反应、汽车尾气处理等。

纳米粉体材料

纳米粉体材料 简介 纳米材料分为纳米粉体材料、纳米固体材料、纳米组装体系三类。纳米粉体材料是纳米材料中最基本的一类。纳米固体是由分体材料聚集,组合而成。而纳米组装体系则是纳米粉体材料的变形。 纳米粉体也叫纳米颗粒,一般指尺寸在1-100nm之间的超细粒子,有人称它是超微粒子。它的尺度大于原子簇而又小于一般的微粒。按照它的尺寸计算,假设每个原子尺寸为1埃,那么它所含原子数在1000个-10亿个之间。它小于一般生物细胞,和病毒的尺寸相当。 细微颗粒一般不具有量子效应,而纳米颗粒具有量子效应;一般原子团簇具有量子效应和幻数效应,而纳米颗粒不具有幻数效应。 纳米颗粒的形态有球形、板状、棒状、角状、海绵状等,制成纳米颗粒的成分可以是金属,可以是氧化物,还可以是其他各种化合物。 纳米粉体材料的基本性质 它的性质与以下几个效应有很大的关系: (1).小尺寸效应 随着颗粒的量变,当纳米颗粒的尺寸与光波、传导电子德布罗意波长以及超导态的相干长度或透射深度等物理尺寸特征相当或更小时,周期边界性条件将被破坏,声、光、电、磁、热、力等特性均会出现质变。由于颗粒尺寸变小所引起的宏观物理性质的变化成为小尺寸效应。 (2).表面与界面效应 纳米微粒尺寸小、表面大、位于表面的原子占相当大的比例。由于纳米粒径的减小,最终会引起表面原子活性增大,从而不但引起纳米粒子表面原子输送和构型的变化,同时也引起表面电子自旋构象和电子能谱的变化。以上的这些性质被称为“表面与界面效应”。 (3)量子尺寸效应 当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变成离散能级的现象成为量子尺寸效应。 具体从各方面说来有以下特性: (1)热学特性

纳米金属材料—小论文

纳米孪晶金属材料 摘要:金属材料的高强度和良好的塑韧性是很多金属材料研究者追求的目标,本文总结了卢柯课题组金属材料中纳米孪晶对强度和塑韧性的影响,并阐明了孪晶界面的作用以及机械孪生对镁合金的影响。 关键词:强度塑韧性孪晶界面机械孪生 1.引言 近一个多世纪以来,金属材料强度水平的不断提高推动着相关工业技术的进步,也不断改善了我们的生活。轻质高强度铝合金的出现推动了飞机的诞生和发展,钢缆强度的不断提升使斜拉桥的跨度成倍增加,汽车的减重和降耗很大程度上依赖于高比强金属的发展和应用,强化金属材料是材料研究者不懈努力追求的目标,强度是材料科学与技术发展的一个重要标志,然而,在大多数情况下,伴随着强度升高,金属的塑性和韧性会下降,强度一塑性(或韧性)呈倒置关系。材料的强度愈高这种倒置就愈显突出。随着现代工业技术的发展,越来越多的构件要求材料既有高的强度又具有良好的塑性和韧性,高强度金属的低塑性和低韧性在一定程度上削弱了其工业应用的潜力,成为金属材料科学发展的瓶颈问题之一。 过去,人们对材料强度一塑(韧)性关系及强韧化规律的研究大多围绕相对简单的结构体系展开,材料的组织、相、成分等在空间上分布均匀,特征结构单元尺度单一且在微米以上。随着人们对自然界中很多天然生物材料认识的不断深入,发现具有优异综合力学性能和强韧性配合的天然生物材料往往具有比较复杂的结构要素特征,如不均匀几何形态及空间分布、多尺度、多相、非均匀成分分布、多层次藕合结构等。这些多层次多尺度的组织(或相)构筑为我们发展高强、高韧、耐损伤金属材料提供了有借鉴价值的线索。近年来对纳米结构材料研究的长足进步和各类纳米技术的迅猛发展,使人们在纳米一微米一宏观等不同尺度上对金属材料的结构设计与制备调控逐步成为可能,为金属材料强韧化研究提供了一个全新的契机。 2.孪晶促进强度和塑性的同时提高 如果两个相邻晶体(或同一晶体的两个部分)之间沿一个公共晶面形成镜面对称的位向关系,那么这两个晶体就互称为孪晶,公共晶面即为孪晶界面。一般说来,孪晶界面可以通过阻碍位错运动使材料得到一定程度的强化。但是,微米或亚微米尺度的孪晶,其强化效果并不显著,只有当孪晶片层细化至纳米量级时才开始表现出显著的强化效果和其他的特性。

