第十四章整式的乘法和因式分解18
八年级数学上册第十四章整式的乘法与因式分解重点知识点大全(带答案)

八年级数学上册第十四章整式的乘法与因式分解重点知识点大全单选题1、下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a−b2C.−a2+b2D.−a2−b2答案:C分析:根据平方差公式的定义判断即可;A、原式不能利用平方差公式进行因式分解,不符合题意;B、原式不能利用平方差公式进行因式分解,不符合题意;C、原式=(b−a)(b+a),能利用平方差公式进行因式分解,符合题意;D、原式不能利用平方差公式进行因式分解,不符合题意,故选:C.小提示:本题主要考查了平方差公式分解因式,准确判断是解题的关键.2、要使多项式(x+p)(x−q)不含x的一次项,则p与q的关系是()A.相等B.互为相反数C.互为倒数D.乘积为−1答案:A分析:计算乘积得到多项式,因为不含x的一次项,所以一次项的系数等于0,由此得到p-q=0,所以p与q 相等.解:(x+p)(x−q)=x2+(p−q)x−pq∵乘积的多项式不含x的一次项∴p-q=0∴p=q故选择A.小提示:此题考查整式乘法的运用,注意不含的项即是该项的系数等于0.3、下列分解因式正确的是()A.a3−a=a(a2−1)B.x3+4x2y+4xy2=x(x+2y)2C.−x2+4xy−4y2=−(x+2y)2D.16x2+16x+4=(4x+2)2答案:B分析:根据分解因式的方法进行分解,同时分解到不能再分解为止;A、a3−a=a(a2−1)=a(a+1)(a−1),故该选项错误;B、x3+4x2y+4xy2=x(x2+4xy+4y2)=x(x+2y)2,故该选项正确;C、−x2+4xy−4y2=−(x2−4xy+4y2)=−(x−2y)2,故该选项错误;D、16x2+16x+4=4(4x2+4x+1)=4(2x+1)2,故该选项错误;故选:B.小提示:本题考查了因式分解,解决问题的关键是掌握因式分解的几种方法,注意因式分解要分解到不能再分解为止;4、已知(x-m)(x+n)=x2-3x-4,则m-n的值为( )A.1B.-3C.-2D.3答案:D分析:把原式的左边利用多项式乘多项式展开,合并后与右边对照即可得到m-n的值.(x-m)(x+n)=x2+nx-mx-mn=x2+(n-m)x-mn,∵(x-m)(x+n)=x2-3x-4,∴n-m=-3,则m-n=3,故选D.小提示:此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.5、下列式子中,正确的有( )①m3∙m5=m15;②(a3)4=a7;③(-a2)3=-(a3)2;④(3x2)2=6x6A.0个B.1个C.2个D.3个答案:B分析:根据同底数幂的乘法、幂的乘方、积的乘方逐一分析判断即可.解:①m3⋅m5=m8,故该项错误;②(a3)4=a12,故该项错误;③(−a2)3=−a6,−(a3)2=−a6,故该项正确;④(3x2)2=9x4,故该项不正确;综上所述,正确的只有③,故选:B.小提示:本题考查同底数幂的乘法、幂的乘方、积的乘方,掌握运算法则是解题的关键.6、在下列各式中,一定能用平方差公式因式分解的是().A.−a2−9B.a2−9C.a2−4b D.a2+9答案:B分析:直接利用平方差公式:a2−b2=(a+b)(a−b),进而分解因式判断即可.A、−a2−9,无法分解因式,故此选项不合题意;B、a2−9=(a+3)(a−3),能用平方差公式分解,故此选项符合题意;C、a2−4b,无法分解因式,故此选项不合题意;D、a2+9,无法分解因式,故此选项不合题意.故选B.小提示:此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.7、若x2+2(k+1)x+4是完全平方式,则k的值为()A.+1B.﹣3C.﹣1或3D.1或﹣3答案:D分析:利用完全平方公式的结构特征判断即可确定出k的值.解:∵x2+2(k+1)x+4是完全平方式,∴2(k+1)=±4,解得:k=1或-3,故D正确.故选:D.小提示:本题主要考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,注意积的2倍的符号,避免漏解.8、下列因式分解正确的是()A.a2+b2=(a+b)2B.a2+2ab+b2=(a−b)2C.a2−a=a(a+1)D.a2−b2=(a+b)(a−b)答案:D分析:根据因式分解的方法,逐项分解即可.A. a2+b2,不能因式分解,故该选项不正确,不符合题意;B. a2+2ab+b2=(a+b)2故该选项不正确,不符合题意;C. a2−a=a(a−1),故该选项不正确,不符合题意;D. a2−b2=(a+b)(a−b),故该选项正确,符合题意.故选D.小提示:本题考查了因式分解,掌握因式分解的方法是解题的关键.9、计算(x+1)(x+2)的结果为( )A.x2+2B.x2+3x+2C.x2+3x+3D.x2+2x+2答案:B解:原式=x2+2x+x+2=x2+3x+2.故选B.10、已知a2+14b2=2a−b−2,则3a−12b的值为()A.4B.2C.−2D.−4答案:A分析:根据a2+14b2=2a−b−2,变形可得:a2−2a+1+14b2+b+1=(a−1)2+(12b+1)2=0,因此可求出a=1,b=−2,把a和b代入3a−12b即可求解.∵a2+14b2=2a−b−2∴a2−2a+1+14b2+b+1=(a−1)2+(12b+1)2=0即(a−1)2=0,(12b+1)2=0∴求得:a=1,b=−2∴把a和b代入3a−12b得:3×1−12×(−2)=4故选:A小提示:本题主要考查了完全平方公式因式分解,熟记完全平方公式,通过移项对已知条件进行配方是解题的关键.填空题11、多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x3项和x2项,则ab=_____.答案:﹣2分析:根据题意只要使含x3项和x2项的系数为0即可求解.解:∵多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x2、x3项,∴a+1=0,b﹣2=0,解得a=﹣1,b=2.∴ab=﹣2.所以答案是:﹣2.小提示:本题主要考查多项式的系数,关键是根据题意列出式子计算求解即可.12、分解因式:x2y+xy2=______.