膜蒸馏技术简介(摘抄
膜蒸馏

真空膜蒸馏 (Vacuum Membrane Distillation)
真空膜蒸馏(VMD),也称减压膜蒸馏,其操 作方式为:在透过侧施加一个小于液体进入膜孔压 力的负压,增大膜两侧的水蒸汽压力差,从而得到 较高的蒸馏通量,透过的水蒸汽被抽出组件外冷凝。 VMD与其它膜蒸馏过程的最根本区别在于 有真空系统提供增强驱动力。
600
20000 几百
20000
膜蒸馏分类
• • • •
直接接触式膜蒸馏 空气隙膜蒸馏 吹扫气膜蒸馏 真空膜蒸馏
直接接触式膜蒸馏
(Direct Contact Membrane Distillation)-
直接接触式膜蒸馏(DCMD),由于其低温侧液 体是在膜组件外冷却的,也称外冷式膜蒸馏。透过 侧为冷却的纯水,在膜两侧温差引起的水蒸汽压力 差驱动下传质,透过的水蒸汽直接进入冷侧的纯水 中冷凝。 DCMD具有组件和流程简单、通量大等优点, 具有广阔的应用前景。DCMD的不足之处在于其能 量利用率相对较低。
DCMD传递过程
膜蒸馏过程是热量传递和质量传递的复合过 程,所以该过程的传递机理包含传热机理和传质机 理,并且传热与传质相互影响制约。
• 传热过程 • 传质过程
传热过程 .
DCMD过程中的传热过程可分三步进行:
• 料液侧热边界层内的热传递; • 通过膜的热传递,膜内的传热包含两部分,即伴 随着跨膜传质而发生的汽化一冷凝热和膜材料本 身、膜孔气体的导热; • 渗透侧热边界层内的热传递。
最早蒸馏器
蒸馏实验室基本装置
膜蒸馏实验装置
膜蒸馏 (Membrane Distillation)
膜蒸馏,是膜技术与蒸发过程相结合的膜分 离过程。 膜蒸馏已被用于小规模的海水淡化、超纯水生 产以及高沸点、高浓度含水制品的脱水、浓缩,可 望成为一种廉价、高效的分离手段。
膜蒸馏概述——精选推荐

膜蒸馏概述膜蒸馏概述2010-08-26 20:17膜蒸馏概述发布:多吉利来源:膜蒸馏概述同反渗透技术一样,膜蒸馏最初发展的一个主要推动力是准备用于脱盐,以替代传统的高能耗蒸馏方法。
与膜蒸馏有关的最早文献可能是Kober的论文,他观察到用胶棉袋子密封的硫酸钱水溶液体积不断减少,同时袋子的外侧出现硫酸按晶体。
他也注意到,甚至在远低于溶液沸点温度下,这种蒸发的速度也很可观。
对该现象的传递机理,Kober做出了两种猜测,其一,他认为胶棉袋子的材质类似凝胶(gels),水可以从容器内侧扩散到外面,这种解释接近目前的渗透蒸发原理。
其二是,容器本身是有微孔的材料,因而蒸汽分子可以自由通过,但由于表面张力及其他原因,液体不能透过容器。
这种猜测并不能解释提到的现象(如容器外侧出现硫酸钱晶体),但Kobc:的第二种解释已揭示了膜蒸馏的本质。
1963年,Bodell在一份专利中最早提出了膜蒸馏过程,但在专利中仅说明了膜蒸馏的应用,即用硅橡胶的管式膜制备饮用水。
1967年,wevll的专利中详细地描述了经改进的膜蒸馏装置。
通过weyl的改进,设计的装置通量为1kg/m2·h。
但与此同时出现的反渗透装置的水通量达到5一75 kg/m2·h,所以膜蒸馏逐渐被人们淡忘了。
60年代后期,Findley 发布了研究膜蒸馏的成果,包括基础理论和用各种不同膜的直接接触式膜蒸馏的实验结果。
尽管实验比较粗糙,但他还是成功定性地说明了膜孔中的空气、膜厚度和孔隙率的影响。
Rodger在1968至1975年间有多项专利被批准,几项专利着重开发用于膜蒸馏的板框式膜组件,将分离膜与换热隔层分割排布,以提高膜组件的热效率。
1971年的专利设计了多效膜蒸馏,以分离挥发性不同的组份,如重水的分离。
1972年的专利设计了膜蒸馏的脱盐工艺,包含了料液脱气、膜表面处理等工序在内的整个系统,使用的膜囊括如今使用的大部分材料,如PTFE、PP、PvDF以及疏水处理后的亲水膜。
第七章-膜蒸馏

7.1膜蒸馏
膜蒸馏的发展