纳米金属粉末在润滑油中的应用

纳米金属粉末在润滑油中的应用 将超细金属粉末(如纳米铜、纳米镍及其合金等)以适当方式加入润滑油中,可得到一种性能优异的新型润滑油。摩擦学实验表明,当铜粉的粒径大于100nm时,它是一种磨料,但当其粒径小于50nm时,可较大幅度提高润滑油的最大无卡咬负荷。复朗施纳米科技利用国际领先的技术制备的高纯度50nm金属铜粉,使纳米铜粉的这种性能使之在润滑油中具有重要的用途,国内科研机构通过对纳米铜粉的表面进行改性,克服了纳米铜粉在润滑油中的自憎现象,能均匀、稳定地分散在润滑油中并可防止纳米铜粉的二次积聚和沉淀,成功开发了纳米铜润滑油添加剂。将这种添加剂添加到汽车发动机润滑油中,可明显减小发动机的启动电流并明显增大压力。发动机使用这种添加剂一段时间后,缸套和活塞环上便形成一层保护膜,一旦润滑油系统发生故障,汽车还能安全行使一段时间。 纳米金属粉末在电子领域中的应用 随着金属粉末粒径的急剧减小,其物理性能会发生很大万方化。如金的常规熔点为1064度,当颗粒减小到10nm时,则降低27度,2nm尺寸金的熔点仅约327度;银的常规熔点为670度,而超微银颗粒的熔点可低于100度。因此用纳米粉末制成的导电浆料,可以显著降低陶瓷的烧结温度,能大大提高芯片的可靠性和成品率,降低生产成本。如超细银粉制成的导电浆料可以进行低温烧结,这种情况下元件的基片可不必采用耐高温的陶瓷材料,甚至可用塑料。纳米导电浆料可广泛应用于微电子工业中的布线、封装、连接等,对微电子器件的小型化起着重要的作用。 纳米金属粉末在磁性材料领域中的应用 纳米金属粉末广泛应用于制造纳米磁记录材料、磁性液体、纳米磁性颗粒膜材料等,如用纳米钴、纳米铁、纳米镍等磁性金属粉末制备的磁性液体,可应用于旋转密封、阻尼器件、磁性液体印刷、选矿分离、精密研磨和抛光、磁性药物、磁性液体刹车等。但这种技术对纳

微纳米粉体表面包覆技术的应用研究

微纳米粉体表面包覆技术的应用研究 当前社会发展背景下,新的科学技术不断出现,新一代纳米技术的进步,使微/纳米颗粒以其特有的宏观量子隧道效应以及小尺寸效应等众多的应用优点引起人们的高度关注。 微/纳米粉体表面有机包覆技术的应用 有机包覆技术应用过程中的自组装技术分析。自组装技术是通过静电作用使溶液中的高分子单体自由吸附于胶体 颗粒以及将带有相反电荷的高分子过饱和溶液中的高分子 自由单体进行洗涤和离心分离。一般而言,可以采用高分子电解质对可分解的球形聚合物模板进行修饰,从而使其表面中带有静电,然后将二氧化硅粒子与吸附纳米级的金粒有效吸附,然后经过离心运动多次循环往复洗涤分离,最终获得致密而且均匀的多层包覆膜。另外,还可采用两步组装技术对聚合物中的电解质进行包覆组装,将经过有效组装包覆的基体置于悬浮溶液中,悬浮液中的粒子在受到表层聚合电解质作用就会不断下沉,从而制备成完整的多层超薄膜。该技术具有操作简便的优点,而且在实际的操作中不需过多特殊的操作设备。因此这种技术可以逐渐朝着实用化以及功能化方向发展。 有机包覆技术应用过程中的聚合物包裹技术分析。聚合物包裹法主要是将单体在纳米颗粒中的聚合物经过纳米颗

粒以及聚合物的作用使其成功得到包裹,这种包裹方式与自组装包裹技术相比,具有很好的分散性,而且相对于上一种包裹技术,操作过程更加简单,有广泛的适用面,不仅可以实现在无机粒子中进行包裹,而且可以实现在有机粒子中进行包裹。通常适用于一些形状不太规则的粒子包裹过程中,但是其也具有一定的包裹局限性,例如这种包裹法会导致核粒径在高分子的聚合物母体中产生严重的团聚现象。 有机包覆技术应用过程中的微胶囊化改性技术分析。微胶囊化改性技术是指在颗粒子的表层中覆盖一层厚膜,从而使颗粒表面受到良好的屏蔽作用和保护作用。主要的应用优点是具有良好的稳定性与吸光率。 微/纳米粉体表面无机包覆技术的应用 无机包覆技术应用过程中的气相包覆技术分析。这种技术是利用气体或者其它的手段使壳层物转化为一种气体,这种气体经过化学反应或者物理反应使纳米颗粒被有效包覆。这种包覆技术所制备的复合粉体尽管纯度高、组分易于控制、团聚少,但是这种包覆技术在实际应用过程中对包覆设备的要求很高,因此不利于其广泛推行应用。 无机包覆技术应用过程中的固相包覆技术分析。与有机包覆技术相比,无机包覆技术主要是采用其它机械设备以及混料设备、研磨设备对固相材料进行机械处理从而得到微/ 纳米包覆粉体,这一包覆技术可以有效缓解包覆电离子在充

纳米金属材料的发展与应用综述

纳米金属材料的发展与应用 摘要:纳米技术的诞生将对人类社会产生深远的影响,可能许多问题的发展都与纳米材料的发展息息相关。在纳米金属材料的研究中,它的制备、特性、性能和应用是比较重要的方面。本文概要的论述了纳米材料的发现发展过程,并结合当今纳米金属材料研究领域最前沿的技术和成果,简述了纳米材料在各方面的应用及其未来的发展前景。 关键词:纳米金属材料、纳米技术、应用 一、前言 纳米级结构材料简称为纳米材料(nanomater material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。 纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。 纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。我国已努力赶上先进国家水平,研究队伍也在日渐壮大。 二、纳米材料的发现和发展 1861年,随着胶体化学的建立,科学家们开始了对直径为1~100nm的粒子体系的研究工作。1990年7月在美国召开了第一届国际纳米科技技术会议(International Conference on Nanoscience &Technology),正式宣布纳米材料科学为材料科学的一个新分支。自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。 三、纳米材料的应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十

