轿车副车架强度可靠性分析及优化
轿车前副车架设计及优化

本科毕业设计(论文)轿车前副车架设计全日制本科生毕业设计(论文)承诺书本人郑重承诺:所呈交的毕业设计(论文)是在导师的指导下,严格按照学校和学院的有关规定由本人独立完成。
文中所引用的观点和参考资料均已标注并加以注释。
论文研究过程中不存在抄袭他人研究成果和伪造相关数据等行为。
如若出现任何侵犯他人知识产权等问题,本人愿意承担相关法律责任。
承诺人(签名):日期:轿车前副车架设计摘要汽车轻量化设计是现代汽车产业发展的必然趋势,本课题围绕Roewe轿车前副车架采用镁合金的轻量化设计,实现平衡轿车驾驶的操控性和舒适性的目标。
通过对轿车前副车架功能的分析,确立前副车架的设计方案,建立三维模型和有限元分析模型,并对前副车架采用镁合金材料强度分析,并对于结构薄弱的位置提出优化思路。
研究过程中,首先了解了汽车轻量化设计的目的和方法,并学习前副车架的相关知识,明确其在汽车中的作用,前副车架的发展历史,功能设计要求,结构特点,型式,与车身连接方式,材料等,本课题的前副车架采用镁合金,文中也分析了镁合金的特性优点以及在汽车制造上的应用。
然后建立了前副车架的三维模型。
接着对前副车架进行结构强度的理论分析,包括所受到的载荷类型和强度理论,确定载荷工况,为之后的有限元分析奠定基础。
在学习有限元分析理论和了解有限元分析法在汽车行业中的应用之后,利用有限元分析软件hypermesh对前副车架的三维模型进行简化处理,网格划分,施加刚性连接和载荷工况,完成前副车架有限元分析模型的建立。
在对前副车架进行强度分析后得出应力云图,并对其结构薄弱的位置提出优化思路。
本课题的研究工作,无论在设计上还是分析上,都对汽车行业零部件现代化开发提供了参考。
关键词:前副车架汽车轻量化镁合金有限元方法DESIGN OF FRONT SUB-FRAME OF ROEWE CARABSTRACTAutomotive lightweight design is an inexorable trend of the development of modern auto industry. In this paper, magnesium alloy is used to design the front sub-frame of Roewe car by lightweight technology to achieve the balance of control and comfort during the car driving. By analysing the function of front sub-frame, the design scheme is established, as well as the 3D model and the finite element model. Strength analysis is carried out to the front sub-frame of magnesium alloy and optimized idea is suggested to the weak link of the structure.In the process of research, first, the intention and method of automotive lightweight design are comprehended. The related knowledge of the front sub-frame has been learned, and also the function, the development ,the design requirement, the shape ,the type ,the connection with the car body and the material have been confirmed. In this paper, the character and the application in the automotive manufacture of magnesium alloy is also analyzed. After that, a 3D model of front sub-frame is built.Strength theoretic analysis is carried out to the front