膜蒸馏是膜技术与蒸发过程相结合的新型膜分离技术, 是以膜两侧不同温度溶液蒸汽压力差为推动力的分离 过程。 它以疏水微孔膜为介质,在膜两侧蒸气压差的作用下, 料液中挥发性组分以蒸气形式透过膜孔,从而实现分 离的目的。 与其他常用分离过程相比,膜蒸馏具有分离效率高、 操作条件温和、对膜与原料液间相互作用及膜的机械 性能要求不高等优点。
膜蒸馏操作方式
➢ 直接接触式 ➢ 气隙式 ➢ 减压式 ➢ 气流吹扫式
直接接触膜蒸馏
气隙式
减压式
气流吹扫式
操作模式
膜蒸馏特征
膜蒸馏的优点
➢ 操作温度低(与传统蒸发相比) ➢ 操作压力低(与反渗透相比) ➢ 理论分离效能高 ➢ 膜的机械性要求低 ➢ 减少了膜与处理液体之间的化学反应 ➢ 不易堵塞 ➢ 可以处理浓度极高的水溶液,唯一能从溶液中直接
渗透蒸发原理
渗透蒸发的实质是利用高分子膜的选择性透 过来分离液体混合物。由高分子膜将装置分为两 个室,上侧为存放待分离混合物的液相室,下侧 是与真空系统相连接或用惰性气体吹扫的气相室 。混合物通过高分子膜的选择渗透,其中某一组 分渗透到膜的另一侧。由于在气相室中该组分的 蒸气分压小于其饱和蒸气压,因而在膜表面汽化 。蒸气随后进入冷凝系统,通过液氮将蒸气冷凝 下来即得渗透产物。渗透蒸发过程的推动力是膜 内渗透组分的浓度梯度。
除了以上用途外,渗透蒸发膜在其他领域的应 用尚都处在实验室阶段。预计有较好应用前景的领 域有:工业废水处理中采用渗透蒸发膜去除少量有 毒有机物(如苯、酚、含氯化合物等);在气体分 离、医疗、航空等领域用于富氧操作;从溶剂中脱 除少量的水或从水中除去少量有机物;石油化工工 业中用于烷烃和烯烃、脂肪烃和芳烃、近沸点物、 同系物、同分异构体等的分离等。
膜蒸馏脱盐技术-

(5)多效膜蒸馏过程(MEMD)
multiple-effect membrane distillation
膜蒸馏过程中水蒸气的相变热约为2600kJ/kg,远大 于水的比热4kJ/ kg.K。因此,若按常规减压膜蒸馏方 式,需要大量的冷却水;若采用机械式压缩机来吸收蒸 汽潜热,按热泵的能效比为4:1,系统能耗也很高,而 且目前热泵系统价格昂贵。 因此设计了一种多效膜蒸馏方法。将膜蒸馏过程中 的水蒸汽冷凝与原水加热过程耦合,回收蒸发潜热。
预处理对VMD过程相对通量的影响
1.0
相对通 量( Jt/J0)
0.8
无预 处理 PAC+UF PAC+PAAS+UF 分 步PAC+PAAS+UF PAC
实验条件: 采用浸没式减压膜蒸馏, 进口料液温度70.0℃, 流速:1.00m/s, 初始通量:25kg/m2· h
0.6
0.4
有机物含量的降低,能
6
(4)吸收膜蒸馏(Osmotic Membrane distillation,OMD )
对于直接接触式膜蒸馏,当疏
水性分离膜两侧温度相同时,不会 发生水分子的传质。但当疏水性分
离膜另一侧为对水分子有高度吸收
作用的吸收剂时,由于化学位差的 作用,气态水分子则被吸收进入吸
收剂中,完成水分子的传质过程。
2.5
3.0
3.5
4.0
4.5
5.0
5.5
浓缩倍数
浓缩倍数
在石化废水中超滤水通量的变化
膜蒸馏产水通量的变化
19
3.表面疏水化改性
疏水膜的表面疏水化改性是疏水膜制备技术中的重要 研究方向之一,提高疏水膜的表面疏水性可以使疏水膜
膜蒸馏演示文稿课件

旋转膜蒸馏的优点在于处理量大 、分离效率高、可连续化操作等
。
旋转膜蒸馏的应用范围包括化工 、制药、环保等领域。
热驱动膜蒸馏
热驱动膜蒸馏是一种利用热能驱动的膜 蒸馏技术,其原理是利用热能将水转化 为蒸汽,通过疏水性微孔膜的透过性和
选择性,实现不同组分的分离。
热驱动膜蒸馏的优点在于能源利用率高 热驱动膜蒸馏的应用范围包括海水淡化
CHAPTER 05
未来膜蒸馏技术的发展趋势与展望
提高膜蒸馏技术的效率与稳定性
优化膜材料
研究具有高选择性和通量 的膜材料,以提高膜蒸馏 过程的分离效率和产水量 。
