纳米金属粉用于固体推进剂的研究进展

纳米金属粉用于固体推进剂的研究进展
纳米金属粉用于固体推进剂的研究进展

纳米金属用途简介

纳米金属用途简介 钴(Co) 高密度磁记录材料:利用纳米钴粉记录密度高、矫顽力高(可达119.4KA/m)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。 磁流体:用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等。吸波材料:金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材 料、可见光--红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。 铜(Cu) 金属和非金属的表面导电涂层处理:纳米铝、铜、镍粉体有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。此技术可应用于微电子器件的生产。 高效催化剂:铜及其合金纳米粉体用作催化剂,效率高、选择性强,可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。 导电浆料:用纳米铜粉替代贵金属粉末制备性能优越的电子浆料,可大大降低成本。此技术可促进微电子工艺的进一步优化。

铁 (Fe) 高性能磁记录材料:利用纳米铁粉的矫顽力高、饱和磁化强度大(可达1477km2/kg)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。 磁流体:用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等领域。 吸波材料:金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材料、可见光--红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。 导磁浆料:利用纳米铁粉的高饱和磁化强度和高磁导率的特性,可制成导磁浆料,用于精细磁头的粘结结构等。 纳米导向剂:一些纳米颗粒具有磁性,以其为载体制成导向剂,可使药物在外磁场的作用下聚集于体内的局部,从而对病理位置进行高浓度的药物治疗,特别适于癌症、结核等有固定病灶的疾病。 镍(Ni) 磁流体:用铁、钴、镍及其合金粉末生产的磁流体性能优异,广泛应用于密封减震、医疗器械、声音调节、光显示等。 高效催化剂:由于比表面巨大和高活性,纳米镍粉具有极强的催化效果,可用于有机物氢化反应、汽车尾气处理等。

纳米粉体材料

纳米粉体材料 简介 纳米材料分为纳米粉体材料、纳米固体材料、纳米组装体系三类。纳米粉体材料是纳米材料中最基本的一类。纳米固体是由分体材料聚集,组合而成。而纳米组装体系则是纳米粉体材料的变形。 纳米粉体也叫纳米颗粒,一般指尺寸在1-100nm之间的超细粒子,有人称它是超微粒子。它的尺度大于原子簇而又小于一般的微粒。按照它的尺寸计算,假设每个原子尺寸为1埃,那么它所含原子数在1000个-10亿个之间。它小于一般生物细胞,和病毒的尺寸相当。 细微颗粒一般不具有量子效应,而纳米颗粒具有量子效应;一般原子团簇具有量子效应和幻数效应,而纳米颗粒不具有幻数效应。 纳米颗粒的形态有球形、板状、棒状、角状、海绵状等,制成纳米颗粒的成分可以是金属,可以是氧化物,还可以是其他各种化合物。 纳米粉体材料的基本性质 它的性质与以下几个效应有很大的关系: (1).小尺寸效应 随着颗粒的量变,当纳米颗粒的尺寸与光波、传导电子德布罗意波长以及超导态的相干长度或透射深度等物理尺寸特征相当或更小时,周期边界性条件将被破坏,声、光、电、磁、热、力等特性均会出现质变。由于颗粒尺寸变小所引起的宏观物理性质的变化成为小尺寸效应。 (2).表面与界面效应 纳米微粒尺寸小、表面大、位于表面的原子占相当大的比例。由于纳米粒径的减小,最终会引起表面原子活性增大,从而不但引起纳米粒子表面原子输送和构型的变化,同时也引起表面电子自旋构象和电子能谱的变化。以上的这些性质被称为“表面与界面效应”。 (3)量子尺寸效应 当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变成离散能级的现象成为量子尺寸效应。 具体从各方面说来有以下特性: (1)热学特性

