网络数学实验6图与网络分析-最短路问题

合集下载

最短路径问题网络分析毕业论文(可编辑)

最短路径问题网络分析毕业论文(可编辑)

最短路径问题网络分析毕业论文摘要第一章绪论二十世纪中后期,随着计算机的出现和发展,图论的研究得到广泛重视,最短路径问题是图论中的一个典范问题,它已经被应用于众多领域.最短路径问题最直接的应用当数在地理信息领域,如:GIS 网络分析、城市规划、电子导航等.在交通咨询方面,寻找交通路网中两个城市间最短的行车路线就是最短路径问题的一个典型的例子.在网络通信领域,信息包传递的路径选择问题也与最短路径问题息息相关.举个例子,OPSF开放路由选择协议,每个OPSF路由器都维护一个描述自治系统拓扑结构的数据库,通过这个数据库构建最短路径树来计算路由表,从而跟踪自治系统范围内到每个目标的最短路径.在图象分割问题中,最短路径也有直接的应用:在语音识别中,一个主要的问题就是区别同音词,例如,to、two、too.为解决这个问题,我们需要建一个图,顶点代表可能的单词,边连接相邻的单词,边上的权代表相邻的可能行大小.这样图中的最短路径,就是对句子的最好解释.由于最短路径问题的广泛应用,很多学者都对此进行了深入的研究,也产生了一些经典的算法.近些年来,对最短路径研究的热度依然不减,并且时间复杂度降得越来越低.所以在本课题中我们将提出不仅是以前我们学习过的一些经典的算法,我们还将提出一些以前没有学习过的更有应用空间的算法.以及各算法之间的比较.最后还将把这些算法在现实中的应用最一些简单的介绍.第二章网络的最短路问题的基础知识2.1 图的基本概念(1)图定义:一个(无向)图G 是一个有序二元组(V,E),其中是顶点集,是边集,且是一个无序二元组,它表示该边连接顶点与.图1就是一个图说明:在保持图的点边关系不变的情况下,图形的位置、大小、形状都是无关紧要的.若,则称连接与;点和称为的顶点,称或与关联,与是邻接的顶点;如果两条边有一个公共顶点,则称这两条边是邻接的;(2)环定义:两个顶点重合为一点的边称为环如图图1中.图1(3)重边定义:如果有两条边的顶点是同一对顶点,则称这两条边为重边(如图1中与中有两条边相连).(4)孤立点定义:不与任何边关联的点称为孤立点(如图1中);(5)无环图定义:没有环的图称为无环图;(6)简单图:定义:既没有环也没有重边的图称为简单图.设G(V,E)是一个简单图,则显然有.(7)完全图定义:若上式中等号成立,则说明该图中每对顶点间恰有一条边相连,称此图为完全图.(8)补图定义:一个简单图的补图是与有相同顶点的简单图,且中两个点相邻当且仅当它们在中不相邻.(9)二分图定义:一个图G(V,E),若存在V 的一个分划(,),使得每条边有一个顶点在中,另一个在中,则称为二分图.(10)子图、支撑子图定义:设有两个图,,如果,,则称为的支撑子图.(11)点导出子图定义:设有图G(V,E),是的非空子集,若以为点集,以两点均在中的所有边为边集的子图称为由导出的的子图,记为,简称点导出子图.(12)边导出子图定义:若是的一个非空子集,则以为边集以中边的所有顶点作为点集的子图,称为由导出的的子图,记为,简称边导出子图.(13)度:定义:图中顶点的度为与关联的边的数目(与关联的每个环算作两条边),记为.结论:设G(V,E)是一个图,则,即度数为奇数的顶点有偶数个.2.2有向图(1)有向图定义:一个有向图是一个有序二元组,其中是顶点集,称为的弧集,为一个有序二元组.称为连向的弧,为的出弧,的入弧;称为得尾,称为的头;称为的前继,称为的后继.图2就是一个有向图.图2(2)环定义:头和尾重合的弧称为环.(3)重弧定义:若两条弧有相同的头和尾,则称这两条弧为重弧.(4)简单有向图定义:没有环和重弧的有向图称为简单有向图‘(5)基图定义:把有向图中每条弧用边来代替,得到一个无向图,称为得基图.(6)完全有向图定义:设G(V,E)是一个简单有向图,则,若等号成立,则称这样的图为完全有向图.(7)出度、入度定义:有向图中顶点的出弧的数目称为的出度,记为;顶点入弧的数目称为的入度,记为.结论:设G(V,E)是一有向图,则类似地可以定义有向图的子图,支撑子图,点,边导出之子图的概念.(8)网络定义:设是一个图,若对的每一条边都赋以一个实数,称为边的权,则连同边上的权称为一个网络,记为.同样可以定义有向网络.在此主要讨论网络上的各种优化问题.