强化传热传质
通过改进膜结构、增加膜 的粗糙度等方法,提高膜 的传热传质性能,从而提 高膜蒸馏效率。
操作条件优化
通过优化操作温度、压力 、流量等参数,提高膜蒸 馏过程的稳定性和连续性 。
更长的处理时间。
膜蒸馏技术的发展方向
新型膜材料的研发
研究和发展新型的膜材料,以 提高膜蒸馏技术的分离效率和
耐受性。
优化膜组件设计
优化膜组件的设计,以提高膜 蒸馏技术的传热系数和降低能 耗。
拓展应用领域
探索膜蒸馏技术在更多领域的 应用,如生物医药、环保和新 能源等。
提高自动化程度
研究和开发自动化的膜蒸馏技 术,以降低人工操作的难度和
、操作简单等。
、工业废水处理等领域。
电驱动膜蒸馏
电驱动膜蒸馏是一种利用电能驱动的膜蒸馏技术,其原理是利用电场的 作用力,使水分子通过疏水性微孔膜的透过性和选择性,实现不同组分 的分离。
电驱动膜蒸馏的优点在于能源利用率高、环保等。
电驱动膜蒸馏的应用范围包括水处理、食品加工等领域。
膜蒸馏技术

膜蒸馏的研究现状及进展李小然,尚小琴(广州大学化学化工学院,广东广州510006)摘要:膜蒸馏是20世纪八十年代才引起人们重视的新型膜分离技术。
是一种以蒸汽压差为推动力的新型分离技术。
本文主要对膜蒸馏的机理、用膜、传热机理、影响因素、过程优化、进行了讨论,同时介绍了膜蒸馏在海水淡化、超纯水的制备、水溶液的浓缩与提纯、共沸混合物的分离、废水处理治理等中的应用,并在此基础上提出了膜蒸馏的发展方向。
关键词:膜蒸馏;分离技术;机理;应用;发展Research status and progress of membrane distillationLiXiaoRan,Shang XiaoQin(School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006) Abstract:Membrane distillation is a new type of membrane separation technology in the eighty's of twentieth Century.Is a kind of new separation technology with the steam pressure difference as the driving force.In this paper, the mechanism of membrane distillation、membrane、heat transfer mechanism、influencing factors、process optimizationis discussed,At the same time, it introduces the membrane distillation in seawater desalination, preparation of ultra - pure water, water solution concentration and purification, total of azeotropic mixture separation, waste water treatment, etc. in the application, and based on this, proposed the development direction of the membrane distillation.Key words:membrane distillation;isolation technique;mechanism;application;development1膜蒸馏技术的原理膜蒸馏是膜技术与蒸馏过程相结合的分离过程。
膜蒸馏技术
膜蒸馏技术
嘿,朋友们!今天咱来聊聊膜蒸馏技术。
你说这膜蒸馏技术啊,就像是一位神奇的魔法师!