答案:xy(x+y)分析:利用提公因式法即可求解.x2y+xy2=xy(x+y),所以答案是:xy(x+y).小提示:本题考查了用提公因式法分解因式的知识,掌握提公因式法是解答本题的关键.13、已知ab=a+b+1,则(a﹣1)(b﹣1)=_____.答案:2分析:将(a﹣1)(b﹣1)利用多项式乘多项式法则展开,然后将ab=a+b+1代入合并即可得.(a﹣1)(b﹣1)= ab﹣a﹣b+1,当ab=a+b+1时,原式=ab﹣a﹣b+1=a+b+1﹣a﹣b+1=2,故答案为2.小提示:本题考查了多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用.14、观察下列等式:①32−12=4×2;②42−22=4×3;③52−32=4×4;④62−42=4×5;…,第n(n为正整数)个等式为________.答案:(n+2)2−n2=4(n+1)分析:利用已知数据得出变化规律,进而得出答案即可.解:由32−12=4×2,42−22=4×3,52−32=4×4,62−42=4×5,…,可得:(n+2)2−n2=(n+2+n)(n+2−n)=4(n+1),即:(n+2)2−n2=4(n+1).故答案是:(n+2)2−n2=4(n+1).小提示:此题主要考查了数字变化规律以及平方差公式,得出数字变化规律是解题关键.15、若(m+2022)2=10,则(m+2021)(m+2023)=______.答案:9分析:先将m+2021变形为m+2022−1,m+2023变形为m+2022+1,然后把(m+2022)看作一个整体,利用平方差公式来求解.解:∵(m+2022)2=10,∴(m+2021)(m+2023)=(m+2022−1)(m+2022+1)=(m+2022)2−1=10-1=9.所以答案是:9.小提示:本题考查了平方差公式,代数式求值,解题的关键是熟练掌握平方差公式:(a+b)(a−b)=a2−解答题16、先化简,再求值:(3x +2)(3x −2)−5x (x −1)−(2x −1)2,其中x =−13. 答案:9x -5,−8分析:先计算乘法,再计算加减,然后把x =−13代入化简后的结果,即可求解. 解:(3x +2)(3x −2)−5x (x −1)−(2x −1)2=9x 2−4−5x 2+5x −4x 2+4x −1=9x −5当x =−13时,原式=−13×9−5=−8小提示:本题主要考查了整式的混合运算——化简求值,熟练掌握整式的混合运算法则是解题的关键.17、化简:3(a ﹣2)(a +2)﹣(a ﹣1)2.答案:2a 2+2a -13分析:根据平方差公式和完全平方公式去括号,再计算加减法.解:3(a ﹣2)(a +2)﹣(a ﹣1)2=3(a 2-4)-(a 2-2a +1)=3a 2-12-a 2+2a -1=2a 2+2a -13.小提示:此题考查了整式的乘法计算公式,整式的混合运算,正确掌握平方差公式和完全平方公式的计算法则是解题的关键.18、爱动脑筋的小明在学习《幂的运算》时发现:若a m =a n (a >0,且a ≠1,m 、n 都是正整数),则m =n ,例如:若5m =54,则m =4.小明将这个发现与老师分享,并得到老师确认是正确的,请您和小明一起用这个正确的发现解决下面的问题:(1)如果2×4x ×32x =236,求x 的值;(2)如果3x+2+3x+1=108,求x 的值.答案:(1)x =5分析:(1)利用幂的乘方的法则及同底数幂的乘法的法则对式子进行整理,从而可求解;(2)利用同底数幂的乘法的法则及幂的乘方的法则对式子进行整理,即可求解.(1)因为2×4x×32x=236,所以2×22x×25x=236,即21+7x=236,所以1+7x=36,解得:x=5;(2)因为3x+2+3x+1=108,所以3×3x+1+3x+1=4×27,4×3x+1=4×33,即3x+1=33,所以x+1=3,解得:x=2.小提示:本题主要考查幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握与运用.。
第14章《整式乘法与因式分解》集体备课

(三)注意把握教学要求
课标:会进行简单的整式乘法(其中的多项式相乘 仅指一次式之间以及一次式与二次式相乘)运算, 会推导平方差公式和完全平方公式,并了解公式 的几何背景,能利用公式进行简单的计算。会用 提公因式法和公式法进行因式分解(指数是正整 数)。
• 乘法公式——平方差公式和完全平方公式 • 因式分解——提公因式法和公式法(平方
6课时 3课时 3课时
2课时
三、编写特点
(一)强调重要数学思想方法的渗透
(二)充分体现从具体到抽象再到具体的认知过 程
(三)根据数学知识的逻辑关系安排教学内容
(一)强调重要数学思想方法的渗透
• 本章重要数学思想有: • 转化,类比,数形结合,整体思想等
转化 • 对于整式乘法法则的教学,教科书注意渗透 思想
am+an+bm+bn
转化 思想
• 在整式除法的教学中也要注意“转化” 的思想方法。例如,多项式与单项式相 除的法则,第一步是“转化”为单项式 与单项式相除,第二步则是“转化”为 有理数的除法与同底数幂的除法。
数形 结合
整体 • (一)、强调重要的数学思想方法的渗透 思想
1、添括号; 2、乘法公式; 3、整体思想
(七)利用好选学内容
• 教学中除了要关注学生在数学知识和数学能力 方面的提高外,还要考虑在传承数学史知识及 数学文化修养方面做出努力,以使学生在获得 数学知识的同时人文精神也得到陶冶。
• 本章安排了两个“阅读与思考”的选学栏目, 这些选学内容是本章有关内容的拓展与延伸。 不失时机地安排学生阅读这些材料,可以开阔 他们的视野,拓展他们的知识面。
“转化”的思想方法。例如,多项式与多项 式相乘的法则,第一步是转化为多项式与单 项式相乘,第二步则是转化为单项式与单项 式相乘,而单项式与单项式相乘则转化为有 理数的乘法与同底数幂的乘法。
人教版八年级数学上册14.整式的乘除与因式分解--复习课件

例2 把下列各式分解因式. (1)(a+b)2-4a2 ; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9
解:(1)(a+b)2-4a2=(a+b)2-(2a)2 =(a+b+2a)(a+b-2a) =(3a+b)(b-a)
(2)1-10x+25x2 =1-10x+(5x)2 =(1-5x)2 (3)(m+n)2-6(m+n)+9=(m+n-3)2.