无向网络可以转化为有向网络,具体做法为:把无向网络中每条边代之以一对弧()和(),且两条弧的权都等于边的权.2.3连通性途径、迹、路定义:设有图 G(V,E),如果它的某些顶点与边可以排成一个非空的有限交错序列,这里该途径中边互不相同,则称为迹;如果顶点互不相同,则称它为路.显然路必为迹,但反之未必.闭路径定义:如果某途径至少含一条边,且起点与终点重合,则称它为一条闭途径.类似可定义闭迹和回路(又称圈).注意:若为简单图,则两个顶点间边若存在必是唯一的,故由到的一条途径可以用顶点序列表示.连通图:定义:图中若存在一条从顶点到的途径,则称与是连通的.如果图中任何两个顶点都是连通的,则称是连通图.例如,完全图是连通的.二分图,,则只要,中有一个大于1,则一定不是连通图.连通子图定义:如果是的子图,且是连通的,则称为的连通子图.极大连通子图定义:如果为的连通子图,且不存在连通子图,使是的子图.图的极大连通子图又称为的连通分支.有向途径定义:设有一个有向图,中某些顶点与弧组成的非空有限序列这里,,且,则称它为从到的有向途径.类似可定义有向迹,有向路,有向闭途径,有向闭迹,有向回路(有向圈).当是简单有向图时,从到的一条有向途径可简记为().强连通定义:中若既存在一条从顶点到的有向途径,又存在从到的有向途径,则称和是强连通的.如果中任意两顶点都是强连通的,则称是强连通的.强连通分支定义:的极大强连通子图称为强连通分支.注:若强连通,则恰有一个强连通分支.结论:若为有个连通分支的简单无向图,则的邻接矩阵为准对角矩阵若为有个强连通分支的简单有向图,则的邻接矩阵为准上三角矩阵2.4割集割边定义:设有图,是的一条边,如果从中删去,使它的连通分支数量增加1,则称是的割边.显然,的一条边是割边当且仅当该边不包含在的任何闭迹中.边割定义:设是的一个非空子集,,记,如果,且从中删去这些边后,的连通分支至少增加1,则称是的一个边割.割集定义:若是一个边割,且的任何真子集都不是边割,则称它为极小边割,的极小边割又称为割集.结论:任给图,设是图的圈,是图的割集,用表示的边集.如果,那么.弧割定义:设是一个有向图,记,如果,则从中删去这些弧以后,的强连通分支数至少增加1,称它为的一个弧割.的极小弧割称为有向割集.2.5最短路问题定义:所谓最短路径是指如果从图中某一顶点称为源点到达另一顶点称为终点的路径可能不止一条,如何找到一条有向路径使得沿此路径上各弧的权值总和达到最小.第三章网络的最短路问题的算法研究3.1最短路问题的提出某旅客要从杭州乘飞机前往奥地利的萨尔斯堡,因为他害怕乘飞机,所以要选择一条航线,使得在空中飞行的时间尽可能的少.问题是如何选择航线以达到要求.为此构造一个无向网络总可以化成有向网络,故下面只讨论有向网络的最短路问题.设是一有向网络,为中一条有向路,称为路的权或路长.现寻找网络中自某一指定顶点到另一指定顶点的最短有向路.3.2 Bellman最短路方程设有一个有向网络,.若用表示自顶点到顶点的最短有向路长,用表示弧()的长度,若,则定义,则对一切有且当且仅当弧在自顶点到顶点的最短有向路上.因为所有均表示自到的最短路长,因此这些最短路必有最后一条弧(),且该有向路上自到的一段也是最短路,故有Bellman最短路方程:即自点到各点最短路长度必满足Bellman最短路方程.反过来,Bellman最短路方程的解是自点到其余各点最短路的长度.3.3无负回路网络的最短有向路的Ford算法3.3.1 Ford算法的基本思想Ford算法的思想是逐次逼近,每次逼近求出网络从到其余各顶点的带某种约束的最短路,这里的约束是路中弧数.第一次逼近是从到其他任意顶点由一条弧组成的所有路中找一条最短路,记其长度为;第二次逼近是从到由不多于两条弧组成的所有路中找一条最短路,记其长度为.一般地,第次逼近是从到由不多于条弧组成的路中找一条最短的,记其长度为.因为中自到的最短路至多含个顶点, 条弧,所以最多次逼近即可. 即为中自到的最短路长.3.3.2 Ford算法的步骤为方便起见,定义.第一步置,,.第二步令.第三步若,停止;否则令,返回第二步.3.3.3实例求如下图所示网络中从顶点到其余各点的最短路.解求解过程如下:因此从到的最短路径分别为,,,,,路长分别为1,2,-3,0,2.3.4求正权网络中有向最短路的Dijkstra算法3.4.1Dijkstra算法的基本思想对网络中每个顶点赋以一个标号,用来记录从顶点到该顶点的最短路的长度(此时称为永久标号)或最短路长度的上界(此时称为暂时标号).算法开始时,只有顶点被赋予永久标号,其它顶点被赋予暂时标号.