想象一下,水就像一群调皮的小精灵,在膜的这一边活蹦乱跳。
而这膜呢,就像是一道神奇的门,只让水的小精灵们通过,把其他的杂质啥的都挡在了外面。
这可太有意思啦!
膜蒸馏技术的好处那可真是不少。
它能把脏水里的有害物质给分离出来,让水变得干干净净的,就跟刚从清泉里冒出来的一样。
这多厉害呀!咱平时喝的水、用的水,如果都能经过膜蒸馏技术这么一处理,那得多放心呀!
而且哦,它还特别节能呢!就好比咱平时过日子,能省一点是一点。
膜蒸馏技术就做到了这一点,用最少的能量,办最大的事儿。
你说妙不妙?
咱再打个比方,膜蒸馏技术就像是一个超级厨师,能把普通的食材变成美味佳肴。
它能把那些看起来不咋地的水,变得纯净又好喝。
这要是放在生活中,那可就是化腐朽为神奇呀!
这技术在很多领域都能大显身手呢!比如在化工行业,它能帮忙处理那些复杂的废水,让环境变得更美好。
在食品行业呢,能让咱喝到更健康的饮料。
这不就是给我们的生活添彩嘛!
你说咱生活中要是没有膜蒸馏技术,那得少多少便利呀!它就像一个默默无闻的守护者,在背后为我们的生活质量保驾护航。
咱可得好好珍惜和利用这膜蒸馏技术呀,让它发挥出最大的作用。
让我们的水更清,生活更美。
这膜蒸馏技术,难道不是一个超级棒的发明吗?咱得为它点个大大的赞!以后呀,希望它能在更多的领域发光发热,给我们带来更多的惊喜和便利。
反正我是觉得,这膜蒸馏技术,真是太牛啦!。
多效膜蒸馏
多效膜蒸馏引言多效膜蒸馏是一种高效的分离技术,适用于液体混合物的分离和纯化。
它利用膜的特殊性质,在蒸馏过程中实现组分的选择性传递,从而达到分离目的。
本文将深入探讨多效膜蒸馏的原理、应用及技术创新。
原理多效膜蒸馏基于蒸馏原理,但在传统蒸馏的基础上引入了微孔膜进行分离。
这些微孔膜具有特定的孔径和选择性,能够阻止某些组分的传递,而允许其他组分通过。
通过多级的膜蒸馏过程,可以逐步富集目标组分,实现高效的分离。
应用多效膜蒸馏在各个领域都有广泛的应用,包括化工、食品、制药和环保等。
下面将详细介绍一些常见的应用领域。
化工领域多效膜蒸馏在化工领域中被广泛应用于溶剂的回收和纯化过程中。
通过选择性膜的使用,可以高效地分离出目标组分,并减少溶剂的损失和废弃物的产生。
这不仅提高了生产效率,还减少了环境污染。
食品领域在食品加工过程中,多效膜蒸馏可以用于酒精的精制、果汁的浓缩和脱色等。
通过多级膜蒸馏,可以去除杂质、保留食品的营养成分,并提高产品的质量和口感。
制药领域多效膜蒸馏在制药领域中被广泛应用于药物纯化和回收过程中。
由于药物的制备通常会产生大量的废液,传统的蒸馏方法效率低下且耗能巨大。
多效膜蒸馏可以高效地回收药物,并减少对环境的影响。
环保领域多效膜蒸馏在环保领域中被应用于水处理、污水处理和废气处理等过程中。
通过选择性膜的使用,可以将有害物质从废水或废气中分离出来,达到净化效果,并实现资源的回收利用。
技术创新多效膜蒸馏作为一种新兴的分离技术,不断受到研究者的关注和改进。
下面将介绍一些最新的技术创新和发展趋势。
膜材料的改进膜材料是多效膜蒸馏的关键因素之一。
近年来,研究人员致力于开发新型的高选择性膜材料,以提高分离效率和选择性。
例如,多孔有机聚合物膜和金属有机骨架膜等新材料的应用,使多效膜蒸馏的性能得到了显著提升。
膜结构的优化膜结构对多效膜蒸馏过程的传质性能和稳定性起着重要作用。
研究者通过改变孔径、厚度和孔隙率等膜结构参数,来优化膜的分离性能。
膜蒸馏
膜蒸馏研究中的几个热点问题