sub-frame, including load type and strength theory. Load cases are confirmed and ADAMS dynamics model is introduced in order to set the base of finite element analysis.After learning finite element analysis theory and knowing the application in the automotive manufacture, hypermesh software is used to simply dispose the 3D model, and also mesh shell, add rigid joint, load cases so that a finite element analysis model can be established. Then the hypermesh optistruct function is used to get the stress nephogram, and the optimized idea is brought forward to the position of weak structure.The results showed that the dynamic characteristics of designed front sub-frame of magnesium alloy meet the front sub-frame use requirements.Key Word: Front sub-frame,Automotive lightweight design,Magnesium alloy,Finite element method目录中文摘要ABSTRACT第一章绪论---------------------------------------------------- 11.1 课题研究意义--------------------------------------- 11.2 课题研究背景--------------------------------------- 11.3 本课题研究的主要内容------------------------------- 2第二章前副车架总体方案设计----------------------------------- 32.1 前副车架简介--------------------------------------- 32.1.1 副车架的作用--------------------------------- 32.1.2 汽车前副车架的发展历史----------------------- 32.2 前副车架设计方案----------------------------------- 32.2.1 副车架功能设计要求--------------------------- 42.2.2 前副车架形状--------------------------------- 42.2.3 前副车架型式的选取--------------------------- 42.2.4 前副车架工艺分析----------------------------- 52.2.5 前副车架与车身的连接方式--------------------- 52.2.6 前副车架材料的选取--------------------------- 62.2.7 前副车架主要部件----------------------------- 72.2.8 前副车架几何建模----------------------------- 72.2.9 前副车架结构特点----------------------------- 8 第三章结构强度分析理论--------------------------------------- 93.1 强度理论------------------------------------------- 93.2 前副车架所受载荷概述------------------------------- 113.3 前副车架计算工况选择------------------------------- 11 第四章前副车架有限元分析------------------------------------- 