纳米金属粉末制备方法综述

摘要纳米粉末具有特殊性质, 并在各个领域得到广泛应用。本文详细介绍了制备纳米粉末的方法, 如机械法、物理法和化学法,和这些方法的原理、技术特点、研究进展和局限性。最后提出目前仍需解决的一些问题并对纳米金属粉末新的制备方法做出展望。 关键词纳米粉末;制备方法;机械法;物理法;化学法 一.绪论 超细粉末的概念于20世纪60年代提出,粉末的粒度一般要求小0.1um( 100nm),即在1~ 100nm间,故超细粉末又称作纳米粉末。由于纳米微粒本身的结构与常规材料不同,所以具有许多新奇的特性。比如纳米金属粉末就具有不同普通材料的光、电、磁、热力学和化学反应等方面的奇异性能, 是一种重要的功能材料,具有广泛的应用前景。现已在国防、化工、轻工、航天、冶金等领域得到重要应用,因而引起了人们的注意。80年代以来, 纳米粉末作为一种新型材料,已引起了各国政府及科学家的极大重视,美国、日本、西欧等发达国家都将其列入发展高技术的计划中,投入了相当的人力和物力,例如美国的“星球大战”计划、西欧各国的“尤里卡”计划、日本 1981 年开始实施的“高技术探索研究”计划以及我国的“863”计划,都列入了纳米材料的研究和开发。目前一些纳米粉末,如钛酸钡、氮化硅、氧化锆等已经实现了商品化。我国在纳米粉末研究方面起步较晚,80年代后期才开始比较系统的研制开发。近年来取得一些成效,特别是一些大学和研究所在理论研究和实验室规模中试水平上有了较大的发展。但总的说来,我国在这一领域与世界先进水平相比, 仍有一定差距。本文将重点介绍目前已研究的纳米粉末的制备方法。 二.方法综述 2.1机械法 机械法就是借助于机械力将大块金属破碎成所需粒径粉末的一种加工方法。按照机械力的不同可将其分为机械冲击式粉碎法、气流磨粉碎法、球磨法和超声波粉碎法等。目前普遍使用的方法还是球磨法和气流磨粉碎法,其优点是工艺简单、产量大,可以制备一些常规方法难以得到的高熔点金属和合金的超细纳米粉末。 2. 1. 1球磨法 球磨法主要分为滚动球法和振动球磨法。该方法利用了金属颗粒在不同的应变速率下因产生变形而破碎细化的机理。其优点是对物料的选择性不强,可连续操作,生产效率高,适用于干磨、湿磨,可以进行多种金属及合金的粉末制备。缺点是在粉末制备过程中分级比较困难。 2. 1. 2气流磨粉碎法 气流磨粉碎法是目前制备磁性材料粉末应用最广的方法。具体的工艺过程为:压缩气体经过特殊设计的喷嘴后,被加速为超音速气流,喷射到研磨机的中心研磨区,从而带动研磨区内的物料互相碰撞,使粉末粉碎变细;气流膨胀后随物料上升进入分级区,由涡轮式分级器分选出达到粒度的物料,其余粗粉返回研磨区继续研磨, 直至达到要求的粒度被分出为止。整个生产过程可以连续自动运行,并通过分级轮转速的调节来控制粉末粒径大小(平均粒度在3~ 8 μ m)。气流磨粉碎法适于大批量工业化生产,工艺成熟。缺点是在金属粉末的生产过程中,必须使用连续不断的惰性气体或氮气作为压缩气源,耗气量较大;只适合脆性金属及合金的破碎制粉。

2017年纳米金属粉体材料行业分析报告

2017年纳米金属粉体材料行业分析报告 2017年1月

目录 一、新材料行业发展概况 (8) 1、新材料的定义 (8) 2、纳米材料市场发展情况 (9) 二、行业管理 (11) 1、行业监管体制及主管部门 (11) 2、行业主要法律法规和标准 (12) (1)主要法律法规 (12) (2)国家标准 (12) 3、行业主要产业政策 (13) 三、主要产品细分行业概况 (15) 1、片式多层陶瓷电容器(MLCC)行业 (16) 2、表面封装行业 (19) 3、晶片电阻器行业 (21) 4、3D打印行业 (21) 四、行业上下游之间的关联性 (22) 1、上游行业对本行业的影响 (22) (1)上游行业价格波动的情况 (22) (2)上游行业对本行业的影响 (24) 2、下游行业对本行业的影响 (24) (1)片式陶瓷电容器(MLCC)领域 (24) (2)太阳能电池领域 (25) (3)锡膏领域 (25) (4)3D打印金属粉 (27)

五、行业竞争格局 (27) 1、技术进入门槛高 (28) 2、低端产品产业集中度低 (29) 3、国外企业处于第一阵营 (29) 4、国内企业迅速发展 (29)

纳米镍粉是一种灰黑色的粉体状产品,对金属碳化物(如WC、TiC、TaC等)及石墨等具有良好的润湿性和很好的压制性、烧结性能,是一种重要的硬质合金和金刚石胎体粘结金属粉体材料;纳米镍粉表面活性高,表面积大,也是一种良好的催化剂;纳米镍粉还具有良好的导电性,成本低,被广泛应用于制造片式多层陶瓷电容器(MLCC)(Multi-Layered Ceramic Capacitor片式多层陶瓷电容器英文缩写)的内部电极及其他电子组件的电子浆料、镍电池、蓄电池、催化剂、磁流体以及特种涂料、吸波材料等。作为高效助燃剂,纳米镍粉还可被应用在航空航天等高端领域,将纳米镍粉添加到火箭的固体燃料推进剂中可大幅度提高燃料的燃烧热、燃烧效率,改善燃烧的稳定性。 MLCC作为纳米镍粉重要的应用产品,其是由印好电极(内电极)的陶瓷介质膜片以错位的方式叠合起来,经过一次性高温烧结形成陶瓷芯片,再在芯片的两端封上金属层(外电极)而成;电极浆料作为制造MLCC 的关键材料,其主要成分是由金属粉体、玻璃相及有机载体3个部份组成,金属粉体在浆料中含量很高,它是决定电极性能的主要因素,经高温烧结形成金属网络结构实现导电功能。因此电极浆料所用的金属粉体材料要求纯度高、粉体颗粒近球形、粒径小及分散性好等特性,而纳米镍粉能够很好的满足这一要求。