膜蒸馏过程的传质、传热机理研究 膜结构对膜蒸馏过程的影响 提高膜蒸馏通量和选择性的措施 膜蒸馏过程中的污染问题 膜蒸馏的集成膜过程
(膜过程集成和非膜过程集成)
膜蒸馏的传质机理
J = Km×△P (Km值的预测) 气态分子通过多孔介质的三种机理:
Knudsen扩散,分子扩散,Poiseuuille流动
Dusty-gas模型
Stefan-Maxwell模型
浓度极化和温度极化
提高通量和选择性的措施
减小浓度极化和温度极化
提高流速,在流道中放置隔离物,超声波
回收挥发性溶质时加盐降低水蒸汽压, 提高挥发性溶质的分压(提高选择性)。 选择操作方式; 优化组件结构
膜蒸馏过程中的膜污染问题
含有机物料液的蛋白质污染:
2
与非膜过程集成:
发酵/MD构成膜生物反应器。 多效蒸馏器或太阳能蒸馏器/MD制造饮用水。 流动床结晶器/MD从地下热水制饮用水。
太阳能蒸馏器与膜蒸馏集成
(示意图)
膜蒸馏技术的应用
海水和苦咸水脱盐制饮用水 化学物质的浓缩与回收 水溶液中挥发性溶质的脱除和回收 果汁、食品的浓缩 废水处理
海水和苦咸水淡化制饮用水
将料液煮沸,然后超滤预处理,可以得到缓解。
微生物污染:
不但膜上游侧,膜下游侧和孔道中也会污染。 较高温度、较高盐浓度、较低PH可抑制微生 物生长。
高浓度盐水的盐颗粒的污染:
超声波技术或料液的超滤预处理可减轻污染。
膜蒸馏的集成膜过程
1 与其它膜过程集成:
MF/UF/NF/MD海水淡化,提高水利用率。 UF/MD处理港口压舱水和病人血浆处理。 UF/RO/OD浓缩水果汁和蔗糖水溶液。
膜蒸馏,膜萃取,控制释放,膜乳化
H2O+ NaOH
H2O+ NaOH 含酚废水为 连续外相
乳化液膜体系除酚示意图
《膜科学技术》 《膜分离技术基础》 《无机膜技术及其应用》
第七章 新膜过程
P 3 1 4 2 6 8 5 7
主要分离过程有: 1)从胶粘纤维工业废水中去除锌, 2)从电镀废水中回收镍, 3)从湿法冶金工厂废水中去除如锌、 鎘、铜和铅等金属离子, 3)废水除酚, 4)废水除氨, 5)从废水中去除有机酸和无机酸, 6)从废水中去除阴离子, 7)生化过程即从发酵液中分离氨基 酸、抗生素和磷脂以及从发酵液 中回收有机酸, 8)烃类分馏
第七章 新膜过程
2)控制释放膜的性能评价 近几十年来,控制释放逐渐被应用于 临床,一般有片剂、胶囊剂、注射剂 对膜进行性能评价时,一般要求 等; 对药物的控制释放特性和生体适 2、膜式控制剂的制法与评价 应性等; 1)口服微型胶囊 控释体系的评价:通常须以将来 相分离法:在产生凝聚的体系中预先 实际采用的药物作成控释制剂, 分散进药物的微粒,然后使之发生相 然后测定不同时间和释放量的关 分离,生成的凝聚层滴将聚集到药物 系。最后根据所得释放曲线,探 微粒的周围,成为微囊的原型。从体 讨释放是药物对膜的溶解性或药 系内分离微囊的原型并蒸发掉溶剂, 物在膜中的扩散性起主导作用的 就形成微囊。这种高分子制成的微囊, 在药物释放后,将自行分解和消失。 结果。 界面沉淀法:将高分子溶于良溶剂中, 高分子膜生体适应性的评价:当 然后从该溶液中除去溶剂则析出高分 生体与异物接触时,为了维护自 子。在高分子溶液中预先分散好药物 身环境,往往会产生种种反应。 微粒或药品水溶液,一旦除去溶剂, 就可得到微囊。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