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 ,
则z应为多少?
(4)(x 3y 2z)(x 3y 2z)
(5)19992, (6)20012 19992
练习:计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
1、 205×195 2、 (3x+2) (3x-2) 3、(-x+2y) (-x-2y) 4 、 (x+y+z)(x+y-z)
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
(a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
即: (a b)2 a2 2ab b2
探索与创新题 例4 若9x2+kxy+36y2是完全平方式,则k= —
分析:完全平方式是形如:a2±2ab+b2即两数 的平方和与这两个数乘积的2倍的和(或差).
∵9x2+kxy+36y2=(3x)2+kxy+(6y)2 ∴±kxy=2·3x·6y=36xy ∴k=±36
2022年人教版八年级数学上册第十四章整式的乘法与因式分解教案 提公因式法

第十四章整式的乘法与因式分解14.3 因式分解14.3.1 提公因式法一、教学目标【知识与技能】1.了解因式分解的意义,以及它与整式乘法的关系,掌握因式分解的概念;2.能确定多项式各项的公因式,会用提公因式法把多项式分解因式.【过程与方法】经历从分解因数到分解因式的类比过程,感受因式分解在解决问题中的作用.【情感、态度与价值观】培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】因式分解的概念;提公因式法分解因式.【教学难点】正确理解因式分解的概念,准确找出公因式.五、课前准备教师:课件、三角尺、直尺等.学生:直尺、练习本、铅笔、钢笔或圆珠笔.六、教学过程(一)导入新课我们知道,利用整式的乘法运算,可以将几个整式的积化为一个多项式的形式,反过来,能不能将一个多项式化成几个整式的积的形式呢?若能,这种变形叫做什么呢?(出示课件2)(二)探索新知1.创设情境,探究提公因式法分解因式教师问1:请同学们先完成下列计算,看谁算得又准又快.(1)20×(-3)2+60×(-3);(2)1012-992;(3)572+2×57×43+432.学生回答:如下:解:方法一:(1)20×(-3)2+60×(-3)=20×9-180=180-180=0;(2)1012-992=10201-9801=400;(3)572+2×57×43+432=3249+4902+1849=8151+1849=10000.方法二:(1)20×(-3)2+60×(-3)=-3×[20×(-3)+60]=1-3×[-60+60]=0;(2)1012-992=(101+99)(101-99)=200×2=400;(3)572+2×57×43+432=3(57+43)2=1002=10000.教师问2:上边两种方法,哪一种简单呢?学生回答:方法二简单.教师讲解:在上述运算中,大家或将数字分解成两个数的乘积,或者逆用乘法公式使运算变得简单易行,类似地,在式的变形中,有时也需要将一个多项式写成几个整式的乘积形成,这就是我们从今天开始要探究的内容——因式分解.(板书课题)教师问3:如图,一块菜地被分成三部分,你能用不同的方式表示这块草坪的面积吗?(出示课件4)学生回答:方法一:m(a+b+c);方法二:ma+mb+mc教师问4:m(a+b+c)=ma+mb+mc是整式的乘法,那么ma+mb+mc=m(a+b+c),你猜想是什么呢?学生回答:因式分解.教师问5:请同学们运用整式乘法法则或公式填空:(出示课件5)(1) m(a+b+c)= ____________________ ;(2) (x+1)(x–1)=___________________;(3) (a+b)2 = ______________________.学生回答:(1) m(a+b+c)= ma+mb+mc ;(2) (x+1)(x–1)=x2-1;(3) (a+b)2 = a2+2ab+b2.教师问6:根据等式的性质填空:(1) ma+mb+mc=( )( )(2) x2–1 =( )( )(3) a2 +2ab+b2 =( )2学生回答:(1) ma+mb+mc=( m)( a+b+c )(2) x2–1 =( x+1)( x-1)(3) a2 +2ab+b2 =( a+b)2教师问7:比一比,这些式子有什么共同点?学生讨论后回答:左边是多项式,右边是多相式的乘积.教师总结:(出示课件6)把一个多项式化为几个整式的乘积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.教师问8:你认为因式分解与整式乘法有什么关系?(出示课件7)学生思考回答,师生共同解答如下:因式分解与整式乘法是互逆变形关系,整式乘法是一种运算,而因式分解是对多项式的一种变形,不是运算.教师问9:x2–1 = (x+1)(x–1)有何特征呢?学生回答:左边是多项式,右边是几个整式的乘积例1:下列从左到右的变形中是因式分解的有( )(出示课件8)①x2–y2–1=(x+y)(x–y)–1;②x3+x=x(x2+1);③(x–y)2=x2–2xy+y2;④x2–9y2=(x+3y)(x–3y).A.1个B.2个C.3个D.4个因式分解是积的形式,①是和的形式,所以不是因式分解,②是因式分解,③是整式的乘法,④是因式分解.故选B.答案:B.总结点拨:因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解的右边是两个或几个因式积的形式,整式乘法的右边是多项式的形式.教师问10:再观察下面问题中的第(1)题和第(3)题,你能发现什么特点?(1)x2+x=________;(2)x2-1=________;(3)am+bm+cm=________.学生独立思考后回答:发现(1)中各项都有一个相同的因式x,(3)中各项都有一个相同的因式m.教师问11:观察下列多项式,它们有那些相同的因式?(出示课件10)pa+pb+pc,x2+x学生回答:前者的相同因式为p,后者的相同因式为x。
人教版八年级上册数学第14章 整式的乘法与因式分解 单项式与多项式相乘

答案显示
1.单项式与多项式相乘,就是用单项式去乘多项式的__每_一__项_____,
再把所得的积___相_加_______;其实质是将单项式与多项式相乘
单项式
单项式
转化为_________与_________相乘.