134.1 有限元分析理论及应用------------------------------- 134.1.1 有限元分析理论------------------------------- 134.1.2 有限元分析法在汽车行业中的应用--------------- 134.2 有限元分析模型建立--------------------------------- 144.2.1 Hypermesh软件介绍--------------------------- 144.2.2 前副车架有限元建模过程----------------------- 154.2.3 单元的选用和网格划分------------------------- 164.2.4 前副车架有限元模型--------------------------- 164.2.5 设置材料特性和单元属性----------------------- 164.2.6 施加刚性连接和载荷工况----------------------- 174.3 前副车架有限元计算--------------------------------- 184.4 前副车架优化设计思路------------------------------- 20 第五章总结与展望--------------------------------------------- 21 参考文献------------------------------------------------------- 22 致谢----------------------------------------------------------- 23上海理工大学本科生毕业设计(论文)第一章绪论1.1 课题研究意义汽车的底盘性能无外乎舒适性、操控性两大主题,而这两大功能又是一对相互制约的矛盾。
汽车车身强度与刚度分析与优化

汽车车身强度与刚度分析与优化汽车车身的强度和刚度是汽车设计中非常重要的参数。
强度和刚度的优化可以提高汽车的安全性、稳定性和舒适性。
本文将对汽车车身强度和刚度的分析与优化进行探讨。
汽车车身的强度是指车身在承受外部载荷时的抗变形和抗破坏能力。
强度分析主要包括静力学分析和动力学分析。
静力学分析是指在静止状态下,通过应力分析和变形分析来评估车身的强度。
动力学分析是指在运动状态下,通过模拟车辆行驶时的各种载荷和振动条件,来评估车身的强度。
强度分析的目标是确定车身的最大载荷和最大应力,以确保车身在正常使用条件下不会发生破坏。
汽车车身的刚度是指车身对外部载荷的响应能力。
刚度分析主要包括静态刚度分析和动态刚度分析。
静态刚度分析是指在静止状态下,通过应力和变形的关系来评估车身的刚度。
动态刚度分析是指在运动状态下,通过模拟车辆行驶时的各种载荷和振动条件,来评估车身的刚度。
刚度分析的目标是确定车身的刚度系数,以确保车身在行驶过程中的稳定性和舒适性。
为了优化汽车车身的强度和刚度,可以采取以下几种方法。
首先,可以通过材料的选择来提高车身的强度和刚度。
高强度钢材、铝合金和复合材料等新材料具有较高的强度和刚度,可以用于车身的关键部位,提高整体的强度和刚度。
其次,可以通过优化车身结构来提高强度和刚度。
例如,增加加强筋和支撑结构,提高车身的整体刚度。
此外,还可以通过优化焊接和连接工艺,减少焊接接头的应力集中,提高车身的强度和刚度。
最后,可以通过模拟和仿真分析来优化车身的强度和刚度。
利用计算机辅助设计软件,可以对车身进行各种载荷和振动条件的仿真分析,以评估车身的强度和刚度,并进行优化设计。
总之,汽车车身的强度和刚度是汽车设计中非常重要的参数。
通过强度和刚度的分析与优化,可以提高汽车的安全性、稳定性和舒适性。
材料的选择、结构的优化和仿真分析等方法可以用于优化车身的强度和刚度。
随着科技的不断进步,汽车车身的强度和刚度将不断提高,为用户提供更加安全和舒适的驾驶体验。
车身结构优化设计与性能分析

车身结构优化设计与性能分析一、前言汽车行业经历了长达一个世纪的发展,车身结构也随之不断进化。
从最初的单纯金属制造到现在的多材料结构,每一次的演变都让汽车更加安全与高效。
本文将从车身结构的优化设计入手,探讨如何提高汽车性能。
二、车身结构的优化设计1. 材料选择在过去,车身结构主要是由钢铁等金属材料构成,但现在随着新材料技术的不断发展,更多的新材料被应用于车身结构上。
比如碳纤维,它的强度和刚度比钢铁还高,同时它的重量却要轻很多,可以大大减轻汽车的整体重量,提高汽车的燃油效率和节能性能。