纳米金属粉末在润滑油中的应用

纳米金属粉末在润滑油中的应用 将超细金属粉末(如纳米铜、纳米镍及其合金等)以适当方式加入润滑油中,可得到一种性能优异的新型润滑油。摩擦学实验表明,当铜粉的粒径大于100nm时,它是一种磨料,但当其粒径小于50nm时,可较大幅度提高润滑油的最大无卡咬负荷。复朗施纳米科技利用国际领先的技术制备的高纯度50nm金属铜粉,使纳米铜粉的这种性能使之在润滑油中具有重要的用途,国内科研机构通过对纳米铜粉的表面进行改性,克服了纳米铜粉在润滑油中的自憎现象,能均匀、稳定地分散在润滑油中并可防止纳米铜粉的二次积聚和沉淀,成功开发了纳米铜润滑油添加剂。将这种添加剂添加到汽车发动机润滑油中,可明显减小发动机的启动电流并明显增大压力。发动机使用这种添加剂一段时间后,缸套和活塞环上便形成一层保护膜,一旦润滑油系统发生故障,汽车还能安全行使一段时间。 纳米金属粉末在电子领域中的应用 随着金属粉末粒径的急剧减小,其物理性能会发生很大万方化。如金的常规熔点为1064度,当颗粒减小到10nm时,则降低27度,2nm尺寸金的熔点仅约327度;银的常规熔点为670度,而超微银颗粒的熔点可低于100度。因此用纳米粉末制成的导电浆料,可以显著降低陶瓷的烧结温度,能大大提高芯片的可靠性和成品率,降低生产成本。如超细银粉制成的导电浆料可以进行低温烧结,这种情况下元件的基片可不必采用耐高温的陶瓷材料,甚至可用塑料。纳米导电浆料可广泛应用于微电子工业中的布线、封装、连接等,对微电子器件的小型化起着重要的作用。 纳米金属粉末在磁性材料领域中的应用 纳米金属粉末广泛应用于制造纳米磁记录材料、磁性液体、纳米磁性颗粒膜材料等,如用纳米钴、纳米铁、纳米镍等磁性金属粉末制备的磁性液体,可应用于旋转密封、阻尼器件、磁性液体印刷、选矿分离、精密研磨和抛光、磁性药物、磁性液体刹车等。但这种技术对纳

金属纳米材料研究进展

金属纳米材料研究进展 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

高等物理化学 学生姓名:聂荣健 学号:…………….. 学院:化工学院 专业:应用化学 指导教师:…………. 金属氧化物纳米材料研究进展 应用化学专业聂荣健学号:……指导老师:…… 摘要:综述了近年来金属氧化物纳米材料水热合成方法的研究进展,简要阐述了金属氧化物纳米材料的应用,对其今后的研究发展方向进行了展望。 关键词:纳米材料水热合成金属氧化物 Research progress of metal oxide nanomaterials Name Rongjian Nie Abstract: This article reviews the recent progress in hydrothermal synthesis of metal oxide nanomaterials. The application progress of metal oxide nanomaterials is briefly describrd.The future research directions are prospected. Keywords: nanomaterials; hydrothermal; metal oxides ; 引言 纳米材料是纳米科学中的一个重要的研究发展方向,近年来已在许多科学领域引起了广泛的重视,成为材料科学研究的热点。作为纳米材料的一个方面,金属氧化物纳米材料在现代工业、国防和高技术发展中充当着重要的角色。 1.纳米材料简介 纳米材料概述

纳米金属材料的发展与应用综述

纳米金属材料的发展与应用 摘要:纳米技术的诞生将对人类社会产生深远的影响,可能许多问题的发展都与纳米材料的发展息息相关。在纳米金属材料的研究中,它的制备、特性、性能和应用是比较重要的方面。本文概要的论述了纳米材料的发现发展过程,并结合当今纳米金属材料研究领域最前沿的技术和成果,简述了纳米材料在各方面的应用及其未来的发展前景。 关键词:纳米金属材料、纳米技术、应用 一、前言 纳米级结构材料简称为纳米材料(nanomater material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。 纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。 纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。我国已努力赶上先进国家水平,研究队伍也在日渐壮大。 二、纳米材料的发现和发展 1861年,随着胶体化学的建立,科学家们开始了对直径为1~100nm的粒子体系的研究工作。1990年7月在美国召开了第一届国际纳米科技技术会议(International Conference on Nanoscience &Technology),正式宣布纳米材料科学为材料科学的一个新分支。自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。 三、纳米材料的应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十