2.(2019·青岛)计算(-2m)2·(-m·m2+3m3)的结果是( A ) A.8m5 B.-8m5 C.8m6 D.-4m4+12m5
16.(1)先化简,再求值:3(2x+1)+2(3-x),其中 x=-1.
解:原式=6x+3+6-2x=4x+9. 当 x=-1 时,原式=4x+9=4×(-1)+9=-4+9=5.
(2)已知实数 a,b,c 满足|a-b-3|+(b+1)2+|c-1|=0,求 (-3ab)·(a2c-6b2c)的值. 解:由题意得 a-b-3=0,b+1=0,c-1=0, 解得 a=2,b=-1,c=1. 故(-3ab)·(a2c-6b2c)=-3a3bc+18ab3c=-3×23×(-1)×1+ 18×2×(-1)3×1=24-36=-12.
解法三(分割求和法):连接 BG,则 S 阴影部分=S△BDG+S△BGF+S△DGF =12a(a-b)+12b2+12b(a-b)=12a2-12ab+12b2+12ab-12b2=12a2.
明拿出课堂笔记复习,发现一道题:-3xy(4y-2x-1)=
-12xy2+6x2y+■,■的地方被墨水弄污了.你认为■处应为
(A )
A.3xy
B.(-3xy)
C.(-1)
D.1
8.要使 x(x+a)+3x-2b=x2+5x+4 成立,则 a,b 的值分别为
(C )
A.-2,-2 B.2,2
C.2,-2
2022年人教版八年级数学上册第十四章整式的乘法与因式分解教案 整式的乘法(第3课时)

第十四章整式的乘法与因式分解14.1.4 整式的乘法第3课时一、教学目标【知识与技能】1.探究同底数幂除法的性质和单项式除以单项式、多项式除以单项式的法则,并会应用法则计算.2.会进行单项式除以单项式、多项式除以单项式的运算,理解整式除法运算的原理.【过程与方法】1.经历探究整式的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条件的表达能力.2.体会知识间逻辑关系、类比探究在研究除法问题时的价值,体会转化思想在整式除法中的作用.【情感、态度与价值观】感受数学法则、公式的简洁美、和谐美.二、课型新授课三、课时第3课时四、教学重难点【教学重点】应用整式除法法则进行计算.【教学难点】根据乘、除互逆的运算关系得出同底数幂的除法运算法则.五、课前准备教师:课件、直尺、计算器等。
学生:练习本、钢笔或圆珠笔。
六、教学过程(一)导入新课木星的质量约是1.9×1024吨,地球的质量约是5.98×1021吨,你知道木星的质量约为地球质量的多少倍吗?(出示课件2)木星的质量约为地球质量的(1.90×1024)÷(5.98×1021)倍.想一想:上面的式子该如何计算?(二)探索新知1.师生互动,探究同底数幂的除法法则教师问1:请完成下面的题目:(出示课件4)(1)25×23;(2)x6×x4;(3)2m×2n.学生回答:(1)28;(2)x10;(3)2m+n.教师问2:本题是直接利用什么乘法法则计算的?学生回答:同底数幂的乘法法则:底数不变,指数相加.教师问3:思考下面的题该如何计算?(1)( )( )×23=28 (2)x6·( )( )=x10(3)( )( )×2n=2m+n学生回答:可以把乘法法则反过来利用.教师问4:反过来就我们今天要学的同底数幂的除法,能不能先试着写成除法形式?学生讨论后解答:(1)28÷23=?;(2)x10÷x6=?;(3)2m+n÷2n=?教师问5:你是如何计算的呢?学生回答:本题逆向利用同底数幂的乘法法则计算.教师问6:能不能试着完成下列各题:计算:(1)28÷23;(2)x10÷x6;(3)2 m+n÷2n学生回答:(1) 28÷23=25;(2) x10÷x6=x4;(3) 2 m+n÷2n =2m教师问7:观察下面的等式,你能发现什么规律?(出示课件5)(1)28÷23=25=28-3;(2) x10÷x6=x4=x10-6;(3) 2 m+n÷2n =2m =2m-n学生回答:底数不变,指数相减.教师总结:同底数幂相除,底数不变,指数相减.教师问8:以上法则能用字母表示吗?学生总结:a m÷a n=a m-n.教师问9:对指数有何要求吗?学生回答:m,n都是正整数,且m>n.教师总结:a m ÷a n=a m–n(m,n都是正整数,且m>n)教师问10:如何验证其正确性呢?学生回答:验证:因为a m–n·a n=a m–n+n=a m,所以a m ÷a n=a m–n.教师问11:对于除法运算,有没有什么特殊要求呢?学生回答:对于除法运算应要求除数(或分母)不为零,所以底数不能为零.即a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n).教师问12:计算:a m÷a m学生计算a m÷a m时,可能会出现1或a0两个答案.教师顺势归纳:从除法的意义可知商为1,另一方面,如果依照同底数幂的除法计算,得a0.所以规定:a0=1(a≠0).教师问13:为什么规定a0=1(a≠0)时要说明a≠0呢?学生回答:因为当a=0时,分母或除数为0,式子无意义.