膜蒸馏技术简介(摘抄膜蒸馏技术简介(摘抄)摘自真空膜蒸馏海水淡化实验研究.王宏涛.天津大学硕士学位论文.1.1膜蒸馏技术简介1.1.1膜蒸馏概述膜蒸馏(Membrane Distillation,MD)是在上个世纪八十年代初发展起来的一种新型分离技术,是膜分离技术与传统蒸发过程相结合的新型膜分离过程,它与常规蒸馏一样都以汽液平衡为基础,依靠蒸发潜热来实现相变。
它以膜两侧的温差所引起的传递组分的蒸汽压力差为传质驱动力,以不被待处理的溶液润湿的疏水性微孔膜为传递介质。
在传递过程中,膜的唯一作用是作为两相间的屏障,不直接参与分离作用,分离选择性完全由气—液平衡决定[1]。
膜蒸馏过程是热量和质量同时传递的过程。
膜的一侧与热的待处理的溶液直接接触(称为热侧),另一侧直接或间接地与冷的液体接触(称为冷侧)。
由于膜的疏水性,水溶液不会从膜孔中通过,但膜两侧由于挥发组分蒸气压差的存在,而使挥发蒸气通过膜孔,从高蒸气压侧传递到低蒸气压侧,而其它组分则被疏水膜阻挡在热侧,从而产生了膜的透过通量,实现了混合物的分离或提纯。
这与常规蒸馏中的蒸发、传质、冷凝过程十分相似,所以称其为膜蒸馏过程如图1-1所示:1986年意大利、荷兰、日本、德国和澳大利亚的膜蒸馏专家在罗马召开了膜蒸馏研讨会,会上与会专家统一规范了膜蒸馏过程涉及的各种术语,定义膜蒸馏过程应具有以下几种含义:使用的膜是疏水性多孔膜;膜不应被所处理的液体所浸润;溶液中的挥发性组分以蒸汽的形式通过膜孔;膜孔中不发生毛细冷凝现象;组分通过膜的推动力是该组分在膜两侧的蒸汽压差;膜本身不改变处理液各组份的汽—液平衡;膜至少有一侧与所处理液体直接接触;对于任何组分该膜过程的推动力是该组分在气相中的分压差[2,3,4]。
膜蒸馏本身的特点决定了该技术与其它分离技术相比有着无法比拟的优点:(1)膜蒸馏过程较其他膜分离过程(反渗透)的操作压力低,几乎是在常压下进行,设备简单、操作方便,在技术力量较薄弱的地区也有实现的可能性。
(2)在非挥发性溶质水溶液的膜蒸馏过程中,因为只有水蒸汽能透过膜孔,理论上可以100%截留离子、大分子、胶体、细胞和其它非挥发性物质,所以蒸馏液十分纯净,可望成为大规模、低成本制备超纯水的有效手段。
(3)该过程可以处理极高浓度的水溶液,如果溶质是容易结晶的物质,可以把溶液浓缩到过饱和状态而出现膜蒸馏结晶现象,是目前唯一能从溶液中直接分离出结晶产物的膜过程。
(4)膜蒸馏组件很容易设计成潜热回收形式,并具有以高效的小型膜组件构成大规模生产体系的灵活性。
(5)在该过程中无需把溶液加热到沸点,只要膜两侧维持适当的温差,该过程就可以进行,操作温度比传统的蒸馏低,有可能利用太阳能、地热、温泉、工厂的余热和温热的工业废水等廉价能源[2]。
但是膜蒸馏作为一种新的分离技术也还有许多不完善之处,比如:(1)膜蒸馏与制备纯水的其它膜过程相比,膜的产水通量较低,迄今还没有开发出较成熟的膜蒸馏用膜的生产技术,且疏水微孔膜,与亲水膜相比在膜材料和制备工艺的选择方面都十分有限;(2)运行过程中膜的污染不仅导致膜的通量下降,更为严重的是加速了膜的润湿,使盐渗漏进入淡水侧,从而使淡水品质下降;(3)缺乏有效的热量的回收手段,膜蒸馏是一个有相变的膜过程,汽化潜热降低了热能的利用率,所以在组件的设计上必需考虑到潜热的回收,以尽可能减少热能的损耗,与其他膜过程相比,膜蒸馏在有廉价能源可利用的情况下才更有实用意义。