纳米金属粉末制备方法综述

摘要纳米粉末具有特殊性质, 并在各个领域得到广泛应用。本文详细介绍了制备纳米粉末的方法, 如机械法、物理法和化学法,和这些方法的原理、技术特点、研究进展和局限性。最后提出目前仍需解决的一些问题并对纳米金属粉末新的制备方法做出展望。 关键词纳米粉末;制备方法;机械法;物理法;化学法 一.绪论 超细粉末的概念于20世纪60年代提出,粉末的粒度一般要求小0.1um( 100nm),即在1~ 100nm间,故超细粉末又称作纳米粉末。由于纳米微粒本身的结构与常规材料不同,所以具有许多新奇的特性。比如纳米金属粉末就具有不同普通材料的光、电、磁、热力学和化学反应等方面的奇异性能, 是一种重要的功能材料,具有广泛的应用前景。现已在国防、化工、轻工、航天、冶金等领域得到重要应用,因而引起了人们的注意。80年代以来, 纳米粉末作为一种新型材料,已引起了各国政府及科学家的极大重视,美国、日本、西欧等发达国家都将其列入发展高技术的计划中,投入了相当的人力和物力,例如美国的“星球大战”计划、西欧各国的“尤里卡”计划、日本 1981 年开始实施的“高技术探索研究”计划以及我国的“863”计划,都列入了纳米材料的研究和开发。目前一些纳米粉末,如钛酸钡、氮化硅、氧化锆等已经实现了商品化。我国在纳米粉末研究方面起步较晚,80年代后期才开始比较系统的研制开发。近年来取得一些成效,特别是一些大学和研究所在理论研究和实验室规模中试水平上有了较大的发展。但总的说来,我国在这一领域与世界先进水平相比, 仍有一定差距。本文将重点介绍目前已研究的纳米粉末的制备方法。 二.方法综述 2.1机械法 机械法就是借助于机械力将大块金属破碎成所需粒径粉末的一种加工方法。按照机械力的不同可将其分为机械冲击式粉碎法、气流磨粉碎法、球磨法和超声波粉碎法等。目前普遍使用的方法还是球磨法和气流磨粉碎法,其优点是工艺简单、产量大,可以制备一些常规方法难以得到的高熔点金属和合金的超细纳米粉末。 2. 1. 1球磨法 球磨法主要分为滚动球法和振动球磨法。该方法利用了金属颗粒在不同的应变速率下因产生变形而破碎细化的机理。其优点是对物料的选择性不强,可连续操作,生产效率高,适用于干磨、湿磨,可以进行多种金属及合金的粉末制备。缺点是在粉末制备过程中分级比较困难。 2. 1. 2气流磨粉碎法 气流磨粉碎法是目前制备磁性材料粉末应用最广的方法。具体的工艺过程为:压缩气体经过特殊设计的喷嘴后,被加速为超音速气流,喷射到研磨机的中心研磨区,从而带动研磨区内的物料互相碰撞,使粉末粉碎变细;气流膨胀后随物料上升进入分级区,由涡轮式分级器分选出达到粒度的物料,其余粗粉返回研磨区继续研磨, 直至达到要求的粒度被分出为止。整个生产过程可以连续自动运行,并通过分级轮转速的调节来控制粉末粒径大小(平均粒度在3~ 8 μ m)。气流磨粉碎法适于大批量工业化生产,工艺成熟。缺点是在金属粉末的生产过程中,必须使用连续不断的惰性气体或氮气作为压缩气源,耗气量较大;只适合脆性金属及合金的破碎制粉。

纳米粉体材料行业分析报告行业基本情况

报告概要 行业评级:纳米粉体新材料行业推荐 行业内重点公司推荐:广东羚光 行业分析师:袁熠 执业证编号:S123011470019 电话:(021)64318677 Email:YuanYi@https://www.360docs.net/doc/f32842845.html, 纳米粉体材料行业分析报告 一、行业基本情况 1、行业主管部门及监管体制 公司属于金属制品制造业,行业主管部门是国家发展与改革委员会、工业和信息化部及其各地分支机构,主要负责产业政策的制定并监督、检查其执行情况;研究制定行业发展规划,指导行业结构调整、行业体制改革、技术进步和技术改造等工作。 中国微米纳米技术学会(CHINESE SOCIETY OF MICRO-NANO TECH-NOLOGY,英文缩写为 CSMNT)是全国范围纳米行业的自律性管理组织,其主要筹办各种学术活动,包括组织各种学术会、展览会、战略研讨会、国际交流等等,为我国微米纳米技术的计划与规划、关键技术联合攻关、技术交流、人才培养、科学普及发挥重要作用,为国内外各界微米纳米技术研究人员和单位的交流、科研成果的转化和产业化提供交流平台。 江苏省新材料产业协会是江苏省内的新材料行业自律性组织,协会由全省新材料产业领域的企事业单位、大专院校、科研机构以及其他相关经济组织自愿组成,是实行行业服务和自律管理的全省性、行业性、非盈利性的社会组织。主要开展新材料产业全面调查,研究发展趋势,参与制定新材料产业规划和产品技术、质量行业标准,构建综合服务平台,促进产业体制和技术创新,促进新材料企业