总结点拨:(出示课件6)同底数幂的除法一般地,我们有a m÷a n=a m–n(a ≠0,m,n都是正整数,且m>n)即同底数幂相除,底数不变,指数相减.规定:a0=1(a ≠0)这就是说,除0以外任何数的0次幂都等于1.例1:计算:(出示课件7)(1)x8÷x2;(2) (ab)5÷(ab)2.师生共同解答如下:解:(1)x8 ÷x2=x8–2=x6;(2) (ab)5÷(ab)2=(ab)5–2=(ab)3=a3b3.总结点拨:计算同底数幂的除法时,先判断底数是否相同或变形相同,若底数为多项式,可将其看作一个整体,再根据法则计算.例2:已知a m=12,a n=2,a=3,求a m–n–1的值.(出示课件9)师生共同解答如下:解:∵a m=12,a n=2,a=3,∴a m–n–1=a m÷a n÷a=12÷2÷3=2.总结点拨:解此题的关键是逆用同底数幂的除法,对a m–n–1进行变形,再代入数值进行计算.2.复习旧知,探究单项式除以多项式的法则教师问14:计算:4a2x3·3ab2学生回答:4a2x3·3ab2=12a3b2x3教师问15:计算:12a3b2x3÷ 3ab2学生讨论回答:(出示课件11)解法1: 12a3b2x3÷ 3ab2相当于求( )·3ab2=12a3b2x3.由(1)可知括号里应填4a2x3.解法2:原式=4a2x3· 3ab2÷ 3ab2=4a2x3.理解:上面的商式4a2x3的系数4=12 ÷3;a的指数2=3–1,b的指数0=2–2,而b0=1,x的指数3=3–0.教师问15:类比上述研究过程计算以下两题.(1)-2x3÷(-x);(2)8m2n2÷2m2n.学生回答:(1)2x2;(2)4n教师问16:通过计算,你又发现什么规律?学生回答:单项式相除,把系数和同底数的幂分别相除.师生互动合作交流,得出单项式除以单项式的法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.总结点拨:(出示课件12)单项式除以单项式的法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.例3:计算:(出示课件13)(1)28x4y2÷7x3y;(2)–5a5b3c ÷15a4b.师生共同解答如下:解:(1)原式=(28 ÷7)x4–3y2–1=4xy;(2)原式=(–5÷15)a5–4b3–1c=- 1ab2c.3总结点拨:单项式除以单项式要按照法则逐项进行,不得漏项,并且要注意符号的变化.3.师生互动,学习多项式除以单项式的法则教师问17:一幅长方形油画的长为(a+b),宽为m,求它的面积.(出示课件16)学生回答:面积为(a+b)m=ma+mb.教师问18:若已知油画的面积为(ma+mb),宽为m,如何求它的长?学生回答:长为(ma+mb)÷m.教师问19:如何计算(am+bm) ÷m?(出示课件17)学生讨论后回答:计算(am+bm) ÷m就相当于求( ) ·m=am+bm,教师问20:()填什么呢?学生回答:a+b教师问21:am ÷m+bm ÷m=?学生回答:a+b教师问22:观察上边的问题,你发现了什么?学生回答:(am+bm) ÷m=am ÷m+bm ÷m教师问23:计算下列各式:(1)(ax+bx)÷x;(2)(a2+ab)÷a;(3)(4x2y+2xy2)÷2xy.学生回答:(1) a+b;(2) a+b;(3) 2x+y.教师问24:说你是怎样计算的?学生回答:多项式除以单项式,用多项式的每一项除以单项式.教师问25:它们的项数之间有什么发现吗?师生共同解答如下:在学生独立解决问题之后,及时引导学生反思自己的思维过程,并对自己计算所得的结果进行观察,总结出计算的一般方法和结果的项数特征:商式与被除式的项数相同.教师问26:你能归纳出多项式除以单项式的法则吗?(出示课件18)学生归纳,教师点拨:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.教师问27:你能把这句话写成公式的形式吗?学生回答:(am+bm)÷m=am÷m+bm÷m.关键:应用法则是把多项式除以单项式转化为单项式除以单项式.例4:计算:(12a3–6a2+3a) ÷3a. (出示课件19)师生共同解答如下:解: (12a3–6a2+3a) ÷3a=12a3÷3a+(–6a2) ÷3a+3a÷3a=4a2+(–2a)+1=4a2–2a+1.总结点拨:多项式除以单项式,实质是利用乘法的分配律,将多项式除以单项式问题转化为单项式除以单项式问题来解决.计算过程中,要注意符号问题.例5:先化简,后求值:[2x(x2y–xy2)+xy(xy–x2)]÷x2y,其中x=2015,y=2014.(出示课件21)师生共同解答如下:解:原式=[2x3y–2x2y2+x2y2–x3y]÷x2y,=x–y.把x=2015,y=2014代入上式,得原式=x–y=2015–2014=1.(三)课堂练习(出示课件24-29)1.下列说法正确的是( )A.(π–3.14)0没有意义B.