一般地,算法在被暂时标号的顶点中寻找一个顶点,其暂时标号最小,然后将赋予永久标号,且对其余暂时标号的顶点按方式修正其标号.算法在所有顶点均被赋予永久标号终止.3.4.2Dijkstra算法的理论依据对于中任一顶点,其永久标号是从顶点到该顶点的最短路的长度.对于中任一顶点,其暂时标号是从顶点出发,只经过中顶点到达该顶点的最短路的长度.3.4.3 Dijkstra算法的算法步骤最短路径问题是指在一个赋权图的两个指定节点和之间找出一条具有最小权的路.Dijkstra 算法是一个解最短路径问题的算法,这个算法不仅可以找到最短的,路径而且可以给出从到图中所有节点的最短路径.其基本步骤如下:1 设,对所有的节点来说,设,并将标号为0, ,为和w之间的权值距离.2按照每个未标号的节点w计算, ,表示点t 到点w 之间的权值距离 .若被修改了说明在当前得到的到w 的最优路径上t 和w 相邻用记录下来在所有中选择一个最小的即,未标号.将s 标号为, 表示节点到s的最优路径的长度为且与s 相邻.3 若终点v 已标号,则停止.得到一条从到v 的最优路径,否则,转向2再计算.3.4.4 Dijkstra算法的应用举例以具体实例说明Dijkstra 算法的具体应用.例 1. 利用Dijkstra 算法求图1 中节点A 到其它各节点的最优路径 202.9 3.218 4.4 3.5 3.2 4.516 Y 4.1 2.2 14 4.22 3.4 4.512 5.62.9 3 4.22.2 10 3.4 3.5 4 2.23 8 0 24 6 X 8 图1 101214相应的权值为:根据Dijkstra 算法的实现步骤其计算过程可归纳为表1 所示.从表1 中可以看出从到的最短路径为且到的距离为18.3 在求到最短路径的过程中到其余各点的最短路径也相应求出.若以计算一次为计算单位,则利用Dijkstra算法计算到最短路径时所需的计算次数15+14+13+ +2 119次表1采用Dijkstra 算法求解A到其他各节点最优路径的过程序号 A B C D E F G H I J K L M N O P1 - 4.2 3.42 - 4.2 3.4/A9.0 6.93 - 4.2/A - 8.6 8.3 6.94 - - - 8.6 8.3 6.9/C 11.9 10.95 - - - 8.5 8.3/B -10.3 11.2 10.96 - - - 8.6/B - - 11.5 10.3 11.2 10.97 - - - - - - 11.5 10.3/D 11.2 10.9 13.513.78 - - - - - - 11.5 - 11.2 10.9/F 13.5 13.713.19 - - - - - - 11.5 - -11.2/E - 13.5 13.713.110 - - - - - - 11.5/D - - - 13.5 13.713.111 - - - - - - - - - - 13.5 13.713.1/J16.112 - - - - - - - - - - 13.5/H 13.7 -18.0 16.113 - - - - - - - - - - - 13.7/H - 15.916.114 - - - - - - - - - - - - - 15.9/L16.1 18.715 - - - - - - - - - - - - - - 16.1/M18.33.4.5 Dijkstra算法的不足在现行电子地图中,网络模型的规模常常较大,节点数多达上千或上万,并且对网络模型的查询也要求实时性,因此Dijkstra 算法虽然在理论上是可行的,但在实际应用中不尽人意,当网络模型中节点数和边数较多的情况下,算法的计算量较大时间花费较多效率非常低.3.4.6 改进Dijkstra 算法的基本思想及实现表1 中的数值大多数是,都是无用运算,如果节点数量很大,将极其浪费运算时间.由于,节点是否在上次已经被计算出最短路径未知,当前节点是否与节点是否相连也未知,也就是未知,这时是已知的,故本次计算的到底是不是,取决于上一步数值和的数值,从表达式可以看出,只要这两个数值不都是,本次计算的就不会是,所以在上面Dijkstra 算法的实现步骤第2 步时,先判断一下,只要原来的, 的数值中至少有一个不是,才进行下面的计算,这样就保证了当预见是时,不对它进行计算,避免了大量无效的计算,提高了搜索效率.下面仍以一个具体实例来说明改进的Dijkstra算法的具体应用.