金属纳米材料的应用研究

金属纳米材料的应用与研究 【前言】著名科学家费曼于1959年所作的《在底部还有很大空间》的演讲中,以“由下而上的方法”(bottom up) 出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。”[1] 1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。1982年,科学家发明研究纳米的重要工具--扫描隧道显微镜,使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。 【摘要】纳米技术是当今世界最有前途的决定性技术。文章简要地概述了纳米技术,纳米材料的结构和特殊性质以及纳米纳米材料各方面的性能在实际中的应用,并展望了纳米材料的应用前景。 1.纳米科学和技术 1.1 纳米科技的定义 纳米科技是20世纪80年代末诞生并正在崛起的新科技,是一门在0.1~ 100 nm尺度空间内,研究电子、原子和分子运动规律和特性的高技术学科。其涵义是人类在纳米尺寸(10-9--10-7m)范围内认识和改造自然,最终目标是通过直接操纵和安排原子、分子而创造特定功能的新物质。纳米科技

是现代物理学与先进工程技术相结合的基础上诞生的,是一门基础研究与应用研究紧密联系的新兴科学技术。其中纳米材料是纳米科技的重要组成部分。 1.2 纳米科技的内容 纳米科技主要包含:纳米物理学;纳米电子学;纳米材料学;纳米机械学;纳米生物学;纳米显微学;纳米计量学;纳米制造学…… 1.3 纳米科技的内涵 第一:纳米科技不仅仅是纳米材料的问题。目前科技界普遍公认的纳米科技的定义是:在纳米尺度上研究物质的特性和相互作用以及如何利用这些特性和相互作用的具有多学科交叉性质的科学和技术。纳米科技与众多学科密切相关,它是一门体现多学科交叉性质的前沿领域。现在已不能将纳米科技划归任何一个传统学科。如果将纳米科技与传统学科相结合,可产生众多的新的学科领域,并派生出许多新名词。这些新名词所体现的研究内容又有交叉重叠。若以研究对象或工作性质来区分,纳米科技包括三个研究领域:纳米材料;纳米器件;纳米尺度的检测与表征。其中纳米材料是纳米科技的基础;纳米器件的研制水平和应用程度是人类是否进入纳米科技时代的重要标志;纳米尺度的检测与表征是纳米科技研究必不可少的手段和理论与实验的重要基础。目前人们对纳米科技的理解,似乎仅仅是讲纳米材料,只局限于纳米材料的制备,这是不全面的。主要原因:国内科研经费的资助以及有影响的成果的获得,主要集中在纳米材料领域,而且我国目前纳米科技在实际生活中的应用也最先在纳米材料这一领域表现出来。我国现在300余家从事纳米科技研发的公司也主要是从事纳米材

金属纳米粉装置设计

摘要 纳米科技是二十世纪八十年代发展起来的一门新兴交叉、前沿学科。在二十一世纪纳米科技是三大重要技术之一,属于前沿性课题之一。其中纳米粉体的制备是纳米科技的重要研究内容之一。蒸发冷凝法制备纳米粉体是一种较早的物理方法,本文用电弧法制备,也是属于蒸发冷凝法的一种。 本文首先介绍了纳米科技的基本知识及其发展状况和应用前景。然后设计了一套电弧加热法制备纳米粉体的实验装置。该装置的工作原理是在一定压力的惰性气氛或反应气氛中,将金属等材料作为电弧的电极,使其在高温电弧等离子的作用下被溶化、蒸发。蒸汽遇到周围的气体就会被冷却或发生反应形成超微粉。该系统共有加热系统、真空系统、生成室、收集室等几部分组成。首先针对纳米颗粒的生产条件设计了生成室和真空系统。然后用电弧加热制备生成纳米蒸汽。冷阱采用了不断输入液氮实现了急速冷却,使蒸汽快速成核以保证纳米尺度。最后通过采用手套箱结构的收集装置实现真空室中粉体的包装从而避免了氧化。整个系统易于加工实现,能够满足制备纳米微粒的实验需求。 关键词:纳米粉体;电弧加热;制备;冷阱

Abstract Nanotechnology is developing a newcross-cutting, cutting-edge disciplines in the eighties of the twentieth century. Nanotechnology in the twenty-first century technology is one of the three most important are the forefront of one of the topics. Preparation of nano-powder of which is an important research nanotechnology one. Prepared by evaporation condensation nanopowder is a physical method earlier in this paper was prepared by arc, but also belong to a kind of evaporation condensation method. This article introduces the basic knowledge of nanotechnology and its development and application prospects. Arc and then designed a nano-powders prepared by heating of the experimental apparatus. The working principle of the device is in a certain atmosphere of pressure of inert or reactive atmosphere, such materials as metal arc electrodes, so that at a high temperature arc plasma melting under the role of evaporation. Encountered in the surrounding gas steam will be cooled or the formation of ultrafine reaction. The system total heating system, vacuum system, to generate room, the collection consists of several rooms. First of all, for the production of nanoparticles designed to generate conditions of rooms and vacuum system. Preparation of arc and then use to generate nano-steam heating. Cold trap using liquid nitrogen to achieve a constant input of rapid cooling, so that rapid nucleation of steam to ensure that the nanometer scale. Finally, through the use of glove-box structure of the collection device to achieve a vacuum packed powder chamber to avoid oxidation. The realization of the entire system is easy to process, prepare to meet the experimental needs of nanoparticles. Key words: nano-powder; arc heating; Preparation; cold trap