持续发展,为江苏省新材料产业发展提供助力。 目前,国家发展与改革委员会、工业和信息化部对行业的管理仅限于宏观管理、政策性引导,行业协会进行指导性管理,公司自主从事业务发展、内部管理和生产经营。纳米材料行业市场化程度较高,主要表现在市场主体和交易方式上,政策壁垒已经完全消除,企业可以自由进入,产品价格由市场供求关系决定,国家不干预企业产品定价,行业运作已经充分市场化。 2、行业主管法律法规 (1)主要法律法规 行业相关法规: (2)国家标准 国家质检总局与国家标准委联合发布的与纳米材料有关的国家标准,主要有: 3、行业主要产业政策 公司处于前沿技术细分行业,公司产品主要运用于片式元件(电容器、电感器和电阻器)、新能源等领域,公司产品的应用领域符合国家的产业政策,属于国家鼓励发展行业,影响本行业发展的法律法规及政策主要有: 2016年6月江苏省政府发布的《江苏省国民经济和社会发展“十三五”规划

2017年纳米金属粉体材料行业分析报告

2017年纳米金属粉体材料行业分析报告 2017年1月

目录 一、新材料行业发展概况 (8) 1、新材料的定义 (8) 2、纳米材料市场发展情况 (9) 二、行业管理 (11) 1、行业监管体制及主管部门 (11) 2、行业主要法律法规和标准 (12) (1)主要法律法规 (12) (2)国家标准 (12) 3、行业主要产业政策 (13) 三、主要产品细分行业概况 (15) 1、片式多层陶瓷电容器(MLCC)行业 (16) 2、表面封装行业 (19) 3、晶片电阻器行业 (21) 4、3D打印行业 (21) 四、行业上下游之间的关联性 (22) 1、上游行业对本行业的影响 (22) (1)上游行业价格波动的情况 (22) (2)上游行业对本行业的影响 (24) 2、下游行业对本行业的影响 (24) (1)片式陶瓷电容器(MLCC)领域 (24) (2)太阳能电池领域 (25) (3)锡膏领域 (25) (4)3D打印金属粉 (27)

五、行业竞争格局 (27) 1、技术进入门槛高 (28) 2、低端产品产业集中度低 (29) 3、国外企业处于第一阵营 (29) 4、国内企业迅速发展 (29)

纳米镍粉是一种灰黑色的粉体状产品,对金属碳化物(如WC、TiC、TaC等)及石墨等具有良好的润湿性和很好的压制性、烧结性能,是一种重要的硬质合金和金刚石胎体粘结金属粉体材料;纳米镍粉表面活性高,表面积大,也是一种良好的催化剂;纳米镍粉还具有良好的导电性,成本低,被广泛应用于制造片式多层陶瓷电容器(MLCC)(Multi-Layered Ceramic Capacitor片式多层陶瓷电容器英文缩写)的内部电极及其他电子组件的电子浆料、镍电池、蓄电池、催化剂、磁流体以及特种涂料、吸波材料等。作为高效助燃剂,纳米镍粉还可被应用在航空航天等高端领域,将纳米镍粉添加到火箭的固体燃料推进剂中可大幅度提高燃料的燃烧热、燃烧效率,改善燃烧的稳定性。 MLCC作为纳米镍粉重要的应用产品,其是由印好电极(内电极)的陶瓷介质膜片以错位的方式叠合起来,经过一次性高温烧结形成陶瓷芯片,再在芯片的两端封上金属层(外电极)而成;电极浆料作为制造MLCC 的关键材料,其主要成分是由金属粉体、玻璃相及有机载体3个部份组成,金属粉体在浆料中含量很高,它是决定电极性能的主要因素,经高温烧结形成金属网络结构实现导电功能。因此电极浆料所用的金属粉体材料要求纯度高、粉体颗粒近球形、粒径小及分散性好等特性,而纳米镍粉能够很好的满足这一要求。

金属纳米材料的应用研究

金属纳米材料的应用与研究 【前言】著名科学家费曼于1959年所作的《在底部还有很大空间》的演讲中,以“由下而上的方法”(bottom up) 出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。”[1] 1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。1982年,科学家发明研究纳米的重要工具--扫描隧道显微镜,使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。 【摘要】纳米技术是当今世界最有前途的决定性技术。文章简要地概述了纳米技术,纳米材料的结构和特殊性质以及纳米纳米材料各方面的性能在实际中的应用,并展望了纳米材料的应用前景。 1.纳米科学和技术 1.1 纳米科技的定义 纳米科技是20世纪80年代末诞生并正在崛起的新科技,是一门在0.1~ 100 nm尺度空间内,研究电子、原子和分子运动规律和特性的高技术学科。其涵义是人类在纳米尺寸(10-9--10-7m)范围内认识和改造自然,最终目标是通过直接操纵和安排原子、分子而创造特定功能的新物质。纳米科技