例2 利用改进的Dijkstra 算法求图1中节点A到其他各节点的最优路径,此例的计算过程和Dijkstra 算法基本一致,只是表 1 中所有标记的部分在改进Dijkstra 算法中被省去了,利用改进的Dijkstra 算法计算到最短路径时所需计算次数为次,由此可见,改进的Dijkstra 算法确实减小了计算量在程序设计中,判断语句所花费的时间可以忽略,并不增大计算量.3.4.7 实验对比为了更好地说明改进的Dijkstra 算法的有效性,利用C语言自行编制了最短路径搜索程序并进行了仿真实验,采用自绘制的地图,共5 张,第一张图16个节点,共24条弧;第二张图32个节点,共55条弧;第三张图43个节点,共75条弧;第四张图62个节点,共111条弧;第五张图78个节点,共139条弧,计算结果如表2 所示.从表 2 可以看出,两种算法的计算量有很大的区别,改进的Dijkstra 算法较之经典Dijkstra 算法在计算量方面有很大幅度的减少,而且这种减少的程度在节点数目增加地图更大,更复杂时,会变得越来越明显.对于实际系统,由于地图都会很大,使用改进Dijkstra 算法的改进效果将非常显著.表2 改进Dijkstra 算法和经典Dijkstra 算法计算次数比较节点数经典Dijkstra 算法改进的Dijkstra 算法16 119 4739.5%32 465 13428.8%43 861 23427.2%62 1830 44124.1%78 2926 54018.5%注:表中的百分数表示改进算法计算量与经典算法计算量的百分比3.5 算法的问题和改进3.5.1算法的基本思想算法在人工智能中是一种典型的启发式搜索算法.通过选择合适的估价函数,指导搜索朝着最有希望的方向前进,以求得最优解. 算法中关键是求估价函数:其中, 是从起点到当前节点已付出的代价, 是从当前节点到目标节点的代价估计函数,必须保证其中是从当前点到目标点的实际最小代价.3.5.2算法的步骤算法的搜索步骤如下:1给起始节点标记,对它的没有标记过的子节点进行扩展;2对每一个子节点计算评价函数值,按评价值的大小进行排列,找出评价值最小的节点,并给它作标记,如果当前节点就是目标节点,则停止搜索;3 否则,对最新被标记的节点进行第2 步处理并记录最短路径.3.5.3算法分析算法是利用对问题的了解和对问题求解过程和解的了解,寻求某种有利于问题求解的启发信息,从而利用这些启发信息去搜索最优路径.它不用遍历整个地图,而是每一步搜索都根据启发函数朝着某个方向搜索.当地图很大很复杂时,它的计算复杂度大大优于Dijkstra 算法,是一种搜索速度非常快、效率非常高的算法.但是,相应的算法也有它的缺点.启发性信息是人为加入的,有很大的主观性,直接取决于操作者的经验,对于不同的情形要用不同的启发信息和启发函数,且他们的选取难度比较大,很大程度上找不到最优路径.下面通过一个具体加以实例说明.例3 利用算法求图1 中从点出发到点的最优路径.解:在本例中将评价函数中的取为当前节点到起始节点的最短距离,而取为当前节点到目标节点的欧氏距离,在应用算法时除采用上面Dijkstra 算法所用过的拓扑结构外,还应该再给定所有节点的坐标如各点坐标为0,13, 3,16, 3,11,….根据算法的具体实现步骤可求得从到的最短路径其距离是16.6.查看表1可知,用Dijkstra 算法搜索的最优路径是, 路径长度15.9 ,很明显算法没有找到最优路径,而且通过比较两条路径可以发现:当采用算法搜索路径时,从第二个节点就把最优路径舍弃了.3.5.4 算法改进思想及实现为了克服最优路径可能被轻易舍弃的缺点,本文提出采用多次搜索的方法,用增大计算量为代价来换取尽量多的最优路径备选结果.具体的方法如下:将经典算法搜索出原始最优路径中的节点依次进行封堵后,再按照经典算法搜索在每一次封堵情况下的最优路径.最后将这些新的最优路径与原始最优路径进行对比以便确定最后的最优路径.现举例说明改进算法的具体应用.例4.利用改进的算法求图1中从点出发到点的最优路径.1 按算法寻找路径得到: ,路径长度16.6;2 封闭此路径中节点后得到的最优路径为:, 路径长度15.9;3 封闭此路径中节点后得到的最优路径为: , 路径长度17.1;4 封闭此路径中节点后得到的最优路径为: ,路径长度17.2;5 封闭此路径中节点后得到的最优路径为: ,路径长度18.7;对前面求得的5 种路径长度进行对比,得到最优路径,其长度为15.9 ,从而将此路径定为改进算法求得的最优路径.