任何数的0次幂都等于1C.(8×106)÷(2×109)=4×103D.若(x+4)0=1,则x≠–42.下列算式中,不正确的是( )A.(–12a5b)÷(–3ab)=4a4B.9x m y n–1÷3x m–2y n–3=3x2y2C. 4a2b3÷2ab=2ab2D.x(x–y)2÷(y–x)=x(x–y)3.已知28a3b m÷28a n b2=b2,那么m,n的取值为( )A.m=4,n=3 B.m=4,n=1C.m=1,n=3 D.m=2,n=34.一个长方形的面积为a2+2a,若一边长为a,则另一边长为_____________.5. 已知一多项式与单项式–7x5y4 的积为21x5y7–28x6y5,则这个多项式是______.6.计算: (1)6a3÷2a2;(2)24a2b3÷3ab;(3)–21a2b3c÷3ab;(4)(14m3–7m2+14m)÷7m.7. 先化简,再求值:(x+y)(x–y)–(4x3y–8xy3)÷2xy,其中x=1,y=–3.8. (1)若32•92x+1÷27x+1=81,求x的值;(2)已知5x=36,5y=2,求5x–2y的值;(3)已知2x–5y–4=0,求4x÷32y的值.参考答案:1.D2.D3.A4.a+25. –3y3+4xy6. 解:(1) 6a3÷2a2=(6÷2)(a3÷a2)=3a.(2) 24a2b3÷3ab=(24÷3)a2–1b3–1=8ab2.(3)–21a2b3c÷3ab=(–21÷3)a2–1b3–1c= –7ab2c;(4)(14m3–7m2+14m)÷7m=14m3÷7m-7m2÷7m+14m÷7m= 2m2–m+2.7. 解:原式=x2–y2–2x2+4y2=–x2+3y2.当x=1,y=–3时,原式=–12+3×(–3)2=–1+27=26.8. 解:(1)32•34x+2÷33x+3=81,即3x+1=34,解得x=3;(2)52y=(5y)2=4,5x–2y=5x÷52y=36÷4=9.(3)∵2x–5y–4=0,移项,得2x–5y=4.4x÷32y=22x÷25y=22x–5y=24=16.(四)课堂小结今天我们学了哪些内容:a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n)a0=1(a≠0)(am+bm)÷m=am÷m+bm÷m.(五)课前预习预习下节课(14.2)的相关内容。
2023-2024学年八年级上数学:整式的乘法(精讲教师版)
八、零指数幂的性质 零指数幂的性质: 同底数幂相除,如果被除式的指数等于除式的指数,例如 am÷am, 根据除法的意义可知所得的商为 1.另一方面,如果依照同底数幂 的除法来计算,又有 am÷am=am-m=a0. 于是规定:a0=1(a≠0). 语言叙述:任何不等于 0 的数的 0 次幂都等于 1. 【注意】1.底数 a 不等于 0,若 a=0,则零的零次幂没有意义. 2.底数 a 可以是不为零的单顶式或多项式,如 50=1,(x2+y2+1)0=1 等. 3.a0=1 中,a≠0 是极易忽略的问题,也易误认为 a0=0.
2023-2024 学年八年级上数学:第十四章 乘法与因式分解
14.1 整式的乘法
整式的
第 1页(共 18页)
一、同底数幂的乘法
一般地,对于任意底数 a 与任意正整数 m,n,
am·an= (aa a) · (aa a) = aa a = Nhomakorabeamn .
m个a
n个a
( m n ) 个a
语言叙述:同底数幂相乘,底数不变,指数相加.
第 2页(共 18页)
=(a·a·a)·(b·b·b)(乘法交换律、结合律)
=a3b3.
2.积的乘方法则:
一般地,对于任意底数 a,b 与任意正整数 n,
(ab)n (ab) (ab) (ab) aa a bbb =anbn .
n个ab
n个a
n个b
因此,我们有 (ab)n anbn .
语言叙述:积的乘方,等于把积的每一个因式分别乘方,再把所得 的幂相乘. 四、单项式与单项式相乘 法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分 别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为 积的一个因式. 1.只在一个单项式里含有的字母,要连同它的指数写在积里,注 意不要把这个因式遗漏. 2.单项式与单项式相乘的乘法法则对于三个及以上的单项式相乘 同样适用. 3.单项式乘单项式的结果仍然是单项式. 【注意】1.积的系数等于各项系数的积,应先确定积的符号,再 计算积的绝对值. 2.相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加” 进行计算. 五、单项式与多项式相乘 法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的 每一项,再把所得的积相加.用式子表示:m(a+b+c)=ma+mb+mc (m,a,b,c 都是单项式).