纳米金属材料的制备方法

纳米硬质合金制备技术 纳米硬质合金具有很高的强度、硬度等力学性,能同时还具有普通超细合金难以获得的高导热特性(普通超细合金的导热性能随着晶粒度的减小而降低,瑞典的Sandvik公司就以硬质合金的导热性发生突变时合金晶粒度的临界值作为纳米硬质合金判据,认为晶粒度小于0.3μm的合金即可称为纳米硬质合金)。控制烧结过程中的晶粒长大是制备纳米硬质合金块体材料的关键,随着纳米(晶)硬质合金粉末制备技术的成熟,纳米(晶)硬质合金粉末的烧结研究成为材料研究领域的热点。 纳米晶粉末存在着很大的表面能和晶格畸变能,在烧结热处理中这些能量被充分释放,具体表现为晶粒迅速长大和快速致密化。在保证致密化的前提下,有效控制烧结过程中的晶粒长大成为纳米硬质合金制备技术的难点。为了抑制烧结晶粒长大,可在粉末中添加晶粒长大抑制,但添加抑制剂并不能有效地将晶粒控制在100nm以内,于是又发展了众多新的烧结方法,以期通过压力、电磁等活化作用来实现低温短时烧结,进一步控制晶粒长大。以下将对纳米硬质合金新型烧结技术进行简要介绍。 1 压力烧结 在烧结时施加压力可以加快烧结时的颗粒重排,快速实现致密化,消除孔隙,较有效控制烧结过程的晶粒长大。压力烧结主要有低压烧结、热等静压、热压、超高压烧结和爆炸烧结等。 1.1低压烧结 目前人们研究较多并且在工业中被广泛应用的是低压烧结。低压烧结将成形剂脱除、真空烧结和热等静压合并在同一设备中进行,最终烧结阶段采用氢气保护,压力一般为4~6MPa,可实现快速冷却。在低压烧结过程中,大部分收缩发生在真空烧结阶段,在加压阶段消除显微孔隙,使烧结体完全致密。其工艺主要优点为钻池几乎可以完全被消除,孔隙度显著降低,制品内部的缺陷得到有效控制合金的组织结构细小均匀。由于烧结和加压在同一设备中进行,不易造成产品的氧化和脱碳,还可通过引人碳势气体(如CH4等)来调整合金中的碳含量。 1.2热等静压

纳米金属材料的进展与挑战

纳米金属材料进展和挑战 1 引言 40多年以前,科学家们就认识到实际材料中的无序结构是不容忽视的。许多新发现的物理效应,诸如某些相转变、量子尺寸效应和有关的传输现象等,只出现在含有缺陷的有序固体中。事实上,如果多晶体中晶体区的特征尺度(晶粒或晶畴直径或薄膜厚度)达到某种特征长度时(如电子波长、平均自由程、共格长度、相关长度等),材料的性能将不仅依赖于晶格原子的交互作用,也受其维数、尺度的减小和高密度缺陷控制。有鉴于此,HGleitCr认为,如果能够合成出晶粒尺寸在纳米量级的多晶体,即主要由非共格界面构成的材料。 例如,由50%(in vol.)的非共植晶界和50%(in vol.)的晶体构成],其结构将与普通多晶体(晶粒大于lmm)或玻璃(有序度小于2nm)明显不同,称之为纳米晶体材料(nanocrystalline materials)。后来,人们又将晶体区域或其它特征长度在纳米量级范围(小于100nn)的材料广义定义为纳米材料或纳米结构材料(nanostructured materials)。由于其独特的微结构和奇异性能,纳米材料引起了科学界的极大关注,成为世界范围内的研究热点,其领域涉及物理、化学、生物、微电子等诸多学科。目前,广义的纳米材料的主要l)清洁或涂层表面的金属、半导体或聚合物薄膜;2)人造超晶格和量子讲结构;功半结晶聚合物和聚合物混和物;3)纳米晶体和纳米玻璃材料;4)金属键、共价键或分子组元构成的纳米复合材料。 经过最近十多年的研究与探索,现已在纳米材料制备方法、结构表征、物理和化学性能、实用化等方面取得显著进展,研究成果日新月异,研究范围不断拓宽。本文主要从材料科学与工程的角度,介绍与评述纳米金属材料的某些研究进展。