是现代物理学与先进工程技术相结合的基础上诞生的,是一门基础研究与应用研究紧密联系的新兴科学技术。其中纳米材料是纳米科技的重要组成部分。 1.2 纳米科技的内容 纳米科技主要包含:纳米物理学;纳米电子学;纳米材料学;纳米机械学;纳米生物学;纳米显微学;纳米计量学;纳米制造学…… 1.3 纳米科技的内涵 第一:纳米科技不仅仅是纳米材料的问题。目前科技界普遍公认的纳米科技的定义是:在纳米尺度上研究物质的特性和相互作用以及如何利用这些特性和相互作用的具有多学科交叉性质的科学和技术。纳米科技与众多学科密切相关,它是一门体现多学科交叉性质的前沿领域。现在已不能将纳米科技划归任何一个传统学科。如果将纳米科技与传统学科相结合,可产生众多的新的学科领域,并派生出许多新名词。这些新名词所体现的研究内容又有交叉重叠。若以研究对象或工作性质来区分,纳米科技包括三个研究领域:纳米材料;纳米器件;纳米尺度的检测与表征。其中纳米材料是纳米科技的基础;纳米器件的研制水平和应用程度是人类是否进入纳米科技时代的重要标志;纳米尺度的检测与表征是纳米科技研究必不可少的手段和理论与实验的重要基础。目前人们对纳米科技的理解,似乎仅仅是讲纳米材料,只局限于纳米材料的制备,这是不全面的。主要原因:国内科研经费的资助以及有影响的成果的获得,主要集中在纳米材料领域,而且我国目前纳米科技在实际生活中的应用也最先在纳米材料这一领域表现出来。我国现在300余家从事纳米科技研发的公司也主要是从事纳米材

金属纳米粉装置设计

摘要 纳米科技是二十世纪八十年代发展起来的一门新兴交叉、前沿学科。在二十一世纪纳米科技是三大重要技术之一,属于前沿性课题之一。其中纳米粉体的制备是纳米科技的重要研究内容之一。蒸发冷凝法制备纳米粉体是一种较早的物理方法,本文用电弧法制备,也是属于蒸发冷凝法的一种。 本文首先介绍了纳米科技的基本知识及其发展状况和应用前景。然后设计了一套电弧加热法制备纳米粉体的实验装置。该装置的工作原理是在一定压力的惰性气氛或反应气氛中,将金属等材料作为电弧的电极,使其在高温电弧等离子的作用下被溶化、蒸发。蒸汽遇到周围的气体就会被冷却或发生反应形成超微粉。该系统共有加热系统、真空系统、生成室、收集室等几部分组成。首先针对纳米颗粒的生产条件设计了生成室和真空系统。然后用电弧加热制备生成纳米蒸汽。冷阱采用了不断输入液氮实现了急速冷却,使蒸汽快速成核以保证纳米尺度。最后通过采用手套箱结构的收集装置实现真空室中粉体的包装从而避免了氧化。整个系统易于加工实现,能够满足制备纳米微粒的实验需求。 关键词:纳米粉体;电弧加热;制备;冷阱

Abstract Nanotechnology is developing a newcross-cutting, cutting-edge disciplines in the eighties of the twentieth century. Nanotechnology in the twenty-first century technology is one of the three most important are the forefront of one of the topics. Preparation of nano-powder of which is an important research nanotechnology one. Prepared by evaporation condensation nanopowder is a physical method earlier in this paper was prepared by arc, but also belong to a kind of evaporation condensation method. This article introduces the basic knowledge of nanotechnology and its development and application prospects. Arc and then designed a nano-powders prepared by heating of the experimental apparatus. The working principle of the device is in a certain atmosphere of pressure of inert or reactive atmosphere, such materials as metal arc electrodes, so that at a high temperature arc plasma melting under the role of evaporation. Encountered in the surrounding gas steam will be cooled or the formation of ultrafine reaction. The system total heating system, vacuum system, to generate room, the collection consists of several rooms. First of all, for the production of nanoparticles designed to generate conditions of rooms and vacuum system. Preparation of arc and then use to generate nano-steam heating. Cold trap using liquid nitrogen to achieve a constant input of rapid cooling, so that rapid nucleation of steam to ensure that the nanometer scale. Finally, through the use of glove-box structure of the collection device to achieve a vacuum packed powder chamber to avoid oxidation. The realization of the entire system is easy to process, prepare to meet the experimental needs of nanoparticles. Key words: nano-powder; arc heating; Preparation; cold trap