人教版八年级数学上册第十四章《整式的乘法和因式分解》知识清单,易错点,典型考点和训练点剖析
人教版八年级数学上《整式的乘法与因式分解》知识清单,易错点,典型考点和训练点剖析一.知识快递拿到第一把山门的钥匙后,图图直奔二道山门而去.为了保证把二道山门的钥匙成功拿到手,图图决定走进易错点辩析厅,磨练自己的火眼金睛.二.易错点辨析2.1 忽视符号致错例1 分解因式:-a+3a错解:-a+3a =-a (1+2a )分析:这里公因式有两部分组成,一部分是系数,提出的是-1,一部分是字母,提出的是字母a ,但是在提取的过程中,因为忽视3a 的系数符号,导致解答的错误.正解:-a+3a =-a (1-2a )易错点2:对公示理解不准致错例2 下列计算正确的是( )A.222)(y x y x +=+ B .2222)(y xy x y x --=-C .(x+2y )(x-2y )=222y x -)D .2222)(y xy x y x +-=+- 错解:选A 或选B 或选C .分析:A 所反映的公式是和的完全平方公式,展开后应该有三项,而给出的A 项只有两项,所以A 是错误的;B 所反映的公式是差的完全平方公式,展开后应该有三项,项数合理,但是y 的平方项系数确定错误,应该是加上2y ,所以选项B 是错误的;选项C 所反映的公式是平方差公式,结果应该是两数的平方差,2)2(y 应该是42y ,而不是22y ,所以选项C 是错误的.正解:选D .易错点3:整体提出公因式时不能准确确定余数致错例3 分解因式:2a-4b+2错解:2a-4b+2=2(a-2b ).分析:因式分解的实质是一种恒等变形,所以不论在形式上发生何种变化,有一点是不会改变的,这就是变形前后多项式的项数必须相同.其次,你可以利用乘法将右边回乘看看能否得到左边的多项式,如果能就说明分解是正确的,如果不能,就说明这样的分解是错误的. 最后要说明的是,当这一项被整体提取后,这个位置上余数是1,而不是0,一定要谨记. 正解:2a-4b+2=2(a-2b+1).经过自己艰辛努力,图图顺利闯过了第二道山门.走出易错厅的图图,满怀信心,直奔考点直播室而去.三.考点直播室考点1 单项式乘单项式例1如果□×3ab=32a b ,则□内应填的代数式是( )A.abB.3abC.aD.3a分析:单项式乘单项式,要注意系数的变化,相同字母的指数的变化,单独出现的字母和指数的处理,这是解题的关键.解:选C .考点2 探求完全平方公式展开式中某项的系数例2计算2)2(+x 的结果为2x +□x+4,则“□”中的数为( )A .-2B .2C .-4D .4分析:熟记完全平方公式的展开式是解题的关键.其次就是要灵活运用对应项相同的法则. 解:因为2)2(+x =2x +4x+4,所以2x +□x+4=2x +4x+4,比较对应项,得“□”中的数为4. 所以选择D .考点3 先提取公因式后套用平方差公式分解因式例3分解因式:9a -a 2b = .分析:这里有公因式a ,所以先提出来,其次就是要将数字9写成23,从而在提后的多项式 中,生成用平方差公式的条件.解:9a -a 2b =a (9-2b )==a (23-2b )= a (3+b (3-b ).考点4 先提取公因式后套用完全平方公式分解因式例4.把代数式33x -62x y+3x 2y 分解因式,结果正确的是( )A .x (3x+y )(x-3yB .3x (2x -2xy+2y )C .x 2)3(y x - D .3x 2)(y x - 分析:先确定公因式:3x ;第二步提取公因式3x ,得到3x (2x -2xy+2y ),第三步将结果彻底化,就得到了3x 2)(y x -.解:选D .考点5 先化简后求值例5.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5分析:解答时,同学们一定要按照题目的要求来作答,否则就很难得到高分的. 解:(a +2)(a -2)+a (1-a )=a 2-4+a -a 2=a -4,当a =5时,原式=5-4=1.成功闯过第三道山门的图图,心里非常的高兴,满怀胜利的喜悦直奔庄园的正殿而去,突然图图放慢了脚步,他担心自己一旦不成功,就会前功尽弃了,为了确保最终的胜利,于是图图悄悄钻进了训练大本营,让自己变得更坚强.四.训练大本营1. 分解因式2x 2 − 4x + 2的最终结果是( )A .2x(x − 2)B .2(x 2 − 2x + 1)C .2(x − 1)2D .(2x − 2)2 2. 当x=10,y=9时,代数式2x -2y 的值是 .3. 化简:2)3(+a +a (2-a )4. 先化简,再求值.()()212x x x ++-,其中12x =-.5.化简:22)()(y x y x --+参考答案:1. C2. 193.解:原式22692a a a a =+++-89a =+4. 解:原式=22212x x x x +++-=221x +, 当12x =-时,原式=21212⎛⎫⨯-+ ⎪⎝⎭=12+1=32. 5.解:原式=222222y xy x y xy x -+-++ =xy 4.图图凭借自己扎实的数学功底,将山庄仔仔细细探了清清楚楚,同学们要学习图图这种不怕困难的学习精神,努力学好数学.欲知图图意欲何往,请听赵老师下次安排.。
人教版八年级数学上册第十四章整式的乘法与因式分解小结与复习教学课件
考点二 整式的运算
例3 计算:[x(x2y2-xy)-y(x2-x3y)] ÷3x2y,其中x=1,y=3.
解析:在计算整式的加、减、乘、除、乘方的运算中,一要注意运算顺序;二要熟练
正确地运用运算法则.
解:原式=(x3y2-x2y-x2y+x3y2) ÷3x2y
=(2x3y2-2x2y) ÷3x2y
例6 把多项式2x2-8分解因式,结果正确的是( C )
A.2(x2-8)
B.2(x-2)2
C.2(x+2)(x-2) D.2x(x- )
4 x
归纳总结
因式分解是把一个多项式化成几个整式的积的形式,它与整式乘法互为逆 运算,因式分解时,一般要先提公因式,再用公式法分解,因式分解要求 分解到每一个因式都不能再分解为止.
3.(1)已知3m=6,9n=2,求3m+2n,32m-4n的值. (2)比较大小:420与1510. 解:(1)∵3m=6,9n=2, ∴3m+2n=3m·32n=3m·(32)n=3m·9n=6×2=12. 32m-4n=32m÷34n=(3m)2÷(32n)2=(3m)2÷(9n)2=62÷22=9. (2) ∵420=(42)10=1610, ∵1610>1510,
=a2-(b-3)2=a2-b2+6b-9. (3)原式=[(3x-2y)(3x+2y)]2
=(9x2-4y2)2=81x4-72x2y2+16y4
11.用简便方法计算
(1)2002-400×199+1992; (2)999×1 001. 解:(1)原式=(200-199)2=1;
(2) 原式=(1000-1)(1000+1) =10002-1 =999999.