关于卢柯课题组纳米材料的综述

关于卢柯课题组纳米材料的综述 摘要:本文对卢柯教授所在的纳米材料研究团队的主要成员、研究方向、所获奖项及研究成果等方面进行了总结。卢柯教授所在的纳米材料研究团队的研究方向之一为金属纳米材料的制备与加工,微观结构的表征,力学性能,物理性能,热稳定性,以及相变。 关键词:卢克课题组、微观结构表征、力学性能、物理性能、热稳定性、相变1、引言 卢柯教授所在的纳米研究团队的研究方向是金属纳米材料的制备与加工,微观结构的表征,力学性能,物理性能,热稳定性,以及相变。卢柯,生于1965年5月,九三学社社员。原籍河南汲县,生于甘肃华池。研究生学历,工学博士学位,著名材料科学专家,中国科学院院士,中国科学院金属研究所原所长、研究员,上海交通大学材料科学与工程学院院长。主要从事金属纳米材料及亚稳材料等研究。获国家专利6项,国际专利1项;多次在国际会议上作特邀报告;国际《材料科学与工程评论杂志》特邀为其撰写长篇综述论文并发表了专刊。在国际重要学术刊物上发表论文150余篇;2010年在Nature上发表了一篇关于金属的未来的一篇文章;并且在science上也发表了多篇文章,2003年,《科学》上发表了卢柯等人的一项最新科研成果:将铁表层的晶粒细化到纳米尺度,其氮化温度显著降低,从而为氮化处理更多种材料和器件提供了可能。这是卢柯科研小组取得的又一个突破性进展,被评为 2003 年中国十大科技进展之一。2004年,在《科学》杂志上发表了采用纳米尺寸的生长孪晶强化金属的新途径获得了同时具有超高强度和高导电性的铜。而按照以往的经验,对铜进行强化以后,会使其导电率有所下降。这一成果的创新性在于,把难以统一在一起的性能统一在了一起。2013年又在《科学》杂志上发表了在金属中发现超硬超高稳定性新型纳米层片结构。他杰出的研究工作已经使他获得了无数的奖项。其中包括:2013年入选“万人计划”杰出人才。 2011年荣获德国洪堡研究奖(Humboldt Research Award);获国际亚稳及纳米材料年会金质奖章和青年科学家奖;第三世界科学院技术奖;国家自然科学奖三等奖;中国科学院自然科学奖一等奖、二等奖;中国科学院青年科技奖;全国劳动模范和先进工作者;何梁何利基金技术科学奖;香港求是基金会杰出青年学者奖等荣誉。身为中科院金属所所长的卢柯把他的工作描述成:我是个班长,领着团队在做事。卢柯认为,现在是中国各个领域发展

金属纳米涂层

金属材料中灰铸铁和粉末冶金材料是普遍应用的材料。灰铸铁是一种广泛使用的工程材料,其生产成本低,并且有许多优良的性能,如优良的减振性、较高的耐磨性、极好的铸造工艺性和切削加工性,所以目前是工业上应用最广泛的一类铸铁。粉末冶金是一种通用工艺,具有广阔的应用前景。汽车中的一些总成或部件,诸如发动机、变速器及底盘等都装有许多粉末冶金零件。粉末冶金还应用于农业机械、航天等领域,以及用于制造小型与大型器具、办公机械、电气仪表、草场和庭园设备、锁与小五金零件、医疗设备、越野机械、电动与手动工具、体育用品及自动记录仪器等。这两种材料由于其工艺特点,表面力学性能较差,灰铸铁在铸造过程中,由于合金凝固收缩和析出溶解在合金液内的气体,往往在铸件中形成肉眼难以发现的疏松和针孔,导致铸件在液体气体压力下产生局部渗漏,产生内部疏松、气孔等缺陷,从而使其性能受到影响。粉末冶金是用成形-烧结法制造材料与制品的技术,因而粉末冶金件内部孔隙度较大,表面性能较差。若能对这两种材料进行表面改性,对提高其寿命,改善其表面性能具有重要意义。自然界存在多种优良性能的天然生物材料,例如植物中竹、木、荷叶及动物的骨、肌腱、韧带、贝壳等。组成生物天然复合材料的原始材料(成分)从多糖到各种各样的蛋白质、无机物和矿物质,虽然这些原始材料的力学性质并不好,但是这些材料通过优良的复合与构造,形成了具有很高强度、刚度以及韧性的生物天然复合材料。天然生物材料由于长期进化的结果,形成了适应环境的优良结构和性能,其结构之精细,功能之优异,都为我们进行材料的制备和表面改性提供了天然的蓝本。天然生物材料是由无机物和有机物经过分子自组装而形成的复杂的多级结构。生物体总是从分子/生物大分子自组装形成细胞器/细胞,细胞间相互识别聚集形成组织,从组织再到器官,最后到单个的生物体,甚至生物个体生存也依赖于群体中个体通过一定的识别/自组织/协同等作用。自然界告诉我们复杂功能的实现大多经历从小到大(bottom-up)的多尺度分级有序自组织/协同过程。生物分级复合结构,由于在纳米和微米尺寸下的周期结构,使其力和稳定性能相对优于其它技术系统。除此之外,为了适应特定的环境,系统能通过变化结构的周期性去优化结构来调整它们的机械性能。分级结构是生物体最显著的特征,分级结构又包括两类,第一类为宏观结构与微观结构具有相似性的分级结构,典型的如毛发、骨骼,这种从纳米到宏观的分级结构具有典型的分形特征。第二类为层状分级材料,典型的如海洋贝类的壳体,贝壳为有机/无机的层状结构,骨骼骨密质与骨松质的梯度分布,以及竹材、木材增强纤维的梯度分布等。我们在新材料的设计和新的表面改性技术开发的时候,以天然生物材料作为我们仿生设计的蓝本。天然生物材料其结构的精巧是人工材料所无法比拟的,要想人工合成与天然生物材料结构相似的材料,就要实现在纳米尺度之上的材料的自组装,随着仿生材料科学及纳米技术的不断发展,与其它交叉学科诸如医学、化学、物理、电子等交叉融合不断深入,人类在实现纳米尺度上的自组装将会变成现实。 天然生物材料大多是复合材料,它们具有分级、有序的特征。有序性是从分子到纳米、微米和宏观层次,最终在不同层次上形成不同的分级结构。天然生物材料的梯度结构是生物分级、有序特征的一种表现形式,这种分级结构使生物材料显示出了良好的机械性能,在保持较高的强度的基础上,材料的韧性得到改善。 整体结构是一个由基部向上直径逐渐递减的圆锥形空心结构,每隔几厘米至几十厘米 有一个竹节,由节的横隔壁组成一个纵横关联的整体,宏观上呈现直径递减梯度结构。 决定材料力学性质的主要成分,纤维管束为增强相,且是长纤维增强,分布在纤维管 束之间的薄壁基本组织起着缓冲作用,增强了竹材的弹性和韧性。纤维管束在竹材表面分布密集,而到竹材里层则渐渐稀疏,竹材纤维管束的梯度分布使竹材表面具有良好的耐磨性,