查看表1可知此路径正是采用Dijkstra算法时求得的最优路径.3.5.5 实验对比为了进一步验证改进算法的有效性利,用C 语言自行编制了最短路径搜索程序并进行了仿真实验.以78个节点含1个起始节点,77个待规划节点的地图作为对象得到的仿真结果.采用经典算法对77个节点分别进行路径规划,有45个找到了最优路径而采用改进的算法对77个节点进行路径规划时,有68个找到了最优路径,有8个节点虽未找到最优路径但得到了比经典算法更短的路径,只有1个节点和经典算法结果一致.这充分说明改进的算法较之经典的算法在搜索最优路径的成功率方面具有明显的优势.3.6 结论本文对经典Dijkstra 算法和算法进行了改进,改进后的算法具有以下特点.1改进的Dijkstra 算法能在很大程度上节省计算量,提高路径规划的速度.2改进的算法虽在一定程度上增大了计算量但远远小于Dijkstra 算法的计算量, 却大大增大了搜索到最优路径的成功率.3.7 混合步长网络漫游最短路算法3.7.1引言网络最短路问题一直是网络理论与实践的重要研究课题之一,是在工农业生产及各项经济活动中非常具有实用价值的一门计算技术,是系统工程和运筹学研究的一个重要分枝.随着图与网络理论的不断发展与完善和计算技术、计算手段的不断进步,为新的网络最短路算法的研究提供了前提和条件.经过深入的研究探索和实践,本文提出一种任意路权网络最短路的新算法??混合步长网络漫游法.3.7.2 网络漫游法原理在一个给定的任意路权网络图中,为该网络的点集合,为该网络的弧集合,为网络各弧的权数集合.确定一个点作为漫游网络的起点,并记该点的漫游路长为零 ,其余各点的漫游路长 ,以此作为初始状态.之后,每一步都以当前漫游点的路长来修正其余相关连点的路长,并选择一个新的漫游点,如此往复,直至不再有可以漫游的点为止.若从起始点到任意点的直接路长为 (为网络的顶点数,若两点和之间没有直接的弧连接,则),则以修改各点的初始漫游路长, 作为第一步各点的漫游路长,并选择所对应的点作为第一步的漫游点,称之为当前漫游点.一般而言,经过步漫游到达第点,则第点为当前漫游点,该点的当前漫游路长为 .为寻找下一步的漫游点,要计算 ,并以作为点第步的漫游路长,选择点作为第步的漫游点,如此循环,直至各能够到达的点均已漫游过且各点已不存在更短的漫游路长时,漫游终止.同时得到了从起始点到各点的最短路.3.7.3网络漫游法的特点3.7.3.1 混合步长每次从当前漫游点寻找下一漫游点时,采用了算式,所以,下一漫游点的路长不只是第步中的最短路,而且是在第步、第步、…、第1步、第0步中的最短路,是当前步长内所有步数能够到达该点的最短路.3.7.3.2路长递减性由于采用了算式作为第点的第步的路长,它小于等于步之内任一步长的路长,具有递减性.3.7.3.3条件记忆性由第k步的当前漫游点寻找下一漫游点时,是在除当前点之外的其它点中寻找.其余的点分为两类,一类是还没有漫游过的点,它自然属于寻找的范围;另一类是已经漫游过的点,这类点分为两种情况,其一是该点记录的步步长之内的最短路值是该点作为漫游点时的路长,则该点不在寻找之列,即该点已漫游过这件事是在记忆之中的,其二是该点虽然已漫游过,但在其后的漫游中更新了该点漫游时的路长值,则该点在寻找范围之列,即对该点已漫游过这一事实失去记忆,如同没有漫游过的点一样.也就是说,若该点作为漫游点时的路长值一直保持为该点的最短漫游路长,则对该点保持记忆;若该点作为漫游点时的路长值已发生变化,则对该点的漫游失去记忆.3.7.4 网络漫游法的算法对于给定的任意路权网络,按照如下步骤进行网络漫游,只要网络中不含负回路,最终总可以求得从起始点到其所能到达的所有点的最短路.当然,也可以从终点反向漫游,以求得从网络的任意一点到终点的最短路.3.7.4.1 确定漫游起始状态若求从某点到其它各点的最短路,则以作为漫游的起始点(当前漫游点),并记该点的起始漫游路长为零,其余各点的漫游路长为无穷大(注:若求其它各点到终点的最短路,则以作为漫游起点,进行反向漫游即可).3.7.4.2 从当前漫游点向外探索计算从当前漫游点走到其它各点所产生的路长3.7.4.3确定各点新的漫游路长将各点的与其当前的最短路长进行比较,选取较小者作为该点新的漫游路长,即.3.7.4.4 作漫游标记当从本漫游点向外探索之后则对其作一标记,表示此点已漫游过.在以后的漫游中保持此标记,直到该点有更短的漫游路长出现时,则除去该点的漫游标志.3.7.4.5 确定新的漫游点在当前没有作漫游标记的点中,选取所对应的点作为新的漫游点.返回3.2继续漫游.。

