九年级数学费氏数列与黄金分割

合集下载

新人教版九年级数学(下)第二十一章黄金分割(共28张PPT)

新人教版九年级数学(下)第二十一章黄金分割(共28张PPT)

(1)
(3) (2)
三、延伸拓展,深化概念
21×34
三、延伸拓展,深化概念
D C
A
21×34
B (精确到0.001)
BC 21 = AB 34
若矩形的宽与长的比约为0.618,这样 的矩形称之为黄金矩形.
折叠黄金矩形
折叠黄金矩形
B E
M
5
N2Biblioteka 5 -1A1 C
D
CD = BC 5 -1 2
0.618 原线段
5 1
二、操作运用,巩固概念
用尺规作图找出黄金分割点
如图,已知线段AB, 求作其黄金分割点.
作法:
1 1、经过点B作BD⊥AB,使B D = A B . 2
2、连接AD, 在DA上截取DE=DB 3、在AB上截取 AC=AE. 点C即为线段AB的黄金分割点.
想一想 根据上述作图回答下列问题:
一、探索交流,建立概念
黄金分割 A C 点C把线段AB分成两条线段AC和BC,如果 AC BC = , 那么称线段AB被点C黄金分割, AB AC 点C叫做线段AB的黄金分割点,AC与AB的比称 为黄金比.
黄金比: AC : AB = 5 1 : 1 0.618 2
B
从形式上理解:成比例线段的形式。较长线段 = 较短线段 原长线段 较长线段 从比值上理解:黄金比
膝关节位于肚脐与足底长度的0.618 肘关节位于肩关节与指头长度的 0.618处
自然界中的神秘数字
在人的生命程序DNA分子中,它的每个双螺旋构中都是由 宽21个埃与长34个埃之比非常接近黄金分割的0.618。
建筑与黄金分割
遍布全球的众多建筑,都有意无意的运用了黄金分割法 则,给人以整体上的和谐与悦目之美。

苏科版数学九年级下册《6.2黄金分割》说课稿

苏科版数学九年级下册《6.2黄金分割》说课稿

苏科版数学九年级下册《6.2 黄金分割》说课稿一. 教材分析《苏科版数学九年级下册》第六章第二节“黄金分割”是本节课的主要内容。

黄金分割是指将一条线段分为两部分,使得整体长度与较长部分的长度之比等于较长部分的长度与较短部分的长度之比,其比值约为1:1.618。

这一概念在数学、艺术、建筑等领域有着广泛的应用。

教材通过黄金分割的定义、黄金比的计算以及黄金分割在实际生活中的应用,使学生了解并掌握黄金分割的相关知识。

二. 学情分析九年级的学生已经具备了一定的几何知识,对比例、线段等概念有一定的了解。

但是,对于黄金分割这一较为抽象的概念,学生可能难以理解。

因此,在教学过程中,需要通过生动的实例和丰富的活动,帮助学生直观地感受黄金分割,从而更好地理解和掌握相关知识。

三. 说教学目标1.知识与技能:了解黄金分割的定义,掌握黄金比的计算方法,能运用黄金分割知识解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和创新能力。

3.情感态度与价值观:感受数学与生活的密切联系,提高学生对数学的兴趣,培养学生的审美观念。

四. 说教学重难点1.重点:黄金分割的定义,黄金比的计算方法。

2.难点:黄金分割在实际生活中的应用,黄金分割的美学价值。

五. 说教学方法与手段1.教学方法:采用启发式教学法、讨论式教学法和案例教学法,引导学生主动探究、积极思考。

2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,提高教学效果。

六. 说教学过程1.导入新课:通过展示一些著名的黄金分割作品,如达芬奇的《蒙娜丽莎》、帕台农神庙等,引导学生感受黄金分割在艺术、建筑等领域的魅力,激发学生的学习兴趣。

2.探究黄金分割:让学生观察、分析这些作品,发现其中的共同规律,引导学生自主探究黄金分割的定义和计算方法。

3.实践操作:让学生分组进行实践活动,利用几何画板或手工工具,自己动手绘制黄金分割图形,加深对黄金分割的理解。

九年级数学上册4.4黄金分割(第4课时)课件(新版)北师大版 (1)