纳米材料在金属上的应用

纳米材料在金属上的应用 当今世界,高新技术产业在经济发展中的作用日益突出。我国将高新技术产业作为经济发展的重点,从各方面给予了扶持。如何界定与高技术产业相关的各类概念,客观反映我国高技术产业的发展状况,已成为统计部门面临的重要课题之一。而随着我国科技的进步,纳米材料作为新兴的高科技技术,在中国也渐渐发展起来了。它在各个领域都起着越来越重要的作用了。也让我们得到了许多好的材料。我所讲的是关于它在我所学的专业的应用。当纳米材料应用在金属上时,金属能得到很多我们得不到的优点。 中国墨是由烟炱这种超细微粒作为重要原料,再加上黏结剂和添加剂按适当比例制成的。虽然还算不上现代所说的纯纳米材料,但的确开创了纳米材料的先河。现代的纳米材料是近一二十年才发展起来的。它的起源来自一个科学家在国外旅游中产生的联想。 生产工艺 从此,由德国到美国,一大批科学家都着了迷似地研究起纳米材料来。比如,美国著名的阿贡国家实验室用纳米大小的超细粉末制成的金属材料,其硬度要比普通粗晶粒金属的硬度高2~4倍。在低温下,纳米金属竟然由导电体变成了绝缘体。一般的陶瓷很脆,但如果用只有纳米大小的陶土粉末烧结成陶瓷制品,却有良好的韧性。更有趣的是,纳米材料的熔点会随超细粉末的直径的减小而大大降低。例如,金的熔点本是1064℃,但制成10纳米左右的金粉末后,熔点降到940℃;而5纳米的金粉末熔点降至830℃;2纳米的金粉末熔点只有33℃,你说神不神?这一特点对人们大有用处。例如,许多高熔点陶瓷材料很难用一般的方法生产出用于发动机的零件,但只要事先制成纳米大小的陶土粉末,就可以在较低的温度下烧结成高温发动机的耐热零件。1纳米只有1米的1/109,人们要问,像纳米那么微小的粉末是怎样制造出来的呢?德国的材料科学家在90年代初发明了一种生产金属超细粉末的方法。即在一个封闭室内放进金属,然后充满惰性气体氦,再将金属加热变成蒸气,于是金属原子在氦气中冷却成金属烟雾,并使金属烟雾粘附在一个冷却棒上,再把棒上像碳黑一样的纳米大小的粉末刮到一个容器内。如果要用这些粉末做成零件,就可以将它们模压成零件形状,通过一道烧结工序,即可制成纳米材料零件。 应用领域 纳米材料的用处多得很。如高密度磁性记录带就是用纳米大的粉末制成的;有些新药物制成纳米颗粒,可以注射到血管内顺利进入微血管;纳米大的催化剂分散在汽油中可提高内燃机的效率,把纳米大的铅粉末加入到固体燃料中,可使固体火箭的速度增加,这是因为越细的粉末,表面积越大,能使表面活性增强,加大了燃烧的力度。总之,纳米材料前途无量,

ZnO纳米粉体制备与表征解析

ZnO纳米粉体制备与表征 一实验目的 1.了解氧化锌的结构及应用 2.掌握“共沉淀和成核/生长隔离、水热法和微波水热、溶胶-凝胶法、反相微乳液”技术制备纳米材料的的方法与原理。 3.了解同步热分析仪、X-射线衍射仪、扫描电子显微镜(SEM)与比表面测定仪等表征手段和原理 二基本原理 2.1 氧化锌的结构 氧化锌(ZnO)晶体是纤锌矿结构,属六方晶系,为极性晶体。氧化锌晶体结构中,Zn原子按六方紧密堆积排列,每个Zn原子周围有4个氧原子,构成Zn-O4配位四面体 结构,四面体的面与正极面C(00001)平行,四面体的顶角正对向负极面(0001),晶格常 数a=342pm, c=519pm,密度为5.6g/cm3,熔点为2070K,室温下的禁带宽度为3.37eV. 如 图1-1、图1-2所示: 图1-1 ZnO晶体结构在C (00001)面的投影 图1-2 ZnO纤锌矿晶格图