运筹学第六章6.2最短路问题

运筹学第六章6.2最短路问题

二、最短路算法: 最短路算法:
1. D氏标号法(Dijkstra) 氏标号法(Dijkstra) (1)求解思路 求解思路——从始点出发,逐步顺序 从始点出发, 从始点出发 地向外探寻,每向外延伸一步都要求是最 地向外探寻,每向外延伸一步都要求是最 短的。 短的。 (2)使用条件 使用条件——网络中所有的弧权均 网络中所有的弧权均 非负, 非负,即 wij ≥ 0 。
(4) 计算步骤及例:
第三步:若网络图中已无T标号点 标号点, 第三步:若网络图中已无 标号点,停止 计算。否则 令 计算。否则,令
T ( v j0 ) =ຫໍສະໝຸດ min {T ( v )}
v j ∈s j
,
标号改成P 然后将 v j0 的T 标号改成 标号 ,转入第 二步。 二步。 此时,要注意将第二步中的 v1 改为 v j0 。 此时,
2 ,3, L , N )
使用条件— 使用条件—没有负回路
3. 海斯算法
算法思想: 算法思想: 利用v 利用 vi 到 vj 的一步距离求出 vi 到 vj 的一步距离求出v 的两步距离, 的两步距离 , 再由两步距离求出四步 距离,经有限步迭代即可求得v 距离,经有限步迭代即可求得vi到vj的 最短路线和最短距离。 最短路线和最短距离。
6-2. 最 短 路 问 题
一、问题的提法及应用背景
(1)问题的提法 问题的提法——寻求网络中两点间 寻求网络中两点间 的最短路就是寻求连接这两个点的边的 总权数为最小的通路。 注意: 总权数为最小的通路。(注意:在有向 图中,通路——开的初等链中所有的弧 开的初等链中所有的弧 图中,通路 开的初等链 应是首尾相连 首尾相连的 应是首尾相连的) (2)应用背景 应用背景——管道铺设、线路安排、 管道铺设、线路安排、 管道铺设 厂区布局、设备更新等。 厂区布局、设备更新等。

网络分析最短路和最大流问题共58页

网络分析最短路和最大流问题共58页
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
网络分析最短路和最大流问 题
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受பைடு நூலகம்于法律,法律受制于情 理。— —托·富 勒

网络优化 最短路问题

网络优化 最短路问题

S (3) 设v 是使 l (v) 取最小值的
*
中的顶点,则令 S=S∪{ v
*
},
u v* (4) 若S φ ,转 2,否则,停止.
且e是未选边中的最小权边,直到选够n-1条边为止。
算法2 (破圈法)基本步骤: (1)从图G中任选—棵树T。 (2)加上一条弦e,T1十e中立即生成一个圈。去掉此中最大 权边,得到新树T2。以T2代T1.重复(2)再检查剩余的弦,直到 全部弦检查完毕为止。
固 定 起 点 的 最 短 路
最短路是一条路径,且最短路的任一段也是最短路. 假设在u0-v0的最短路中只取一条,则从u0到其 余顶点的最短路将构成一棵以u0为根的树.
2 2
2
Outline Outline
Outline
1. 最短路问题
本讲内容
1、图 论 的 基 本 概 念 2、最 短 路 问 题 及 其 算 法 3、最 短 路 的 应 用 4、作业
本讲目的
1、了解最短路的算法及其应用 2、会用Matlab软件求最短路
图论的基本概念
一、 图 的 概 念 1、图的定义 2、顶点的次数
V,E e E1 时, (1) 若 V1 (e)= (e),则称 G1 是 G 的子图. 1 E,且当 特别的,若 V1=V,则 G1 称为 G 的生成子图. (2) 设 V1 V,且 V1 ,以 V1 为顶点集、两个端点都在 V1 中的
图 G 的边为边集的图 G 的子图,称为 G 的由 V1 导出的子图,记为 G[V1] (3)设 E1 E, 且 E1 , 以 E1 为边集,E1 的端点集为顶点集的图 G 的子图, 称为 G 的由 E1 导出的子图 , 记为 G[E1].
v1 v2 v3 v4 0 2 7 v1 A= 2 0 8 3 v2 8 0 5 v 3 7 3 5 0 v 4