ZnO纳米粉体制备与表征解析

ZnO纳米粉体制备与表征 一实验目的 1.了解氧化锌的结构及应用 2.掌握“共沉淀和成核/生长隔离、水热法和微波水热、溶胶-凝胶法、反相微乳液”技术制备纳米材料的的方法与原理。 3.了解同步热分析仪、X-射线衍射仪、扫描电子显微镜(SEM)与比表面测定仪等表征手段和原理 二基本原理 2.1 氧化锌的结构 氧化锌(ZnO)晶体是纤锌矿结构,属六方晶系,为极性晶体。氧化锌晶体结构中,Zn原子按六方紧密堆积排列,每个Zn原子周围有4个氧原子,构成Zn-O4配位四面体 结构,四面体的面与正极面C(00001)平行,四面体的顶角正对向负极面(0001),晶格常 数a=342pm, c=519pm,密度为5.6g/cm3,熔点为2070K,室温下的禁带宽度为3.37eV. 如 图1-1、图1-2所示: 图1-1 ZnO晶体结构在C (00001)面的投影 图1-2 ZnO纤锌矿晶格图

2.2 氧化锌的性能和应用 纳米氧化锌(ZnO)粒径介于1- 100nm 之间, 由于粒子尺寸小, 比表面积大, 因而, 纳米ZnO 表现出许多特殊的性质如无毒、非迁移性、荧光性、压电性、能吸收和散射紫外线能力等, 利用其在光、电、磁、敏感等方面的奇妙性能可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、杀菌、图象记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。同时氧化锌材料还被广泛地应用于化工、信息、纺织、医药行业。纳米氧化锌的制备是所有研究的基础。合成纳米氧化锌的方法很多, 一般可分为固相法、气相法和液相法。本实验采用共沉淀和成核/生长隔离技术制备纳米氧化锌粉。 2.3 氧化锌纳米材料的制备原理 不同方法制备的ZnO晶形不同,如: 2.3.1 共沉淀和成核/生长隔离法 借助沉淀剂使目标离子从溶液中定量析出是材料制备领域液相法的重要技术。常规共沉淀制备是将盐溶液与碱溶液直接混合并通过搅拌的方式实现,由于混合不充分,反应界面小、存在浓度梯度、反应速度和扩散速度慢,先沉淀的粒子上形成新沉淀粒子,新旧粒子的同时存在,导致粒子尺寸分布极不均匀。使合成材料的粒子尺寸和均分散性能受到很大影响,其晶体的尺寸也很难达到纳米量级,极大限制了此类材料的应用;成核/生长隔离制备采用强

纳米材料在金属上的应用

纳米材料在金属上的应用 当今世界,高新技术产业在经济发展中的作用日益突出。我国将高新技术产业作为经济发展的重点,从各方面给予了扶持。如何界定与高技术产业相关的各类概念,客观反映我国高技术产业的发展状况,已成为统计部门面临的重要课题之一。而随着我国科技的进步,纳米材料作为新兴的高科技技术,在中国也渐渐发展起来了。它在各个领域都起着越来越重要的作用了。也让我们得到了许多好的材料。我所讲的是关于它在我所学的专业的应用。当纳米材料应用在金属上时,金属能得到很多我们得不到的优点。 中国墨是由烟炱这种超细微粒作为重要原料,再加上黏结剂和添加剂按适当比例制成的。虽然还算不上现代所说的纯纳米材料,但的确开创了纳米材料的先河。现代的纳米材料是近一二十年才发展起来的。它的起源来自一个科学家在国外旅游中产生的联想。 生产工艺 从此,由德国到美国,一大批科学家都着了迷似地研究起纳米材料来。比如,美国著名的阿贡国家实验室用纳米大小的超细粉末制成的金属材料,其硬度要比普通粗晶粒金属的硬度高2~4倍。在低温下,纳米金属竟然由导电体变成了绝缘体。一般的陶瓷很脆,但如果用只有纳米大小的陶土粉末烧结成陶瓷制品,却有良好的韧性。更有趣的是,纳米材料的熔点会随超细粉末的直径的减小而大大降低。例如,金的熔点本是1064℃,但制成10纳米左右的金粉末后,熔点降到940℃;而5纳米的金粉末熔点降至830℃;2纳米的金粉末熔点只有33℃,你说神不神?这一特点对人们大有用处。例如,许多高熔点陶瓷材料很难用一般的方法生产出用于发动机的零件,但只要事先制成纳米大小的陶土粉末,就可以在较低的温度下烧结成高温发动机的耐热零件。1纳米只有1米的1/109,人们要问,像纳米那么微小的粉末是怎样制造出来的呢?德国的材料科学家在90年代初发明了一种生产金属超细粉末的方法。即在一个封闭室内放进金属,然后充满惰性气体氦,再将金属加热变成蒸气,于是金属原子在氦气中冷却成金属烟雾,并使金属烟雾粘附在一个冷却棒上,再把棒上像碳黑一样的纳米大小的粉末刮到一个容器内。如果要用这些粉末做成零件,就可以将它们模压成零件形状,通过一道烧结工序,即可制成纳米材料零件。 应用领域 纳米材料的用处多得很。如高密度磁性记录带就是用纳米大的粉末制成的;有些新药物制成纳米颗粒,可以注射到血管内顺利进入微血管;纳米大的催化剂分散在汽油中可提高内燃机的效率,把纳米大的铅粉末加入到固体燃料中,可使固体火箭的速度增加,这是因为越细的粉末,表面积越大,能使表面活性增强,加大了燃烧的力度。总之,纳米材料前途无量,

