人教版八年级数学上册课堂练习 第十四章 14.1 整式的乘法 第三课时
14.1.4整式的乘法(第3课时)(课件)-八年级数学上册精品课堂(人教版)

① 将单项式分别乘以多项式的各项,
② 再把所得的积相加.
2.进行单项式与多项式乘法运算时,要注意什么?
① 不能漏乘: 即单项式要乘遍多项式的每一项
② 去括号时注意符号的确定.
复习引入
计算:1.单项式乘以单项式
(-4ab)·3a2bc;
解:原式=(-4×3)·(a·a2)·(b·b)·c
=-12a3b2c;
=x·x-xy-8xy+8y2
=x2-9xy+8y2;
典例精析
例6 计算:
计算时不能漏乘.
(3) (x+y)(x2-xy+y2).
(3)原式=x·x2-x·xy+xy2+x2y-xy2+y·y2
=x3-x2y+xy2+x2y-xy2+y3
=x3+y3.
需要注意的几个问题:(1)漏乘;
(2)符号问题;
总体上看,(a+b)(p+q)的结果可以看作由a+b的
每一项乘p+q的每一项,再把所得的积相加而得到的,
即 (a+b)(p+q)=ap+aq+bp+bq
新知探究
(a+b)( p+q)=ap+aq+bp+bq
多项式与多项式相乘的法则:
多项式与多项式相乘,先用一个多项式的每一项乘另一个
多项式的每一项,再把所得的积相加.
C.(x+2)(x-10)=x2-8x-20
D.(x+y)(x2-xy+y2)=x3+y3
随堂检测
3.计算:
(1)(2x+1)(x+3)
(2)(m+2n)(3n-m)
人教版数学八年级上册 第14章 14.1---14.3分节练习含答案

人教版数学八年级上册第14章14.1---14.3分节练习含答案14.1整式的乘法一.选择题1.计算(2m+3)(m﹣1)的结果是()A.2m2﹣m﹣3B.2m2+m﹣3C.2m2﹣m+3D.m2﹣m﹣3 2.计算(﹣3x2)2x3的结果是()A.﹣5x6B.﹣6x6C.﹣5x5D.﹣6x53.下列各式中,计算结果为a18的是()A.×a6C.a3×(﹣a)6D.(x﹣1)+(x﹣4)(x+1)的结果是()4. 计算式:(x+4)(x﹣1)+(x﹣4)(x+1)的结果是()A.2x2﹣8B.2x2﹣x﹣4C.2x2+8D.2x2+6x5.下面四个整式中,不能表示图中阴影部分面积的是()A.﹣6x B.x(x+4)+24C.4(x+6)+x2D.x2+246.若x+m与x+2的乘积化简后的结果中不含x的一次项,则m的值为()A.2B.﹣2C.4D.﹣47.已知正方形ABCD边长为x,长方形EFGH的一边长为2,另一边的长为x,则正方形ABCD与长方形EFGH的面积之和等于()A.边长为x+1的正方形的面积B.一边长为2,另一边的长为x+1的长方形面积C.一边长为x,另一边的长为x+1的长方形面积D.一边长为x,另一边的长为x+2的长方形面积8.计算(﹣1.5)2018×()2019的结果是()A.﹣B.C.﹣D.9.若(x+2)(x+a)=x2+bx﹣8,则a b的值为()A.﹣8B.﹣4C.D.10.若(x2﹣px+q)(x﹣3)展开后不含x的一次项,则p与q的关系是()A.p=3q B.p+3q=0C.q+3p=0D.q=3p二.填空题11.若(3x2﹣2x+1)(x+b)的积中不含x的一次项,则b的值为.12.=.13.如图,现有A类、B类正方形卡片和C类长方形卡片各若干张,若要拼一个长为(3a+b),宽为(a+2b)的大长方形,则需要张C类卡片.14.已知a+b=4,ab=3,则代数式(a+1)(b+1)的值为.15.已知a+b=﹣5,ab=4,化简(a﹣2)(b﹣2)的结果是.三.解答题16.