运筹学第三之图与网络分析

运筹学第三之图与网络分析

网络(赋权图)G (V , E),其边(vi ,v j )有权wij ,构造矩阵
A (aij )nn ,其中:
aij
wij 0
(vi ,v j ) E 其他
称矩阵A为网络G的权矩阵.
对于图G (V , E),|V | n,构造一个矩阵A (aij )nn ,其中:
1 aij 0
(vi ,v j ) E 其他
赋权的图称为网络.
无向图G (V , E),若图G中某些点与边的交替序列可以排成 (vi0 , ei1 , vi1 , ei2 , ...,vik1 ,eik ,vik )的形式,且eit (vit 1,vit )(t 1, ..., k ) 则称这个点边序列为连接vi0与vik的一条链,链长为k 点边列中没有重复的点和重复边者为初等链。
无向图G中,连结vi0 与vik的一条链,当vi0 与vik 是同一个点时, 称此链为圈.圈中既无重复点也无重复边者为初等圈.
v2
e4
v4
e1
v1
e2
e3
e5 e7
e9
e8
v6
e10
v3
e6
v5
图3
v2
v1 e1 e7 e6
v3
图4
e2
v4 e3
e8 e9 e10 v6
e4 e5 v5
图3中, S {v1, e1, v2 , e3 , v3 , e5 , v4 , e7 , v5 , e8 , v4 , e4 , v2 }
v4
1、连通且不含圈的无向图称为树。
树中次为1的点称为树叶,次大于1的点称为分支点。 T (V , E), V n, E m,则关于树的下列说法是等价的.
(1)T是一个树. (2)T无圈,且m n 1. (3)T连通,且m n 1. (4)T 无圈, 但每加一新边即得唯一一个圈. (5)T 连通, 但任舍去一边就不连通. (6)T中任意两点,有唯一链相连.

线性规划-图与网络分析

线性规划-图与网络分析

1
v7
4
9
15 v3 3
1、先任取一个圈,从圈中去掉一条权最大的边,若在同一个 圈中有几条都是权最大边,则任选其中的一条边去掉。
2、在余下的子图中,重复上述步骤,直至没有圈为止。
v1 23 v6 28 v5 36 25
20
v2
1
v7
4
9 16 17 v4
15 v3 3
v1 23 v6 28 v5 25
图论中的图是用点和边(弧)来反 映系统中各对象之间相互关联的关系, 它与几何图、工程图是不一样的,图中 点的相对位置、点与点之间连线的长短 曲直,对于反映对象之间的关系并不是 重要的。
一、 图与网络的基本概念
1、无向图:由点和边构成的图,记作G= (V,E)。其中V是点的集合, E是边的集合。
有向图:由点和弧组成,记作 D=(V,A)。 2、关联边和端点:若有边e可表示为e=(vi,vj),则 称边e为顶点 vi或vj的关联边; vi和vj是边e的端 点。
8
8+1
8
8
反向追踪,得到相同的最优路线。 在得到从起点到终点的最短路长的同时,还 能得到什麽附加信息

练习1:求从点1到其它各点的最短路。(标号步 骤法)
2
2
2 5 1
7
1
3
3
5
5 3
8、图的矩阵表示
一个图非常直观,但是不 容易计算,特别不容易在计算 机上进行计算,一个有效的解 决办法是将图表示成矩阵形式。
(1) 、权矩阵
(2)、关联矩阵
(3)、相邻矩阵
v2 v1 8
5 3
v5 1 3 v7 2
4
3 V4
4
2 6 V3 V6