2.2 氧化锌的性能和应用 纳米氧化锌(ZnO)粒径介于1- 100nm 之间, 由于粒子尺寸小, 比表面积大, 因而, 纳米ZnO 表现出许多特殊的性质如无毒、非迁移性、荧光性、压电性、能吸收和散射紫外线能力等, 利用其在光、电、磁、敏感等方面的奇妙性能可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、杀菌、图象记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。同时氧化锌材料还被广泛地应用于化工、信息、纺织、医药行业。纳米氧化锌的制备是所有研究的基础。合成纳米氧化锌的方法很多, 一般可分为固相法、气相法和液相法。本实验采用共沉淀和成核/生长隔离技术制备纳米氧化锌粉。 2.3 氧化锌纳米材料的制备原理 不同方法制备的ZnO晶形不同,如: 2.3.1 共沉淀和成核/生长隔离法 借助沉淀剂使目标离子从溶液中定量析出是材料制备领域液相法的重要技术。常规共沉淀制备是将盐溶液与碱溶液直接混合并通过搅拌的方式实现,由于混合不充分,反应界面小、存在浓度梯度、反应速度和扩散速度慢,先沉淀的粒子上形成新沉淀粒子,新旧粒子的同时存在,导致粒子尺寸分布极不均匀。使合成材料的粒子尺寸和均分散性能受到很大影响,其晶体的尺寸也很难达到纳米量级,极大限制了此类材料的应用;成核/生长隔离制备采用强

碳包覆纳米金属材料的合成及应用进展

2006.No.9 前分析,随矿渣取代熟料量的增加,浆体中自由水量呈增大趋势,因而浆体的泌水量也就随之增大,如图 1所示;当矿渣比表面积增大时,自由水量将减小,从 而导致泌水量也减小,与图2结果相符。 众所周知,矿渣水泥存在的一个缺点就是泌水量大,尤其当矿渣掺量较高时,过大的泌水性将严重影响材料的性能,如表面起砂等。根据本文的分析,这种现象的产生可能就是由于矿渣的颗粒形貌所导致的。当矿渣颗粒比表面积不够大时,矿渣颗粒呈棒状,棒状的颗粒容易相互搭接,使浆体中粒子的团聚程度增大,由于部分自由水被封闭,为达到要求的流动度,要求的成型水量就增加了。自由水量的增加,导致了较大的泌水量。在矿渣掺量一定的条件下,如果增大矿渣的比表面积,随矿渣颗粒圆度系数的提高,由于浆体中粒子之间团聚程度减小,被封闭的自由水量减少,成型需水量就减少,浆体中自由水量减少,浆体的泌水性将得到有效改善。 试验中发现,浆体终止泌水的时间随水泥中矿渣取代熟料量的增加而延长,而在相同取代量的条件下,浆体终止泌水的时间随矿渣细度的增大而缩短。 水泥浆体的泌水一直要持续到水泥浆体达到足够的硬度得以阻止固体颗粒在重力作用下的沉降才 终止。随水泥水化作用的进行,水化产物不断填充于粒子间的空隙中。水化产物的生成,使浆体中化学结合水量和吸附水量都增加,而自由水量相应减少,能泌出的水量则减少。此外,随着浆体中大量不易沉降的微小的水化产物粒子将易沉降的未水化水泥颗粒连接成巨大而又疏松的凝聚结构网络,抵御水泥颗粒沉降的能力也在增大。基于这两方面的原因,水泥水化速度越快,浆体终止泌水的时间则越早。随水泥中矿渣取代熟料量的增加,水泥的水化速度减慢,自由水量减少的速度及凝聚结构网络形成速度都减慢,浆体终止泌水的时间就延长,而矿渣细度增大使水化速度加快,则使浆体终止泌水的时间缩短。 5结论 在本试验条件下,掺入相同比表面积的矿渣时, 随矿渣掺加量的增多,水泥浆体的流动度减小,泌水量增大;随矿渣比表面积的增大,水泥浆体的流动度增大,而泌水量减小。这种现象的产生与矿渣的颗粒形貌有关,粉磨时间相同的条件下,矿渣颗粒的圆度系数比熟料小得多,但随粉磨时间的延长,矿渣颗粒的圆度系数增大。矿渣的颗粒形貌影响新拌水泥浆体的微观结构,从而导致了浆体工艺性能的变化。 (编辑 蔡成军) 1问题的提出 产品为用户服务,这是商品经济的铁律。但“服 务”并不是简单的“你要什么我卖什么”,而是要为用户的根本利益着想。用户对产品的需要是随着客观世界的发展和自身的认识而变化的。但是认识往往滞后于实践。对于用户个体或个别群体的人来说,由于认识水平的差异,未必都了解其自身的实际需要,产品生产者常会受到用户无意间的误导。作为两个独立生产和经营的行业,水泥和混凝土也存在这样的问题。 由于生产工艺的限制,硅酸盐水泥和混凝土在问世后的早期,相对于工程建设发展的需要,强度问题突出。众所周知,Bolomy灰水比定则近100年来一直 指导着传统混凝土配合比的设计。Bolomy公式明确表明,混凝土28d抗压强度与水泥强度成正比,与水灰比倒数成正比。于是给水泥生产者的信息就是“需要提高水泥强度”。20世纪20年代,欧美国家水泥中 C3S约为35%,如今达50%~70%;水泥细度从220m2/kg到现今的340~600m2/kg[1];图1是美国从1920 年到1990年70年间水泥7d抗压强度提高的情况[2]。 我国水泥在30年前最高强度(GB175—63)相当于20世纪末的425号(GB175—92),相当于目前的32.5级;相同水泥的标称强度下降了,实际强度是相当的;标称强度相同的水泥,如果用30年前的水灰比检测,则现在我国水泥28d抗压强度提高了约20MPa。水泥 现代混凝土需要什么样的水泥 廉慧珍1,韩素芳2 (1.清华大学土木水利学院,北京 100084;2.中国建筑科学研究院,北京100013) 中图分类号:TQ172.1 文献标识码:B 文章编号:1002-9877(2006)09-0013-06 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 13-- 水泥 CEMENT

相关文档
最新文档