2019秋八年级数学上册第15章轴对称图形和等腰三角形15.3等腰三角形第1课时等腰三角形的性质习题课件沪科版

合集下载

沪科版八年级上册数学第15章 轴对称图形与等腰三角形 活用“三线合一”巧解题

沪科版八年级上册数学第15章 轴对称图形与等腰三角形 活用“三线合一”巧解题

7.如图,已知 AB∥CD,AE 平分∠BAC,点 E 为 BD 的中点. 求证:(1)CE 平分∠ACD;
证明:延长 AE 交 CD 的延长线于点 F. ∵AB∥CD,∴∠BAE=∠F,∠B=∠EDF. ∵点 E 为 BD 的中点,∴BE=DE,∴△ABE≌△FDE, ∴AE=FE. ∵AE 平分∠BAC,∴∠BAE=∠CAE, ∴∠CAE=∠F,∴AC=CF. 又∵AE=FE,∴CE 平分∠ACD.
(2)AC=AB+CD.
证明:由(1)知△ABE≌△FDE,∴AB=FD. ∴AC=CF=CD+DF=AB+CD.
证明:连接 ED,DF.∵AB=AC,∴∠B=∠C.
BE=CD, 在△BED 和△CDF 中,∠B=∠C,∴△BED≌△CDF,
BD=CF,
∴DE=DF.∵G 是 EF 的中点,∴DG⊥EF.
6.如图,在△ABC 中,AB=AC,BD⊥AC 于点 D,求证: ∠DBC=12∠BAC.
证明:过点 A 作 AF⊥BC 于点 F. ∵AB=AC,AF⊥BC,∴∠CAF=∠BAF=12∠BAC. ∵AF⊥BC,BD⊥AC,∴∠CAF+∠C=∠DBC+∠C=90°. ∴∠DBC=∠CAF.∴∠DBC=12∠BAC.
第15章 轴对称图形与等腰三角形
15.3等腰三角形 第5课时 活用“三线合一”巧解题
提示:点击 进入习题
答案显示
1 见习题 2 见习题 3 见习题 4 见习题 5 见习题 6 见习题 7 见习题
1.【马鞍山 12 中期中】如图,在△ABC 中,AB=AC,D 是 BC 边上的中点,AD=AE,∠1=30°,求∠EDC 的度数.
证明:连接 AD.∵AB=AC,D 为 BC 的中点,∴∠BAD=∠CAD. ∵AB=AC,∠BAC=90°, ∴∠B=∠C=45°,∠BAD=∠CAD=45°. ∴∠B=∠CAD=∠BAD=45°.∴BD=AD. 又∵BE=AF,∴△BDE≌△ADF(SAS).∴DE=DF.

沪科版八年级上册数学第15章 轴对称图形与等腰三角形 轴对称

沪科版八年级上册数学第15章 轴对称图形与等腰三角形  轴对称
解:∵M,N分别是点P关于OA,OB的对称点, ∴ME=PE,NF=PF. 又∵△PEF的周长为20cm,∴PE+EF+PF=20cm. ∴ME+EF+FN=20cm,即MN=20cm.
12.如图,要在燃气管道l上修建一个泵站,分别向A,B两城镇供气,泵站修在 管道的什么位置可使所用的输气管线最短?并说明理由.
D.AD=BC,OD=OC
6.如图,将长方形纸片ABCD沿EF折叠,使点A与点C重合,点D落在点G处. (1) 求证:△FGC≌△EBC;
证明:易知∠A=∠B=∠D=∠BCF=90°,AD=BC, ∴∠FCE+∠BCE=90°. ∵将长方形纸片ABCD沿EF折叠,使点A与点C重合,点D落在点G处, ∴DA=GC,∠A=∠ECG=∠D=∠G=90°. ∴∠G=∠B,GC=BC,∠GCF+∠FCE=90°. ∴∠GCF=∠BCE.∴△FGC≌△EBC.
A.①B.②C.③D.④
A
8.【2020·哈尔滨】如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,
垂足为D,△ADB与△ADB′关于直线AD对称,点B的对称点是点B′,则∠CAB′
的度数为( )
A.10° B.20°
C.30° D.40°
A
9.【六安霍邱期末】如图,将△ABC沿直线DE折叠后,使得点A与点C重合. 已知BC=7,△BCD的周长为17,则AB的长为( )
沪科版八年级上
第15章 轴对称图形与 等腰三角形
15.1 轴对称图形
第2课时 轴对称
核心必知 1 重合 2 重合 3 垂直平分线
提示:点击 进入习题
1B 2A 3A 4 AB;MN 5C
答案显示
6 见习题 7A 8A 9B 10 见习题