计算:(1)3x2y(﹣2x3y2)2;(2)(﹣2a2)(3ab2﹣5ab3).17.若(x2+nx+3)(x2﹣3x+m)的展开式中不含x2项和x3项,求m,n的值.18.甲、乙二人共同计算2(x+a)(x+b),由于甲把第一个多项式中a前面的符号抄成了“﹣”,得到的结果为2x2+4x﹣30;由于乙漏抄了2,得到的结果为x2+8x+15.(1)求a,b的值;(2)求出正确的结果.19.如图,甲、乙都是长方形,边长的数据如图所示(其中m为正整数).(1)图中的甲长方形的面积S1,乙长方形的面积S2,试比较S1、S2的大小,并说明理由;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S﹣S1)是一个常数,求出这个常数.参考答案与试题解析一.选择题1.【解答】解:原式=2m2﹣2m+3m﹣3=2m2+m﹣3,故选:B.2.【解答】解:(﹣3x2)2x3=﹣6x5,故选:D.3.【解答】解:A.(﹣a6)3=﹣a18,故本选项不合题意;B.(﹣a3)×a6=﹣a9,故本选项不合题意;C.a3×(﹣a)6=a9,故本选项不合题意;D.(﹣a3)6=a18,故本选项符合题意.故选:D.4.【解答】解:(x+4)(x﹣1)+(x﹣4)(x+1)=x2+3x﹣4+x2﹣3x﹣4=2x2﹣8,故选:A.5.【解答】解:A、大长方形的面积为:,空白处小长方形的面积为:6x,所以阴影部分的面积为﹣6x,故不符合题意;B、阴影部分可分为两个长为x+4,宽为x和长为6,宽为4的长方形,他们的面积分别为x(x+4)和4×6=24,所以阴影部分的面积为x(x+4)+24,故不符合题意;C、阴影部分可分为一个长为x+6,宽为4的长方形和边长为x的正方形,则他们的面积为:4(x+6)+x2,故不符合题意;D、阴影部分的面积为x(x+4)+24=x2+4x+24,故符合题意;故选:D.6.【解答】解:根据题意得:(x+m)(x+2)=x2+(m+2)x+2m,由结果中不含x的一次项,得到m+2=0,解得:m=﹣2,故选:B.7.【解答】解:根据题意得:正方形ABCD与长方形EFGH面积之和为x2+2x=x(x+2),则正方形ABCD与长方形EFGH的面积之和等于一边长为x,另一边的长为x+2的长方形面积,故选:D.8.【解答】解:(﹣1.5)2018×()2019=(1.5)2018×()2018×====.故选:D.9.【解答】解:(x+2)(x+a)=x2+(2+a)x+2a,则2+a=b,2a=﹣8,解得,a=﹣4,b=﹣2,∴a b=(﹣4)﹣2=,故选:D.10.【解答】解:(x2﹣px+q)(x﹣3)=x3﹣3x2﹣px2+3px+qx﹣3q=x3+(﹣p﹣3)x2+(3p+q)x﹣3q,∵结果不含x的一次项,∴q+3p=0.故选:C.二.填空题(共5小题)11.【解答】解:(3x2﹣2x+1)(x+b)=3x3+3bx2﹣2x2﹣2bx+x+b=3x3+(3b﹣2)x2+(﹣2b+1)x+b,∵积中不含x的一次项,∴﹣2b+1=0,解得:b=,故答案为:.12.【解答】解:原式=22008×()2008×()2=(2×)2008×=1×=.故答案为:.13.【解答】解:∵(3a+b)(a+2b)=3a2+6ab+ab+2b2=3a2+7ab+2b2,∴若要拼一个长为(3a+b),宽为(a+2b)的大长方形,则需要A类3张,B类2张,C 类7张.故答案为:7.14.【解答】解:原式=ab+a+b+1=ab+(a+b)+1,当a+b=4,ab=3时,原式=3+4+1=8.故答案为:815.【解答】解:∵a+b=﹣5,ab=4,∴(a﹣2)(b﹣2)=ab﹣2a﹣2b+4=ab﹣2(a+b)+4=4﹣2×(﹣5)+4=18,故答案为:18.