2. 结构设计车身结构设计需要考虑车辆的性能和安全性。
为了达到这些目标,工程师们通常会采用一些设计手段来确保车辆在各种条件下的安全性和性能。
例如,在汽车碰撞时,工程师必须确认车身结构能承受撞击力,并且车内乘客得到足够的保护。
设计车身结构时,还要考虑到气动以及流体力学特性,以确保汽车在高速行驶的过程中能够保持稳定的行驶。
3. 仿真计算与传统的试错方法相比,仿真计算可以更加快速而精确地对车身结构进行评估,减少时间和成本。
使用高效的计算机仿真软件,工程师们可以对施力、载荷、应力、扭矩和应变等因素进行详细的分析和优化。
在此基础上,设计出更加优异的车身结构,缩短研发周期,提高产品质量。
三、车身结构性能分析1. 刚度车身结构的刚度对于汽车牵引、平稳行驶、路面过滤等方面的表现有极大的影响。
由于车身结构的强度和刚度取决于材料和构造,在材料性能相同时,通过合理结构设计和优秀的组装工艺可以极大提高车身的刚度。
2. 强度车身结构的强度代表着汽车在受到外力冲撞时对撞击力的抵抗能力。
因此,提高车身的强度可以保证汽车在各种行业标准测试下的安全性能。
3. 抗拉能力抗拉能力是车身结构性能的一个重要指标,它代表了车身在受到拉力时的能力。
因此,车身结构的材料和结构设计需要具备足够的抗拉能力,以确保车辆在行驶过程中不易损坏。
4. 范德瓦尔斯力分析驾驶车辆时,车身的稳定性对乘客的感觉和安全性都是非常重要的。
汽车车架的静态强度分析

汽车车架的静态强度分析汽车车架是整个车辆结构的骨架,负责承担各种静态和动态负载,并保证车辆的稳定性和安全性。
因此,对汽车车架的静态强度进行分析和测试非常重要。
本文将从静态强度分析的目的、方法和应用等方面进行探讨。
静态强度分析主要是通过数学模型和计算方法,分析车架在静态负载下的应力、应变分布和变形情况,从而评估车架的强度和刚度。
该分析能够提供一定的设计指导和性能评价,可以帮助工程师合理设计车架的结构和材料,确保其能够承受正常使用条件下的负载,并提高车辆的安全性和性能。
静态强度分析的方法主要包括解析方法和数值模拟方法。
解析方法是通过基于力学原理的方程和公式,利用数学和物理的方法,对车架进行受力分析和计算。
这种方法适用于简单的结构和荷载条件,具有计算速度快的优点,但对于复杂结构或非线性问题的分析能力有限。
常用的解析方法包括静力学和弹性力学的分析方法,如静力学平衡方程、应力-应变关系的理论等。
数值模拟方法是利用计算机和软件工具,通过建立虚拟模型和数学模型,对车架进行模拟和计算。
这种方法适用于复杂结构和非线性问题的分析,可以更准确地预测车架的强度和刚度。
常用的数值模拟方法包括有限元分析方法和多体动力学分析方法。
有限元分析方法将车架分割成有限个小单元,通过数学计算得到每个单元的应力和变形,最终得到整个车架的应力和变形分布。
多体动力学分析方法则是利用动力学方程和运动学方程,对车架在静态负载下的运动和变形进行模拟和计算。
静态强度分析在汽车工程中具有广泛的应用。
首先,它可以用于评估车架的设计方案和材料选择。
通过对不同设计方案进行静态强度分析,可以找到最优的设计方案,并选择适当的材料,以提高车架的抗弯、抗压和抗扭强度。
其次,静态强度分析也可以用于验证车架的安全性能。
通过模拟车架在极端负载情况下的应力、应变和变形,可以评估车架的安全性能,并指导相关安全措施的设计。
此外,静态强度分析还可以应用于车架的优化设计和性能改进,以满足不同使用条件和需求。
副车架有限元分析及设计优化_蒋玮

《北京汽车》2010.No.2北京汽车文章编号:1002-4581(2010)02-0013-03副车架有限元分析及设计优化蒋玮Jiang Wei(上海汇众汽车制造有限公司产品工程部,上海200122)摘要:利用CAE、CAD技术对新开发的某轿车副车架进行有限元分析及设计优化,并通过试验验证设计的可靠性,从而建立合理可行的结构件设计开发流程。
关键词:副车架;有限元;优化设计;试验验证中图分类号:U463.32.02文献标识码:A随着汽车业竞争压力的加剧,CAE技术在零部件开发中被广泛使用。
目前国内外汽车结构件的设计多采用运动学分析来获得硬点、包络面及载荷等设计输入,利用有限元分析评判设计的合理性,并通过试验验证分析设计的可靠性,将设计、计算机仿真和试验有效地结合起来,大大缩短了开发周期[1]。
文中以轿车副车架作为研究对象,对设计模型进行CAE分析,并根据分析结果进行设计优化,使所设计的副车架满足设计要求。