人教版八年级数学上册《等腰三角形》(第1课时)课件

人教版八年级数学上册《等腰三角形》(第1课时)课件

底边BC上的高AF,得出AF是顶角∠BAC的
平分线,再证AF∥DE即可. 1
1
2
证明:过点A作AF⊥BC于F,
∵AB=AC,AF⊥BC于F,
F
∴AF平分∠BAC,∴∠1= ∠BAC.
又∵∠BAC=∠D+∠AED,AD=AE, ∴∠D=∠AED,∴∠AED= 1 ∠BAC.
2 ∴∠1=∠AED, ∴AF∥DE, ∴DE⊥BC.
20cm或22cm
20 36°或90°
70°或40°
解:设∠A=x, ∵CD=AD,∴∠ACD=∠A=x, 又∵∠BDC=∠A+∠ACD=2x, ∵CD=CB,∴∠B=∠BDC=2x, 在△ABC中,∵AB=AC,∴∠B=∠BCA=2x, 又∵∠A+∠B+∠BCA=180°, ∴x+2x+2x=180°,x=36°, ∴∠A=36°,∠B=∠BCA=72°
13.3.1 等腰三角形
(第一课时)
1.了解等腰三角形的概念. 2.掌握等腰三角形的性质. 3.会运用等腰三角形的概念和性质解决有关问题.
重点:等腰三角形的概念和性质及其应用. 难点:等腰三角形的“三线合一”的性质的理解及 其应用.
阅读课本P75-77页内容,了解本节主要内容.
等腰
轴对称 底边上的高(顶角的平分线或底边上的中线) 所在的直线;
例1:如图,在△ABC中,AB=AC,点D在AC上,且BD =BC=AD.求△ABC各角的度数. 解析:根据等腰三角形的性质,两底角相 等,利用三角形内角和定理建立方程. 解:设∠A=x°,
∵AD=BD,∴∠ABD=∠A=x°, ∴∠BDC=∠A+∠ABD=2x°.
∵BD=BC,∴∠C=∠BDC=2x°.
∵AB=AC,∴∠ABC=∠C=2x°. 在△ABC中, ∵∠A+∠ABC+∠C=180°,x°+2x°+2x°=180°, ∴x=36°,∴∠A=36°, ∴∠ABC=∠C=72°.

冀教版八年级上册数学《等腰三角形》PPT(第1课时)

冀教版八年级上册数学《等腰三角形》PPT(第1课时)

【跟踪训练】
根据条件判断下列三角形是否为等边三角形.
不 是
(1) 不 一 定 是
(4)
是 (2)
是 (5)
是 (3)
是 (6)
例题讲解
例 如图,在等边三角形ABC中,DE∥BC,分别交AB,AC
于点D,E .
求证:△ADE是等边三角形.
证明:∵ △ABC是等边三角形,
A
∴ ∠A= ∠B= ∠C.