三.解答题(共4小题)16.【解答】解:(1)3x2y(﹣2x3y2)2=3x2y4x6y4=12x8y5;(2)(﹣2a2)(3ab2﹣5ab3)=(﹣2a2)(3ab2)﹣(﹣2a2)(5ab3)=﹣6a3b2+10a3b3.17.【解答】解:(1)设AB=x,BC=y,由题意得,∵长方形ABCD的周长为16,∴2(x+y)=16,即x+y=8 ①,又∵四个正方形的面积和为68,∴2x2+2y2=68,即:x2+y2=34 ②,①的两边平方得(x+y)2=64,即x2+2xy+y2=64,将②代入得,2xy=30,∴xy=15,即矩形ABCD的面积为15;(2)(x2+nx+3)(x2﹣3x+m)=x4+(﹣3+n)x3+(m﹣3n+3)x2+(mn﹣9)x+3m,∵不含x2和x3项∴﹣3+n=0,m﹣3n+3=0,解得,m=6,n=3,答:m、n的值为6,3.18.【解答】解:(1)甲把第一个多项式中a前面的符号抄成了“﹣”,得到的结果为2x2+4x ﹣30,∴2(x﹣a)(x+b)=2x2+2bx﹣2ax﹣2ab=2x2+(2b﹣2a)x﹣2ab=2x2+4x﹣30,∴2b﹣2a=4,∵乙漏抄了2,得到的结果为x2+8x+15,∴(x+a)(x+b)=x2+bx+ax+ab=x2+(a+b)x+ab=x2+8x+15,∴a+b=8,解方程组得:,即a=3,b=5;(2)2(x+3)(x+5)=2x2+10x+6x+30=2x2+16x+30.19.【解答】解:(1)S1=(m+1)(m+7)=m2+8m+7,S2=(m+2)(m+4)=m2+6m+8,∴S1﹣S2=(m2+8m+7)﹣(m2+6m+8)=2m﹣1,∵m为正整数,∴2m﹣1>0,∴S1>S214.2《平方差公式》1. 为了便于直接应用平方差公式计算,应将)变形为()A. B.C. D.2. 可表示为()A. B. C. D.3. 若,则的值为()A. B. C. D.4. 在下列各式中,计算结果是的是()A. B.C. D.5.下列各式中,计算正确的是()A. B.C. D.6.计算:等于()A. B. C. D.7. 计算:________.8. 填空:(1)()();(2)();(3)()()().9.若一个三角形的一条边长为,这条边上的高为,则这个三角形的面积为________.10. 计算:(1)________.(2)().11.设=,求的值.12. 利用平方差公式计算:(1);(2).13. 计算:________;________;________;根据上面算式所得的简便方法计算下式:.14.计算:15.(1);(2);16.(3).17.计算:18.(1);(2);19.(3);(4).20.运用平方差公式计算:21.(1);(2);22.(3);(4).参考答案1.【答案】B2.【答案】B3.【答案】A4.【答案】C5.【答案】C6.【答案】A7.略8.【答案】(1)(2)(3)9.【答案】10.【答案】(1)(2)11.====,故=.12.===.===.13.【答案】原式.14.【答案】(1)解:(2)解:(3)解:15.【答案】(1)解:(2)解:(3)解:(4)解:16.【答案】(1)解:(2)解:(3)解:(4)解:14.3《因式分解》一.选择题1.8x m y n﹣1与﹣12x5m y n的公因式是()A.x m y n B.x m y n﹣1C.4x m y n D.4x m y n﹣1 2.下列计算属于因式分解的是()A.b3+b3=2b3B.(a+b)(a﹣b)=a2﹣b2C.a2﹣b2=(a+b)(a﹣b)D.a2÷a=a3.