八年级数学上册《整式的乘法与因式分解》知识归纳
作品编号:782345167624791823987
学校:哇代古丰市然眉山镇村庄小学*
教师:周喻王*
班级:王者伍班*
第十四章整式的乘法与因式分解
14.1 整式的乘法
同底数幂的乘法:a m ·a n = a m + n(m、n都是正整数)
幂的乘方:(a m)n = a m n(m、n都是正整数)
积的乘方:(ab)n = a n b n(n为正整数)
同底数幂的除法:a m÷a n = a m - n(a ≠ 0 ,m、n都是正整数,并且m>n)
零指数幂:a0 = 1(a ≠ 0 )
单项式与单项式相乘,单项式与多项式相乘,多项式与多项式相乘。
(利用运算律和上面的运算性质解答)
14.2 乘法公式
平方差公式:(a+b)(a-b)= a2 - b2
完全平方公式:(a+b)2 = a2 + 2ab + b2
(a-b)2 = a2 - 2ab + b2
添括号法则:a+b+c = a+(b+c) a-b-c = a - (b+c) 举例:a-b+c = a - (b-c)
14.3 因式分解(几个整式乘积的形式)
式子的变形:这个多项式的因式分解= 把这个多项式因式分解。
1、提公因式法(多项式各项有公因式)
2、公式法(3个乘法公式左右互换)
3、十字相乘法(补充)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸣玉中学“反刍式四步”导学案
主备 :卢宗荣 审定 : 总计学时:36
课题
14. 4. 6 小结与复习
学习时间 第 周 星期
学习
目标
把握本章知识脉络,掌握本章基础知识。
重点
(1)整的乘除法;(2)因式分解; 难点 (1)正确使用公式;(2)逆用公式解题;
学
习
活
动
过
程
一、粗吞-------发现问题(同桌反刍)
自主学习:一、本章知识结构图:
整式乘法 乘法公式
整式除法 分解因式
展示学习目标: 把握本章知识脉络,掌握本章基础知识。
二、细嚼---------探究问题(组内反刍)
小组讨论:二、回顾与思考:
1、幂的运算性质是整式乘除法的基础,单项式的乘除是整式乘除的关键,举
例说明怎样将多项式乘(除以)单项式,多项式乘多项式转化为单项式的乘除。
2、把一些特殊形式的多项式乘法写成公式的形式,可以简化运算,本章学习
了哪些乘法公式?你能从图形角度解释公式的合理性吗?
3、举例说明因式分解与整式乘法之间的关系,你学习了哪几种分解因式的方
法?请举例说明。
视导引领:三、例题与练习:
(一)1、-x2(-x)2(-x)3=
2、(-x5)+(-x7)5=
3、已知xn=5,yn=3,则(x2 y)2n值为
4、(-x)9÷x4÷(-x)3=
(二)计算下列各题
1、(9/4×102)×(25×103)2×(-2×106)2 2、(4x4 y)(-xy3 )
5 3、当a=-3/4时,求-2a(3a2-4a-1)-a(-6a2
+5a-2)的值。
4、若(x+a)(x2-6x+b)的展开式中,不含x2次和x项,则a
= ,b= 。
学
习
活
动
过
程
三、消化----------解决问题(班级反刍)
汇报质疑:5、(a+2)2-2a(a+2) 6、(x+3)(x+4)-x(x+2)-5
7、若x-y=2,x2 -y2 =10,则x+y= 8、(2m+1)(2m-1)(4m2+1)=
9、(x+2y-1)(x+1-2y)= 10、(-x-1/2)2=
11、若(x+y)2 =9,(x-y)2 =5,则xy= 12、若a2 +ma+9是完全平方式,那么
m=
13、a2 +b2 =(a+b)2 - 14、(y+3)2-(3-y)2 =
15、(6×106 )÷(-3×103 )= 16、16m ÷4m ÷2=2( )
17、(2/5x2 y2 -7xy2 +2/3y3 )÷2/3y
2
18、长方形面积为4a2 -6ab+2a,一边长为2a,则周长是
点拨评析:三、分解因式
1、4x3 -6x2 = 2、m(a-b)-n(b-a)=
3、m2 -36 m2 = 4、(2x+y)2 -(x+2y)2 =
5、p4 -1= 6、若x2 -2(m+3)x+16是完全平方式,则m的值为
四、吸收------运用拓展(实践反刍)
达标测评:7、a2 -2a(b+c)+(b+c)2 8、1/2x2 -xy+1/2y
2
9、xy2 -2xy+x 10、a2 b2 -a2 -b2 -1
11、(x+y)2 -2(x2 -y2 )+(x-y)2 12、x2 -5x+6
13、x2 -5x-6 14、x2 +5x-6
15、2x2 -20x+50 16、(a+2)(a-8)+25
17、a2 +2ab+b2 +4a+4b+4 18、已知a-b=3,ab=-1,求a2 b-ab2 的
值。
19、证明:817 -279 -913 能被45整除。20、已知:a、b为自然数且a2 -b2 =45,求a、b的
值。
21、若x2 +y2 +2x-8y+17=0,求y/x的值。
22、若一个三角形边长为a、b、c,且a2 +2b2 +c2 -2ab-2bc=0,试判断该三角
形的形状,并说明理由。
23、若非零实数a、b满足4a2 +b2 =4ab,求b/a的值。
24、若两个两位数的十位数字相同,而它们的个位数字之和为10,研究它们积的规律,
并证明你的结论。
拓展提升:思考题:
(1)设y=(x-1)(x-3)(x-4)(x-6)+10
证明:不论x取任何实数,y的值总大于0。
(2)分解因式:x2+4xy+4y2-4x-8y+3
(3)①若a2+ba+12能分解为两个一次因式的乘积,且b为整数,则b= 。
②若a+12a+b能分解为两个一次因式的乘积,且b为正整数,则b= 。
(4)在实数范围内分解因式
①x2-3 ②5x2-4
(5)证明:两个相邻奇数的平方差是8的倍数。
导学
反思