底边上的中线、高和顶角 每一边上的中线、高和这一边
的平分线互相重合
所对的角的平分线互相重合
对称轴(1条)
对称轴(3条)
情景导入
如图,位于海上B、C两处的两艘救生船接到A处遇险船只的报警,当时测 得∠B=∠C.如果这两艘救生船以同样的速度同时出发,能不能同时赶到出事 地点(不考虑风浪因素)?
A
B
C
D
(2)指出图中有几个等腰三角形?
△ABC, △ABD, △BCD.
B
C
(3)观察∠BDC与∠A、∠ABD的关系,∠ABC、∠C呢?
∠BDC=∠A+∠ABD=2∠A=2∠ABD, ∠ABC=∠BDC=2∠A, ∠C=∠BDC=2∠A. (4)设∠A=x°,请把△ ABC的内角和用含x的 式子表示出来.
7.如图,在△ABC中,AB=AC,AD是BC边上的中 线,BE⊥AC于点E.求证:∠CBE=∠BAD. 证明:∵AB=AC,AD是BC边上的 中线,BE⊥AC, ∴∠CBE+∠C=∠CAD+∠C=90°, ∴∠CBE=∠CAD. 又∵∠CAD=∠BAD, ∴∠CBE=∠BAD.
课堂小结
等腰三 角形的 性质
A

x
2x B

沪科版八年级数学上册第15章教学课件:15.1 第1课时 轴对称图形与轴对称(共35张PPT)

沪科版八年级数学上册第15章教学课件:15.1 第1课时 轴对称图形与轴对称(共35张PPT)
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

它们有什么共同的特点?
讲授新课
一 轴对称和轴对称图形
轴对称 图形
a
m
对称轴
如果一个平面图形沿一条直线折叠,直线两旁的部分能够 互相重合,这个图形就叫做轴对称图形,这条直线就是它的对 称轴.
例4 在3×3的正方形格点图中,有格点△ABC和
△DEF,且△ABC和△DEF关于某直线成轴对称,请
在下面给出的图中画出4个这样的△DEF.
E
D
C(F)
CF
D C(F)
E
CF
A (D)
BA
B(E) A
B
A(D)
B(E)
方法归纳:作一个图形关于一条已知直线的对称图形,关键
是作出图形上一些点关于这条直线的对称点,然后再根据已
你能举出一些轴对称图形的例子吗?
全班总动员
ABCDEFGHIJKLM
N O P Q R S T U VW X Y Z 游戏规则: 每人轮流按顺序报一个字母.如果你认为 你所报的字母的形状是一个轴对称图形,你就迅速 站起来报出,并说出它有几条对称轴;如果你认为你 报的字母的形状不是轴对称图形,那么,你只需坐 在座位上报就可以了.其他同学认真听,如果报错了, 及时提醒.
ABCDE FG HI J KLMN OPQRST U VWXYZ
做一做:找出下列各图形中的对称轴,并说明哪一个 图形的对称轴最多.
想一想:
折叠后重合的点是对应点,叫做对称点.
下面的每对图形有什么共同特点如?图点A、A ′就是一对对称点.