同时通过台架模拟试验验证了CAE分析及设计的可靠性。
1概述副车架是轿车底盘中非常重要的安全及承载件,作为轿车前部的承载基体,支撑着所有簧上质量[1],承受和传递汽车行驶过程中所产生的各种力和力矩。
因此,副车架的刚度、强度、疲劳寿命等对车辆整体的强度、操纵稳定性及安全性起到至关重要的作用。
按副车架本身工艺特性来分,有冲压焊接和液压成型焊接两种。
文中所介绍的副车架为大型冲压焊接件。
该副车架的主要结构是由两根横梁和两根纵梁以及一些附属支架通过焊接构成,焊接方式为电弧焊,具体结构见图1所示。
1、前梁2、后梁3、右梁4、左梁5、发动机前支架6、发动机后支架7、控制臂前支架8、控制臂后支架9、前套筒10、后套筒11、稳定杆安装孔12、转向机安装孔13、前加强片2有限元模型的建立2.1网格划分[2]网格划分采用Hypermesh软件,副车架本体网格单元采用壳单元,以四边形为主,三角形为辅,焊缝网格采用壳单元中的四边形。
轿车后副车架多轴疲劳分析

轿车后副车架多轴疲劳分析一辆轿车的后副车架是车辆的重要组成部分,它连接了车辆的后轴和车身,承受着车身重量和扭转力的作用。
然而,长期的行驶和较大的荷载容易导致副车架疲劳损伤和失效,影响车辆的安全性和稳定性。
因此,对轿车后副车架的多轴疲劳分析是非常重要的。
多轴疲劳分析是评估结构材料在复杂应力条件下的疲劳性能的过程。
在研究轿车后副车架的多轴疲劳行为时,需要了解车辆的荷载、驾驶条件和工作环境等因素,并采用合适的实验方法和数值模拟技术进行分析。
实验方法主要是通过在实际工作条件下的试验来研究疲劳行为。
例如,可以在实际道路条件下对车辆进行长时间行驶的试验,同时在后副车架的主要应力集中区域安装传感器和监控设备,实时记录和分析该部位的应力变化,并进行疲劳寿命测试。
该方法可以准确模拟真实的工作条件,但需要耗费较长时间和大量资源。
数值模拟技术是通过对车辆结构的材料和受力条件进行建模,并采用计算机软件模拟各种复杂应力场下的材料疲劳性能。
该方法可以模拟多种应力条件下的疲劳破坏模式,预测疲劳寿命,并进行优化设计。
但需要准确的材料参数和较高的数值计算能力。
一般来说,轿车后副车架的多轴疲劳分析需要考虑以下因素:1.荷载:轿车后副车架承受着车身和后轴的质量和加速、制动等力的作用。
因此,荷载是影响后副车架疲劳寿命的重要因素。
2.材料:后副车架的材料应具有较高的强度、塑性和韧性,以抵抗荷载引起的应力和变形。
同时,也需要考虑材料在不同应力下的疲劳寿命和破坏模式。
3.几何形状:后副车架的形状和尺寸影响了它的刚度和应力分布。
因此,需要进行优化设计,以减少应力集中和疲劳破坏的风险。
4.工作环境:轿车后副车架在不同的工作环境下,如高温、湿度、盐雾等条件下,也会受到不同的腐蚀和疲劳作用,因此需要特别考虑。
总之,轿车后副车架的多轴疲劳分析是保证车辆安全性和性能的重要环节。
通过合理的实验方法和数值模拟技术,可以准确评估后副车架的疲劳寿命和破坏模式,并进行结构优化,提高车辆的安全性和稳定性。
汽车车架的静态强度分析
汽车车架的静态强度分析汽车车架静态强度分析的目的是确定车架在不同负载下的应力和变形情况,从而判断车架是否能够承受正常工作条件下所受到的力和压力,并且保持结构的稳定性。
这需要进行力学计算和数值模拟,通过建立数学模型和采用适当的分析方法,来模拟和预测车架在不同工况下的受力情况。
在汽车车架的静态强度分析中,一般需要考虑以下几个方面:1.车架材料的选取:合理选择车架材料对保证车架的强度和轻量化具有重要影响。
常用的车架材料包括高强度钢、铝合金和碳纤维等。
根据车架的设计要求和使用环境的特点,选择合适的材料进行分析和计算。
2.车架的边界条件:在进行车架强度分析时,需要确定车架的边界条件,包括支撑结构、连接方式和外部负载等。
这些边界条件将直接影响到车架的受力情况和变形情况。
3.车架的结构设计:车架的结构设计是保证车架强度和刚度的关键。
合理的结构设计可以减小车架的重量,提高其强度和刚度。
在设计过程中需要考虑各个部件的布局、横截面形状和连接方式等因素,以满足设计要求。
4.车架的强度计算和模拟分析:在进行车架强度计算时,需要采用适当的力学理论和分析方法,例如有限元分析等。
通过对车架进行力学计算和数值模拟,可以得到车架的应力和变形情况,从而评估车架的强度和稳定性。
在进行汽车车架的静态强度分析时,还需要考虑不同工况下的负载情况。
例如,正常行驶时车辆的自重负载、车辆悬挂系统的负载和车轮悬挂加载等。
通过综合考虑这些因素,可以得到车架在不同工况下的强度和稳定性,并对设计进行优化。