1.1.2膜蒸馏的分类与特点根据挥发性组分在膜冷侧冷凝方式的不同,膜蒸馏可分为四种不同结构和操作方式[5](如图1-2所示),即:直接接触式膜蒸馏(DCMD)、气隙式膜蒸馏(AGMD)、吹扫式膜蒸馏(SGMD)和真空膜蒸馏(VMD)。
在直接接触式膜蒸馏[6-15]中透过侧的冷却纯水和膜上游侧的溶液都与膜直接接触,在膜两侧温差引起的水蒸气压力差驱动下传质,透过的水蒸气直接进入冷却的纯水中冷凝。
直接接触膜蒸馏的过程装置和运行都比较简单,但是上下游的流体仅有一层薄膜相隔,热量很快从上游传递到下游,最后达到热平衡。
冷测需要持续制冷,热侧需要持续加热,因而热利用效率较低。
但过程所需要的附属设备最少,操作比较简单,最适用于透过组分为水的应用场合,例如:脱盐、水溶液(果汁)浓缩等。
气隙式膜蒸馏[27-35]的透过侧空气与膜接触,增加了热传导的阻力,大大降低了传导热量的损失,但是同时传质阻力也增加。
气隙式膜蒸馏的传质机理主要是以分子扩散为主的,但由于透过侧空气的存在,会使膜孔中存在滞留空气,透过蒸汽在穿过膜孔时的阻力增加。
与膜接触的气层厚度一般为膜厚度的10~100倍,空气可以视为静止膜,也会使传质阻力增大,导致透过的通量很小。
在去除水溶液中的微量易挥发性组分方面占有优势。
吹扫气膜蒸馏[37,38,39]同气隙式膜蒸馏一样适用于除去水溶液中的微量易挥发性组分。
在吹扫气膜蒸馏中,透过侧为流动气体,克服了气隙式膜蒸馏中静止空气层产生传质阻力的缺点,同时保留了气隙式膜蒸馏中较高的热传导阻力的优点,但是在收集透过侧组分方面存在较大困难,操作过程中为了减少传质阻力,要减小传质边界层的厚度,相应需要较高的吹扫气体速度,操作压力随之升高,目前研究工作相对较少。
在真空膜蒸馏[40-57]中,膜的一侧与进料液体直接接触,另一侧的压力保持在低于进料平衡的蒸气压之下,透过的水蒸气被抽出组件外冷凝,增大膜两侧的水蒸气压力差,可得到较大的透过通量,常常应用于去除稀释溶液中的易挥发性组分。
由于在VMD过程中,透过侧为真空,水蒸气分子与孔壁的碰撞占主要优势,以努森扩散为主,热传导损失可以忽略不计。
因此,真空膜蒸馏的传质压力差较大,传质驱动力大,透过气体的传质阻力较小,膜两侧的绝对压力差较大,与其它分离过程相比,膜通量也具有很大的优势,所以近年来,在脱盐、废水回收方面的研究日益增多。
1.1.3膜蒸馏的发展历程膜蒸馏技术发展到今天大致经历了三个阶段:概念提出阶段(19世纪60年代—19世纪70年代)、初步发展阶段(19世纪80年代—19世纪90年代)、高速发展阶段(19世纪90年代至今)。
膜蒸馏的概念是在1963年Bodell[58]的一篇专利中首先提出来的,他将膜蒸馏描述为“一种可将不可饮用水流体转化为可饮用水的装置和技术”,并指出可用抽真空的方式将渗透蒸汽从装置中移走,但是他并没有指出膜的结构与孔径,也没有给出结果和定量分析。
1964年,Weyl[59]发现采用空气填充的多孔疏水膜可在蒸汽压系统内从含盐水中回收去离子水,这个致力于提高脱盐效率的新工艺在1967年被授予美国专利,专利宣称这个用于脱盐的改进方法和改进设备能在最小的外部能量要求和最小的资金和厂房花费下运作。
Weyl建议将热的溶液和冷的渗透物都与膜直接接触,以消除气隙,他采用的是厚3.2mm,孔径9μm,孔隙率42%的PTFE膜,所获得的膜蒸馏通量达到了1kg/m2?h,这与当时反渗透5~75kg/m2·h的通量有很大的差距,因此在60年代末人们对膜蒸馏的兴趣逐渐减弱。