溆浦县二中八年级数学上册第15章轴对称图形和等腰三角形15.3等腰三角形第1课时等腰三角形的性质定理

溆浦县二中八年级数学上册第15章轴对称图形和等腰三角形15.3等腰三角形第1课时等腰三角形的性质定理

第1课时等腰三角形的性质定理及推论一.选择题(共7小题)1.(2015•德州模拟)一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为多少平方厘米()A.50 B.50或40 C.50或40或30 D.50或30或202.(2015•潍坊校级一模)已知一个等腰三角形的两边长a、b满足方程组,则此等腰三角形的周长为()A.5B.4C.3D.5或43.(2015•徐州一模)如果等腰三角形的底角为50°,那么它的顶角为()A.50°B.60°C.70°D.80°4.(2015•武汉模拟)如图,AB=AC=AD,若∠BAD=80°,则∠BCD=()A.80°B.100°C.140°D.160°5.(2014春•兴业县期末)等边三角形的面积为8,它的高为()A.2B.4C.2D.26.(2015春•定州市期中)等边三角形的边长为2,则该三角形的面积为()A.4B.C.2D.37.(2014•十堰模拟)如图,在矩形ABCD内,以BC为一边作等边三角形EBC,连接AE、DE.若BC=2,ED=,则AB的长为()A.2B.2C.+D.2+二.填空题(共7小题)8.(2015•晋江市一模)在△ABC中,AB=AC,∠A=100°,则∠B=°.9.(2015•杭州模拟)如图,在等腰△ABC的两腰AB、BC上分别取点D和E,使DB=DE,此时恰有∠ADE=∠ACB,则∠B的度数是.10.(2015•泰州校级一模)如图,在△ABC中,AB=AC,AD∥BC,∠BAC=130°,则∠DAC 等于°.11.(2015•泰安一模)如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表,则a n= (用含n的代数式表示).所剪次数 1 2 3 4 …n 正三角形个数 4 7 10 13 …a n12.(2015•安徽模拟)将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”,例如圆的直径就是它的“面径”.已知等边三角形的边长为2,则它的“面径”长可以是(写出2个).13.(2015•湖州模拟)如图,有一个正三角形图片高为1米,A是三角形的一个顶点,现在A与数轴的原点O重合,工人将图片沿数轴正方向滚动一周,点A恰好与数轴上点A′重合,则点A′对应的实数是.14.(2015•滕州市校级模拟)如图,△ABC为等边三角形,点E在BA的延长线上,点D在BC边上,且ED=EC.若△ABC的边长为4,AE=2,则BD的长为.参考答案一.选择题(共7小题)1.C 2.A 3.D 4.C 5.C 6.B 7.C二.填空题(共7小题)8.40 9.20°10.25 11.3n+1 12.,(或介于和之间的任意两个实数)13.14.2第2课时等腰三角形的判定一、新课导入1.导入课题:我们知道如果一个三角形有两条边相等,那么它们所对的角相等,反过来如果一个三角形有两个角相等,那么它们所对的边是否也相等呢?这节课我们带着这个问题研究等腰三角形的判定方法.2.学习目标:(1)会阐述、推证等腰三角形的判定定理.(2)会运用判定定理解决证明线段相等的问题.3.学习重、难点:重点:等腰三角形判定定理的灵活运用.难点:探求等腰三角形的判定定理的证明.二、分层学习1.自学指导:(1)自学内容:探究等腰三角形的判定方法.(2)自学时间:5分钟.(3)自学方法:经历“操作——猜想——归纳——结论”过程,分清等腰三角形的判定定理的题设与结论.(4)探究提纲:①按等腰三角形的定义,有两边相等的三角形是等腰三角形.②如图,在△ABC中,∠B=∠C,那么AB与AC相等吗?若相等,又该如何证明呢?a.猜想:AB=AC.b.要证明两条线段相等,按以往的经验是采用什么方法?证三角形全等.c.要采用这些方法,图中具备采用这种方法的条件吗?若不具备,应怎么办?不具备,作辅助线构造全等三角形.d.根据思路,并写出你的证明.证明:作AD⊥BC于点D,则∠ADB=∠ADC=90°.在△ABD和△ACD中,∠B=∠C,∠ADB=∠ADC,AD=AD,∴△ABD≌△ACD(AAS).∴AB=AC.e.将你上述探究的结论用文字表述出来:等角对等边.2.自学:学生结合探究提纲进行自主探究.3.助学:(1)师助生:①明了学情:了解学生对自己的猜想是否正确,证明线段相等的思路是否合理,结论表述是否清晰、准确.②差异指导:引导学生回忆证明等量的常用方法是证明三角形全等,如何构造全等三角形进行点拨引导.(2)生助生:学生间相互交流帮助,寻求解决问题的思路.4.