总之,汽车车架的静态强度分析是保证车辆运行安全的重要环节。
通过对车架材料、边界条件、结构设计和负载情况等方面的分析和计算,可以评估车架的强度、刚度和稳定性,并为车架的优化设计提供指导。
车身强度分析与优化设计
车身强度分析与优化设计第一章概述车身强度是车辆工程设计中的一个重要问题,它直接关系到车辆的安全性和舒适性。
本文将介绍车身强度的分析与优化设计方法,探讨如何在保证车辆强度的前提下,优化车身结构。
第二章车身强度分析2.1 车身强度测试车身强度测试是衡量车身质量的重要方法,也是车辆行驶中保证安全的前提。
测试方法主要包括静载试验、动态试验、实际道路试验等。
2.2 车身强度分析方法车身强度分析方法包括有限元分析、有限差分法、边界元法等。
有限元法常用于车身强度分析,通过建立车身结构的有限元模型计算应力、应变等参数,以确定强度分布及疲劳寿命。
同时,分析结果也为优化设计提供了依据。
第三章车身强度优化设计3.1 车身结构优化设计车身结构优化设计是指在保证车身强度的前提下,通过结构重新设计,减小重量和尺寸,增加空间利用率和车辆性能。
采用的方法主要包括材料选择、结构调整等。
3.2 车身局部优化设计车身局部优化设计是指在满足整体车身强度要求的前提下,对局部结构进行设计优化。
常见的局部优化设计方法包括加强局部支撑结构、改进焊接工艺等。
第四章实例分析以汽车车身强度分析与优化设计为例,应用有限元分析方法对车身结构进行建模和分析。
同时,引入材料的力学性能进行优化设计,采用多目标优化方法,考虑车身强度、车身重量和空间利用率等多个因素。
最终,得到了比传统车身结构更轻、强度更高的新型车身结构。
第五章结论本文介绍了车身强度分析与优化设计的基本方法,通过应用有限元分析和多目标优化方法,实现了车身结构的优化设计,得到了比传统车身结构更轻、强度更高的新型车身结构。
车身强度分析与优化设计在车辆工程领域中具有重要的意义,将对未来汽车的发展和设计产生深远的影响。
汽车车身结构的强度与刚度分析
汽车车身结构的强度与刚度分析汽车车身结构的强度与刚度是保证汽车安全性和行驶稳定性的重要因素。
在汽车设计和制造过程中,对车身结构的强度与刚度进行合理的分析和优化设计,可以提高汽车的整体性能和使用寿命。
本文将从汽车车身结构的强度与刚度两个方面进行分析。
一、强度分析汽车在行驶过程中会受到各种力的作用,如加速度、制动力、横向力等。
因此,汽车车身必须具备足够的强度来承受这些力的影响,以确保车辆在各种情况下都能保持稳定和安全。
强度分析主要是指对车身各部位的受力情况进行计算和评估,确定其是否满足设计要求。
1.1 强度计算强度计算是通过有限元分析等数值仿真方法,对车身结构的受力情况进行模拟和计算,得出各个部位的应力、变形等参数。
根据这些参数,可以判断车身结构是否存在强度不足的问题,并对其进行改进和优化设计。
1.2 结构设计在汽车设计过程中,需要考虑到车身各个部位的受力情况,合理布局材料和加强构件,以提高车身的整体强度。
同时,采用轻量化设计和材料优化等手段,可以在不影响强度的前提下减轻车身质量,提高燃油效率和操控性。
二、刚度分析刚度是指车身在不同行驶条件下的变形和振动情况,通过对车身结构的刚度进行分析,可以评估车辆的悬挂系统、操控性和舒适性等性能。
刚度分析是汽车设计中一个关键的环节,可以直接影响车辆的整体性能和用户体验。
2.1 刚度评估车身刚度的评估主要包括车身的扭转刚度、弯曲刚度和横向刚度等方面。
通过有限元分析和实车试验等方法,可以确定车身在不同受力情况下的刚度表现,评估其是否符合设计要求。
2.2 刚度优化在汽车设计中,刚度优化是通过调整车身结构和材料的布局,改进悬挂系统等方式,提高车辆的刚度表现。
合理的刚度设计可以改善操控性能和舒适性,提升车辆的整体性能表现。
综上所述,汽车车身结构的强度与刚度是确保汽车安全性和行驶稳定性的重要因素。
通过对车身结构的强度与刚度进行科学的分析和优化设计,可以提高汽车的整体性能,为驾驶员提供更加安全和舒适的驾驶体验。
汽车底盘车架受力分析与优化设计
汽车底盘车架受力分析与优化设计汽车底盘车架是汽车的支撑结构,承担着整个车辆的重量以及各种动力和悬挂装置的载荷。
在日常使用过程中,车架需要承受来自道路不平整、悬挂系统振动以及车辆加速、制动等多方面的受力。
因此,对于汽车底盘车架的受力分析和优化设计至关重要。
汽车底盘车架主要承载车身和发动机,同时还需要提供稳定的悬挂点和安全的乘坐环境。
为了确保车架能够承受各种受力情况下的安全运行,需要对车架进行受力分析。