运筹学课件-第六章图与网络分析

运筹学课件-第六章图与网络分析
运筹学课件-第六章 图与网络分析
contents
目录
•的算法 • 图的应用
01
CATALOGUE
图的基本概念
图的定义
总结词
图是由顶点(或节点)和边(或弧) 组成的数据结构。
详细描述
图是由顶点(或节点)和边(或弧) 组成的数据结构,其中顶点表示对象 ,边表示对象之间的关系。根据边的 方向,图可以分为有向图和无向图。
04
CATALOGUE
图的算法
深度优先搜索
要点一
总结词
深度优先搜索是一种用于遍历或搜索树或图的算法。
要点二
详细描述
该算法通过沿着树的深度遍历树的节点,尽可能深地搜索 树的分支。当节点v的所在边都己被探寻过,搜索将回溯到 发现节点v的那条边的起始节点。这一过程一直进行到已发 现从源节点可达的所有节点为止。如果还存在未被发现的 节点,则选择其中一个作为源节点并重复以上过程,整个 进程反复进行直到所有节点都被访问为止。
物流网络设计的应用
在物流规划、供应链管理、运输优化等领域有广泛应用,例如通过物 流网络设计优化货物运输路径、提高仓储管理效率等。
生物信息学中的图分析
生物信息学中的图分析
利用图论的方法对生物信息进 行建模和分析,以揭示生物系 统的结构和功能。
生物信息学中的节点
代表生物分子、基因、蛋白质 等。
生物信息学中的边
Dijkstra算法
总结词:Dijkstra算法是一种用于在有向图中查找单源 最短路径的算法。
详细描述:Dijkstra算法的基本思想是从源节点开始, 逐步向外扩展,每次找到离源节点最近的节点,并更新 最短路径。该算法使用一个优先级队列来保存待访问的 节点,并将源节点加入队列中。然后,从队列中取出具 有最小优先级的节点进行访问,并将其相邻节点加入队 列中。这一过程一直进行,直到队列为空,即所有可到 达的节点都已被访问。Dijkstra算法的时间复杂度为 O((V+E)logV),其中V是节点的数量,E是边的数量。

最短路问题讲解

最短路问题讲解

最短路问题求解方法
• Dijkstra算法 • 逐步逼近算法 • 路矩阵算法
第5页
求解最短路问题的Dijkstra算法
v5 指定D两ij点ks间tra的算v最法1 短是路Div问j2ks题tra,在或v139从59指年v定4提点出到的其,余可各用点于的求最解短 路问题。由于其以标号为主要特征,又称为标号法。
第2页
最短路问题引例
下图为单行线交通网,每弧旁的数字表示通过这条 线所需的费用。现在某人要从v1出发,通过这个交通 网到v8去,求使总费用最小的旅行路线。
v2 1
v5
2
v9
6 2
6
3
v1
3 v3 6
3 4 10
1
2
v4
10
4
v6 2 v7
v8
第3页
v2 1
v5
2
v9
6 2
6
3
v1
3 v3 6
3 4 10
v7:[3,v4]
第20页
[0,v1]
[2,v1]
2
6
V1
V2
V3
1 [1,v1]10
5 [6,v7] 9
3
V4
7
V5
6
5
2
3
4
V6
V7
V8
4
8
[3,v1]
[3,v4]
(6)A={V1,V2,V4,V6,V7} 考虑边(v2,v3),(v2,v5),(v7,v5),(v7,v8) 计算min {2+6, 2+5, 3+3, 3+8}=min {8,7,6,11}=6
计算 min{0+2, 0+3, 1+10,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六:图与网络分析-最短路问题
一、实验目的:掌握不同问题的输入方法,求解网络模型,观察求解步骤,显示并读出结果。

二、内容和要求:用WinQSB软件求解最短路问题,并对结果进行简单分析。

例:求下图的最短路。

三、操作步骤:
1.“开始”菜单→“winQSB”→“Network Modeling”(网络模型)。

2.建立新问题:File→New Problem,出现下面界面。

选择Shortest Path Problem、Minimization、输入问题标题、节点的个数,然后单击“OK”。

3.修改节点名称:菜单“Edit”→“Node Names”,编辑完点“OK”,如下图。

4.按下图输入图的权矩阵,本例是无向图,每一条边必须输入两次。

5.菜单“Solve and Analyze”→“Solve the Problem”,出现以下对话框,
6.然后选择起点v1和终点v10,点“Solve”按键,出现下图:
从图中可以看到v1到v10的最短路径为v1→v3→v7→v10,总长为6,另外从v1到其他各点的最短距离也都计算了出来。

7.实例求解:有九个城市v1,v2…,v9,其公路网如下图,弧旁数字是该段公路的长度,有一批货物从v1运到v9,试用Dijkstra方法求出走哪条路最短?
自己先用标号法求出最短路,然后用winWSB软件进行验证。

8.思考题:教育部门打算在某新建城区建一所学校,让附近七个居民区的学生就近入学。

七个居民区之间的道路如下图所示,学校应建在哪个居民区,才能使大学都方便?(图中距离单位:百米)。

相关文档
最新文档