强化:(1)交流学习成果:由学生代表回答自己是如何找出解决问题的探究方法的.(2)总结:等腰三角形的判定方法:“等角对等边”.1.自学指导:(1)自学内容:教材第78页例2、例3.(2)自学时间:10分钟.(3)自学方法:边看边思考例2中命题证明的步骤及例3中每一步作图的依据,并动手尝试.(4)自学参考提纲:①例2中的题设和结论是用文字表述的,它是一个命题,从证明的全过程来看,证明命题的步骤有a.已知;b.求证;c.证明.②填上例2证明中每步后面的理由.两直线平行,同位角相等;两直线平行,内错角相等;等角对等边.③阅读例3,思考作法(2)为什么要作AB的垂直平分线?它依据了线段垂直平分线的什么性质?可以在上面截取DC=h,依据线段垂直平分线上的点到这条线段两个端点的距离相等.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:例2、例3是等腰三角形判定的直接应用,例2的求证步骤学生难于把握,但学生对例3这种类型的题目,一般的学生不知道怎样找腰,并不能很好地写出完整的作法.②差异指导:引导学生学会命题证明题的步骤,引导学生思考例3中如何找到这个等腰三角形的腰(确定相等的两条边).(2)生助生:学生间相互交流帮助.4.强化:练习:教材第79页3、4题练习3:已知:△ABC,D为AC的中点,BD=12AC.求证:∠ABC=90°.证明:∵D为AC的中点,BD=12AC.∴AD=BD=DC,∴∠A=∠ABD,∠C=∠DBC.又∵∠A+∠ABC+∠C=∠A+∠ABD+∠C+∠DBC=2(∠ABD+∠DBC)=2∠ABC=180.∴∠ABC=90°,∴△ABC是直角三角形.练习4:∵OA=OB,∴∠A=∠B,又∵AB∥DC,∴∠C=∠A=∠D=∠B,∴OC=OD.三、评价1.学生的自我评价(围绕三维目标):学生交谈自己的学习收获和学习中的困惑之处.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、学习方法、成果和不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):利用等腰三角形的性质定理与判定定理的互逆关系来学习等腰三角形的判定是很重要、很常见的研究问题的方法,本节之前线段垂直平分线的知识的学习及以后学习平行四边形等特殊四边形的知识时会反复用到这种方法.一、基础巩固(每题10分,共50分)1.如图,∠A=36°,∠C=72°,∠DBC=36°,则图中等腰三角形有(A)个A.3B.2C.1D.02.如图所示,已知OC平分∠AOB,CD∥OB.若OD=3,则CD等于(A)A.3cmB.4cm D.2cm3.一个三角形不同顶点的三个外角的度数比是3∶3∶2,则这个三角形是等腰三角形.4.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,过O的平行线交AB于M,交AC于N.若AB=5,AC=7,BC=8,则△AMN的周长为12.第4题图第5题图5.如图所示,在△ABC中,已知AB=AC,要使AD=AE,需要添加的一个条件是BE=CD.(答案不唯一)二、综合应用(20分)6.已知:CE、CF分别平分∠ACB和它的外角∠ACM,EF∥BC,EF交AC于点D,E是CE 与AB的交点.求证:DE=DF.证明:∵CF平分∠ACM,∴∠ACF=∠MCF.∵CE平分∠ACB,∴∠ACE=∠BCE.∵EF∥BC,∴∠F=∠MCF=∠ACF,∠FEC=∠BCE=∠ACE,∴DF=DC,DE=DC,∴DE=DF.三、拓展延伸(30分)7.(1)如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?(2)上题中,若去掉条件AB=AC,其他条件不变,图中还有等腰三角形吗?解:(1)△ABC,△ADE,△BDF,△CEF,△BCF都是等腰三角形.(2)有△BDF和△CEF是等腰三角形.∵BF平分∠ABC,CF平分∠ACB,∴∠ABF=∠CBF,∠ACF=∠BCF.又DE∥BC,∴∠DFB=∠CBF=∠ABF,∠EFC=∠BCF=∠ACF,∴DF=DB,EF=EC.∴△BDF和△CEF是等腰三角形.第十六章二次根式达标检测试卷(满分100分,答题时间120分钟)一、单项选择题(本题8个小题,每题4分,共32分)1.(2019•山东省聊城市)下列各式不成立的是()A.﹣=B.=2C.=+=5 D.=﹣【答案】C.【解析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.﹣=3﹣=,A选项成立,不符合题意;==2,B选项成立,不符合题意;==,C选项不成立,符合题意;==﹣,D选项成立,不符合题意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档