受力分析的目的是确定各个关键部位的受力情况,以及评估车架是否具备足够的强度和刚度来应对这些受力。
在受力分析过程中,常用的方法包括有限元分析和应力分析。
有限元分析是一种数值计算方法,通过将复杂的结构划分成许多小的单元来近似求解结构的受力情况。
应力分析则是通过应力公式计算各个部位的受力情况。
这些分析方法可以帮助工程师确定车架的强度、刚度和耐久性,并根据分析结果进行优化设计。
在现代汽车设计中,轻量化和刚度是主要的设计目标之一。
轻量化可以减少车辆的自重,提高燃油经济性和动力性能,而刚度则可以提高悬挂系统的稳定性和操控性能。
因此,在进行车架优化设计时,需要平衡车架的强度和重量,并确保刚度满足要求。
为了实现优化设计,可以采用多种方法。
一种常用的方法是结构拓扑优化,通过重构车架的材料分布和连接方式来减少重量并增加刚度。
另一种方法是材料优化,选择优质的车架材料来提高强度和刚度。
此外,还可以通过优化悬挂系统和车轮布局来减小车架的受力情况。
在进行优化设计之前,需要对车架的受力情况进行详细的分析。
首先,需要确定车辆的使用环境和工况,包括道路状况、车辆负载、行驶速度等。
然后,在这些工况下,进行静态和动态的受力分析,确定各个关键部位的受力情况。
最后,根据分析结果进行优化设计,改善车架的受力分布和刚度。
总之,汽车底盘车架的受力分析与优化设计是保证车辆安全、稳定和可靠运行的重要环节。
通过采用先进的受力分析方法和优化设计策略,可以最大限度地提高车架的强度和刚度,并实现轻量化的目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轿车副车架强度可靠性分析及优化
作者:袁德文陈双喜
来源:《科学与财富》2018年第35期
摘要:轿车副车架强度可靠性影响着汽车使用安全,因此本文主要针对轿车副车架的强度进行评估,分析其可靠性,针对分析结构进行优化。
关键词:轿车副车架;强度;可靠性;优化
随着社会的发展和科技的进步,现阶段的我们不同于以往,生活条件越来越好,在代步工具的选择上,人们不仅仅局限于其代步功能,对其他方面的需求也在激增。
现阶段传统意义上的悬架系统已经满足不了人们的需求,由于传统的悬架系统是将构建好的架子直接连在车上,这会存在车中振动明显以及噪音大的缺陷,进而使得车子的整体性能降低不利于用户良好的体验,基于此问题,人们对此进行创新改进,通过在二者之间加入副车架减轻振动及噪声,进而提高汽车使用的舒适程度。
以往副车架通常配置在D级豪华车中,发展到现阶段为止A级私家车中也常会配置该装备。
社会的高速发展使得大部分的家庭都会配备私家车,对于汽车而言安全永远位于第一位。
所以在设计汽车的时候必须从安全第一的角度出发对汽车进行改进设计,进而提高汽车的其他性能。
副车架是其中必不可少的设备,因此副车架的安全性设计也是非常重要的。
1.副车架分类及功能
1.1副车架分类
从多种角度上而言,副车架有很多种分类方法,现阶段主要有以下两种方式:
1)依据悬架与车架的连接方式的不同分为:
全承载式副车架:全承载顾名思义悬架上的所有部分都和副车架相连接,进而再与车体相连。
这种方式通过在副车架与悬架中间使用橡胶制品减少在实际使用中的振动进而起到减震的作用,从而使得车子的舒适程度有所提升,提高车子的性能。
半承载式副车架:半承载式也就是悬架与副车架接近一半的部位是直接相连的,其余部位通过悬架中有缓冲作用的部件进行连接,这种连接方式能够在保证车身的稳定性的同时减轻振动,提高车子的整体性能。
2)按构成副车架材料不同分为:
钢制材料:硬度高,价格适中。
铝制材料:重量小、柔韧性好、具有耐腐蚀性。
碳纤维材料:质量轻、强度高、耐腐蚀
新型复合材料:加工工艺步骤少、质量轻、耐腐蚀
1.2副车架功能
副车架中的底盘是其重要组成部分之一,针对底盘的性能,我们通常会考虑其舒适程度以及底盘操作性。
但是这两种性能是此消彼长的,并不能保证其二者都处于较高的水平,因此,在设计过程中,应将二者控制在恰当的水平,进而保证底盘的舒适度以及操作性,从而减弱噪声提高缓冲。
副车架对改善与悬架相连的刚度等因素具有重要的意义,因此我们可以调节副车架进而对车子的舒适程度以及可操作性能进行调节适应。
悬架散件通常情况下预先配置在副车架上,输入车子内部的部件,最后再将其配置到车上。
这种使用方案能够度悬架的总体性能进行改造,进而能够符合不同安装平台的要求,进而节约改进成本,有助于技术的最大化使用。
2 副车架强度分析问题的提出
汽车的动力系统是其启动运行的重要前提。