纳米金属材料的制备

纳米金属材料的制备 学院:材料与冶金学院 专业:材料科学与工程 班级:材料10b 姓名:叶晓江 学号:1008020131

纳米金属材料的制备 摘要:纳米金属材料具有奇异的结构和特异的性能,这使得纳米金属材料的应用十分广泛。概括介绍了纳米金属材料的特性,对一些主要的制备技术作了较为详细的阐述, 关键词:纳米金属;特性;制备 1纳米金属材料 在金属材料的生产中利用纳米技术,有可能将材料成分和组织控制得极其精密和细小,从而使金属的力学性能和功能特性得到飞跃的提高。纳米金属材料是当今新材料研究领域中最具活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最活跃、最接近应用的组成部分。纳米金属材料是20世纪80年代开发的一种高新材料,是指晶粒尺寸小于100纳米的金属材料,包括纳米金属粉末和纳米金属结构材料[2]。 2 纳米金属的特性 2.1 表面效应 表面效应是指纳米粒子表面原子与总原子之比随着粒子尺寸减少而大幅度地增加,粒子的表面能及表面张力也随着增加,从而引起纳米粒子性质变化的现象。由于纳米粒子的表面原子数增多,极不稳定,很容易与其他原子结合趋于稳定,因此,纳米粒子具有很高的化学活性。新制成的纳米粒子必须进行一定的稳定化处理或者保存。例如金属纳米粒子在空气中自燃,无机的纳米粒子暴露在空气中会吸附气体,并与气体进行反应[3]。 2.2 小尺寸效应 固体物理的研究表明,当超细微粒的尺寸减小到与光波波长、得布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件被破坏;非晶态纳米颗粒的颗粒表面附近原子密度减小,导致声、光、电、磁、热、力学等特性呈现新的小尺寸效应,材料的宏观物理、化学性能将会

粉体材料的发展情况及应用

粉体材料的发展情况及应用: 发展 从上世纪 50 年代日本首先进行超细材料的研究以后 ,到上世纪 80~90 年代世界各国都投入了大量的人力、物力进行研究。我国早在上世纪 60 年代就对非金属矿物超细粉体技术、装备进行了研究 ,对于超细粉体材料的系统的研究则开始于上世纪 80 年代后期。超细粉体从广义上讲是从微米级到纳米级的一系列超细材料 ,在狭义上讲是从微米级、亚微米级到 100 纳米以上的一系列超细材料。材料被破碎成超细粉体后由于粒度细、分布窄、质量均匀 , 因而具有比表面积大、表面活性高、化学反应速度快、溶解速度快、烧结体强度大以及独特的电性、磁性、光学性等 ,因而广泛应用于电子信息、医药、农药、军事、化工、轻工、环保、模具等领域。可以预见超细粉体材料将是 21 世纪重要的基础材料。 应用 在材料领域的应用超细粉体在材料领域应用广泛。如磁性材料、隐身隐形材料、高耐磨及超塑材料、新型冶金材料及 建筑材料。利用超细陶瓷粉可制成超硬塑性抗冲击材料 ,可用其制造坦克和装甲车复合板 ,这种复合板较普通坦克钢板重量轻30 %~50 % ,而抗冲击强度较之提高 1~3 倍 ,是一种极好的新型复合材料[2] 。将固体氧化剂、炸药及催化剂超细化后 ,制成的推进剂的燃烧速度较普通推进剂的燃烧速度可提高 1~ 10 倍[3] ,这对制造高性能火箭及导弹十分有利。