九年级数学上册4.4黄金分割(第4课时)课件(新版)北师大版 (1)
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二 ▲题型三

数学文化之旅------神奇的斐波那契数列与黄金分割

数学文化之旅------神奇的斐波那契数列与黄金分割

神奇的斐波那契数列与黄金分割石家庄二中南校区孟柳比萨的列奥纳多,又称斐波那契(Leonardo Pisano ,Fibonacci, Leonardo Bigollo,1175年-1250年),中世纪意大利数学家,是西方第一个研究斐波那契数的人,并将现代书写数和乘数的位值表示法系统引入欧洲。

列奥纳多的父亲Guilielmo(威廉),外号Bonacci.因此列奥纳多就得到了外号斐波那契(Fibonacci,意即filius Bonacci,Bonacci之子)。

1202年,他撰写了《算盘全书》(Liber Abacci)一书。

他是第一个研究了印度和阿拉伯数学理论的欧洲人。

他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,当时仍是小伙子的列奥纳多已经开始协助父亲工作,因此得以在一个阿拉伯老师的指导下研究数学。

他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。

于是他就学会了阿拉伯数字。

他是西方第一个研究斐波那契数的人,并将现代书写数和乘数的位值表示法系统引入欧洲。

主要著作有《算盘书》《几何实践》《花朵》《平方数书》斐波那契在《算盘书》中提出了一个有趣的兔子问题:一般而言,兔子在出生两个月后就具有了繁殖能力,一对兔子每个月能生出一对兔子,如果兔子都不死,那么一年后能有多少对兔子?拿新出生的一对兔子研究:第一个月兔子没有繁殖能力,两个月后生下一对小兔总数共有两对;三个月后,老兔子生下又一对,因为上一轮的小兔没有繁殖能力,所以总数是三对;…………..1,1,2,3,5,8,13,21,34,55,89,144……依次类推下去,你会发现,它后一个数等于前面两个数的和。

在这个数列中的数字,就被称为斐波那契数。

2是第3个斐波那契数。

斐波那契数列还满足一下特点:1.任一项的平方数都等于与它相邻的两项乘积相差12.相邻的4个数,内积与外积相差13.前一项与后一项的比大约是0.6184.后一项比前一项大约是1.618经研究发现,相邻两个斐波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。

北京版九年级初三数学上册黄金分割16页PPT

北京版九年级初三数学上册黄金分割16页PPT
北京版九年级初三数学上册黄金分割
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动

北师版初中九上数学4.4.4黄金分割【课件】

北师版初中九上数学4.4.4黄金分割【课件】
九年级数学北师版·上册
第四章图形的相似
4 探索三角形相似的条件
第4课时 黄金分割
新课引入一个五角星如图所来自.(1)从图中找出相等的角、相等的线段.
(2)在图中找出两对相似比不同的相似三角形.
AC BC
小亮认为


AB AC
你同意他的看法吗?
K
C
A
B
I

H
D
F
E
说说你的理由.
G

同意,因为DC//BF,所以 =


因为BC=AI=AD,AC=AF


所以 = =


知识讲解
定义
一般地,点C 把线段AB 分成两条线
AC BC
段AC 和BC (如图3 - 19),如果


AB AC
那么称线段AB 被点C 黄金分割,点C 叫做
线段AB 的黄金分割点,AC 与AB 的比叫做
黄金比.
知识讲解
越给人以一种匀称的美感.如图,某女士身高170cm,脱去鞋后量得下半
身长为97cm,则建议她穿的高跟鞋高度大约为( D )
A.4cm
B.6cm
C.8cm
D.10cm
目标测试
5.如图,在平行四边形ABCD中,点E是边BC上
的黄金分割点,且BE>CE,AE与BD相交于点
F.那么BF:FD的值为
5 -1
表示的矩形画成图②中的ABCD,以矩形ABCD的宽为边在其内
部作正方形AEFD,那么我们可以惊奇地发现,
BE BC

.
BC AB
点E是
AB的黄金分割点吗?矩形ABCD的宽与长的比是黄金比吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档