因此,有关设计者在原车型的基础上进行动力系统的整体改进,在换了一款新的发动机后进行实验,在行驶了6000多公里路之后,汽车的副车架出现了明显的坏裂的痕迹,开裂位置为车体与摆臂相连的位置,在换了新发动机之后,其动力性明显提升,因为没有对该车进行实际道路载荷试验,因此没有分析车子的疲劳性,而是仅仅分析了副车架的承载能力。
3 有限元模型的建立
副车架使用的是抗液压能力的板材以及通过钢板冲压而形成的附件焊结构,使用4个竖直的橡胶衬套相结合,竖直的摆臂与上下的摆臂都是与副车架直接相连的,进而建立三维如图1所示,进而把建构的模型导出STF,转换格式后传递进HypcrMcsh中,通过模型建构,使得冲压部件转化为壳体,同时使用Shc中的相关模块对其进行相关的划分,将其划分为边长为
3mm正方形以及部分三角形单元网格,其中能够得到70336个单元节点,以及38432个单元,其中正方形网格655个,三角形网格2917个,此副车架使用的材料为:材料钢,屈服极限420Pa,弹性模量210GMPa,泊松比0.3,密度7800kg.m-3。
4 动力学计算工况载荷
如图1所示的刚柔耦合前悬架动力学模型,由于悬架的主要结构是带扭杆形的结构。
其中包括控制臂、缓震装置、扭杆、副车架、稳定杆、发动机动力总成等。
该模型的副车架模型所使用柔性体,通过软件NASTRAN动态模拟计算的出中性文件MNF。
使用中向其中输入所需
要的各项数据以及实际工况,进而得到各项工况的结果;在实际使用软件时应充分考虑到发动机的功率的不稳定性所导致的实际情况的改变,进而计算出发动机能够输出的最大扭矩工况,得到悬置受力。
在之后的情况分析时也建立了发动机悬置模型,进而模拟出发动机的输出力矩。
5.副车架结构优化设计
5.1优化理论
拓扑优化是结构材料的空与实的问题,其基本思路是人为引入一种假想的密度可变材料,优化时以材料密度为设计变量,将结构拓扑优化问题转换为材料分布问题。
变密度法是连续体拓扑优化常用的方法。
在优化的过程中,每一个单元对应一个优化变量,通过不断的改变优化变量的取舍,使中间密度值尽可能的在空和实之间分布,使连续变量的拓扑优化模型能更好的逼近离散变量的优化模型队采用的变密度拓扑优化方法。
为了更好的改善副车架的模态特性,如果将其一阶频率值最大作为目标函数,在优化迭代的过程中,由于结构材料分布,当一阶频率达到最大时,其它各阶模态频率的大小和振型也将随之改变,频率阶数可能相互调换次序,引起模态振荡现象,从而干扰模型求解收敛结果,也影响优化迭代过程中的收敛性和稳定性。
为避免这种现象,采用平均频率四公式,来定义优化目标函数,基于频率建立拓扑优化数学模型:
5.2具体优化策略
(1)改进材料,减轻副车架质量;
(2)增加焊缝;
(3)检查焊缝质量,保证副车架稳定性。
5.3优化步骤
利用HyperWork、中的OptiStruct模块的对轿车的副车架进行拓扑优化设计。
首先要确定优化过程中的设计变量、优化目标和约束函数。
由于拓扑优化的函数公式在。
ptiStruct中不能直接调用,可利用该软件中的自定义方程功能,先定义平均频率公式,然后再把定义好的函数设为响应,最后把该响应作为拓扑优化的目标函数、在。
ptiStruct中建立拓扑优化计算模型。
(1)将优化设计空间的每一个单元相对密度ρ作为设计变量。
(2)体积分数η
(3)平均频率最大化作为目标函数。
5.4优化结果分析
将修改好的副车架模型在HypcrWork、中进行静力分析,得到三种工况下的静力云图,其中应力最大的Bump工况,优化后的Bump工况下副车架总成Von-mists等效应力最大值为356.1 MPa,与优化前相比较有显微的增加,但远小于材料的最大许用应力420MPa,说明优化后的副车架结构力学性能表现较好。
结论
通过建立包含有副车架刚柔耦合的动力学模型,进行各种典型工况的动力学分析,为计算分析副车架的结构强度提供边界载荷,再根据有限元分析计算出副车架结构强度应力分布情况,为产品设计人员提出改进方案,优化产品结构提供一定的参考依据,并取得良好的效果。
参考文献
[1]潘宇.某车型副车架结构强度与模态分析及结构改进[J].机械强度,2017,39(06):1490-1494.
[2]周庆辉,刘李艳,沈明波.前举升式自卸汽车副车架轻量化优化设计[J].中国工程机械学报,2017,15(05):409-414.
[3]宛银生,周伟,姜再友,袁世林,周磊.基于HyperWorks的副车架强度及模态分析[J].汽车工程师,2017(03):16-18.。