在化工领域的应用将催化剂超细化后可使石油的裂解速度提高 1 ~5 倍 ,赤磷超细化后不仅可制成高性能燃烧剂 ,而且与其它有机物反映可生成新的阻燃材料。油漆、涂料、染料中固体成分超细化后可制成高性能高附着力的新型产品。在造纸、塑料及橡胶产品中 ,其固体填料如 :重质碳酸钙、氧化钛、氧化硅等超细化后可生产出高性能的铜板纸、塑料及橡胶产品。 在生物医药领域的应用医药经超细化后 ,外用或内服时可提高吸收率、疗效及利用率 ,适当条件下可改变剂型 ,如微米、亚微米及纳米药粉可制成针剂使用[4] 。在医疗诊断方面可将超细粉经适当处理后注入或服入人体内进行各种病理诊断。南京理工大学超细粉体与表面科学技术研究所已成功地为上海 XX医药公司、常州XX公司及浙江 XX公司等单位生产了大量超细硫糖铝及超细阿基诺维奇等药 ,产品性能提高 ,达到国际标准 ,因而大量出口创汇 ,价格显著提升 ,产生了良好的经济效益和社会效益。 在中医药保健食品中的应用超细粉体技术扩展到中草药及保健食品中 ,扩大了人类的食品源 ,使得有营养 ,但因无法直接被人体吸收的植物变成了高档的营养性保健食品。经超细化的中药材大大提高了有效成分的溶出速度和利用率 ,且服用方便 ,避免了繁杂的煎煮。再如茶叶、灵芝、孢子、花粉、螺旋藻、蔬菜、水果、珍珠、蚕丝、人参、贝壳、蛇、蚂蚁、甲鱼、动物和鱼类的鲜骨及脏器的超细化 ,都为人类提供了大量的新型纯天然高吸收率的保健食品。目前南京理工大学超细粉体与表面科学技术研究所已成功的

金属材料纳米介绍综述

块状金属纳米材料的制备技术进展及展望  张振忠 宋广生 杨根仓 周尧和  摘 要 综述了国内外块状纳米材料的制备技术进展及存在的问题。提出了超短时脉冲电流直接晶化法和深过冷直接晶化法两类潜在的块状金属纳米晶制备技术,并对今后的研究及发展前景进行了展望。  关键词 纳米晶块体 材料制备 非晶晶化 机械合金化 深过冷  中图分类号 TG111  DEVELOPMENT OF BULK METAL NANOMETER MATERIALS PREPARATION TECHNOLOGIES AND THEIR ESTIMATE  Zhang Zhenzhong,Shung Guangsheng,Yang Genchang,Zhou Yaohe  ABSTRACT On the basis of the summarization of bulk metal nanocrystalline materials preparation methods,two potential technologies:super short false current direct crystallization method and high undercooling direct crystallization method are proposed.In the end,the development and application prospects of various methods are also estimated.  KEYWORDS bulk nanometer material,preparation of materials,crystallization of amorphous alloys,mechanical alloying,high undercooling  Correspondent:Zhang Zhenzhong Northwestern Polytechnical University,State key Laborotry of Solidification Processing Xi'an 710072  自80年代初德国科学家H.V.Gleiter成功地采用惰性气体凝聚原位加压法制得纯物质的块 状纳米材料后[1],纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳 料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能[2],使 得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的热点。为使这种新 型材料既有利于理论研究,又能在实际中拓宽其使用范围,探索高质量的三维大尺寸纳米晶体样品的制备技术已成为纳米材料研究的关键之一。本文综述国内外现有块状金属纳米材料的制备技术进展,并提出今后可能成为块状金属纳米材料制备的潜在技术。  1 现有块状金属纳米材料的制备技术  1.1 惰性气体凝聚原位加压成形法  该法首先由H.V.Gleiter教授提出[1],其装置主要由蒸发源、液氮冷却的纳米微粉收集系统、刮落输运系统及原位加压成形(烧结)系统组成。其制备过程是:在高真空反应室中惰性气体保护下使金属受热升华并在液氮冷镜壁上聚集、凝结为纳米尺寸的超微粒子,刮板将收集器上的纳米微粒刮落进入漏斗并导入模具,在10-6Pa高真空下,加压系统以1~5GPa的压力使纳米粉原位加压(烧结)成块。采用该法已成功地制得Pd、Cu、Fe、Ag、Mg、Sb、Ni3Al、NiAl、TiAl、Fe5Si95等合金的块状纳米材料[3]。近年来,在该装置基础之上,通过改进使金属升华的热源及方式(如采用感应加热、等离子体法、电子束加热法、激光热解法、磁溅射等)以及改良其它装备,可以 获得克级到几十克级的纳米晶体样品。纳米超饱和合金、纳米复合材料等也正在利用此法研究之

相关文档
最新文档