Findley[60]是第一个公开发表膜蒸馏结果的人,60年代后期他以纸、胶木、玻璃纤维、玻璃纸、尼龙、硅藻土等作为膜材料进行直接接触膜蒸馏实验,其中大部分材料用硅树脂、特氟龙或防水剂处理过,以增强膜的疏水性。
实验定性地描述了膜孔中存的在空气、膜的厚度、导热热损失和空隙率对膜蒸馏的影响,并且首次说明了膜蒸馏所用膜材料的一些重要特性:热阻高、厚度小、液体进入压力大、高空隙率及弯曲因子较小。
Findley预言,如果能够找到低价位、耐高温、长寿命并且特性理想的膜,膜蒸馏不仅可以用于海水淡化,还会是一种经济可行、用途广泛的蒸发方法。
早期的膜蒸馏过程设计中,Rodger[61,62,63]的工作最为出色,他在1968-1975年间有多项专利被批准。
有几项专利研究改善热量回收系统,如一项设计中使用带波纹的换热片,以提高对流传热效果。
1971年的专利设计了多效膜蒸馏,以分离挥发性不同的组份,如重水的分离。
1972年的专利设计了膜蒸馏的脱盐工艺,是包含了料液脱气、膜表面处理等工序在内的完整系统。
使用的膜囊括PTFE、PP、PVDF 以及疏水处理后的亲水膜。
1975年的专利改变了研究方向,设计了家用饮水机。
19世纪80年代起以企业为主的研发带动了膜蒸馏技术前所未有的发展。
80年代早期,由于新的制膜技术的出现,人们又开始对膜蒸馏产生兴趣,因为这时可以制得高达80%孔隙率和50μm厚的膜,比Weyl和Findley在60年代所用的膜,渗透通量提高了100倍。
膜组件设计的改进及进一步认识温度和浓度极化对MD性能的影响,也促使人们恢复对膜蒸馏的关注,同时也使膜蒸馏更具竟争力。
Gore和Associacs公司[64](美国)、Swedish Development Co.[65,66]和EnkaAG.[67-69](德国)从商业应用的角度开发他们的测试膜蒸馏系统。
如Gore开发出了一种卷式膜组件用于“Gore-Tex膜蒸馏”,最终由于其热传递差的技术原因及成本过高,Gore在其即将商品化之前放弃了这一计划。
值得注意的是,有人使用Gore-Tex膜完成了中试,认为膜蒸馏用于脱盐尚需两个条件:膜成本大幅度下降,提高热量回收热交换器的传热效果[70]。
几乎同时瑞典National Development Co.公布了他们研制的膜蒸馏系统,包括样机运行情况[71],采用了板框结构的膜蒸馏,但同样未进入市场。
EnkaAG开发了中空纤维膜组件的“传递膜蒸馏”,Kjellander提交了气隙膜蒸馏用于脱盐的专利[72]。
80年代末,Enka公司宣称制造了一种可用于商业生产的MD系统。
这个阶段MD在许多领域只能是一个有竞争的系统,还不能够可顶替别的技术。
学术界对MD兴趣的增强,是因为该过程的多样性及MD研究能产生“有利于环境”的结果。
80年代大量发表的膜蒸馏文献主要集中于过程机理研究,这些研究将常规的传递理论应用于膜蒸馏,分析流体温度、流量、压力等操作参数的影响,建立了传热传质模型。
特别对膜传质过程做了很多理论研究,从理论上明确了膜结构参数对渗透通量的影响。
这一时期膜蒸馏技术的应用研究也取得了相当重要的成果,研究者开发了诸如脱盐、溶液浓缩、废水处理、非常规分离等诸多领域的膜蒸馏应用。
值得一提的是Shneider[73]和Schofield[74]等人用直接接触式膜蒸馏进行脱盐分别得到了足以同反渗透竞争的高达75kg/m2·h的跨膜通量;Lawson[75]等人通过优化膜组件的设计和采用性能优良的膜,将跨膜通量提高到了反渗透技术的2~3倍。