下列各式能分解因式的是()A.﹣x2﹣1B.C.a2+2ab﹣b2D.a2﹣b4.下列各式中,能用平方差公式进行分解因式的是()A.x2+y2B.x2﹣2x﹣3C.x2+2x+1D.x2﹣45.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解6.利用因式分解简便计算69×99+32×99﹣99正确的是()A.99×(69+32)=99×101=9999B.99×(69+32﹣1)=99×100=9900 C.99×(69+32+1)=99×102=10096D.99×(69+32﹣99)=99×2=1987.若长和宽分别是a,b的长方形的周长为10,面积为4,则a2b+ab2的值为()A.14B.16C.20D.408.已知a,b都是实数,观察表中的运算,则m为()a、b的运算a+b a﹣b a2﹣b2运算的结果﹣410m A.40B.﹣40C.36D.﹣369.已知a,b,c为△ABC的三边长,且满足ac+bc=b2+ab,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形10.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣ab=a(a﹣b)C.a2﹣b2=(a﹣b)2D.a2﹣b2=(a+b)(a﹣b)二.填空题11.分解因式:x3+2x2﹣3x=.12.在实数范围分解因式:x2﹣6=.13.利用因式分解计算:2022+202×196+982=.14.若x2+4x+m=(x﹣2)(x+6),则m=.15.若m3+m﹣1=0,则m4+m3+m2﹣2=.三.解答题16.因式分解:(1)2mx2﹣4mxy+2my2;(2)x2﹣4x+4﹣y2.17.将下列各式分解因式:(1)x2+2x﹣15;(2)2x2y﹣8xy2+8y3;(3)9(x+2y)2﹣4(x﹣y)2.18.已知a﹣b=3,ab=4,求下列式子的值:(1)a2b﹣ab2;(2)a4b2﹣2a3b3+a2b4.19.某同学碰到这么一道题“分解因式x2+2x﹣3”,不会做,去问老师,老师说:“能否变成平方差的形式?在原式加上1,再减去1,这样原式化为(x2+2x+1)﹣4,…”,老师话没讲完,此同学就恍然大悟,他马上就做好了此题.请你仔细领会该同学的做法,将a2﹣2ab﹣3b2分解因式.20.对于二次三项式a2+6a+9,可以用公式法将它分解成(a+3)2的形式,但对于二次三项式a2+6a+8,就不能直接应用完全平方式了,我们可以在二次三项式中先加上一项9,使其成为完全平方式,再减去9这项,使整个式子的值保持不变,于是有:a2+6a+8=a2+6a+9﹣9+8=(a+3)2﹣1=[(a+3)+1][(a+3)﹣1]=(a+4)(a+2)请仿照上面的做法,将下列各式因式分解:(1)x2﹣6x﹣16;(2)x2+2ax﹣3a2.参考答案一.选择题1.解:8x m y n﹣1与﹣12x5m y n的公因式是4x m y n﹣1.故选:D.2.解:A、从左到右是合并同类项,不是因式分解,故此选项不符合题意;B、从左到右是整式的乘法,不是因式分解,故此选项不符合题意;C、右边是几个整式的积的形式,故此选项符合题意;D、从左到右是单项式的除法运算,不是因式分解,故此选项不符合题意.故选:C.3.解:A、不能分解,故此选项不符合题意;B、能够运用完全平方式分解因式,故此选项符合题意;C、不能分解,故此选项不符合题意;D、不能分解,故此选项不符合题意.故选:B.4.解:A.多项式中的两项同号,不能用平方差公式分解因式;B.多项式含有三项,不能用平方差公式分解因式;C.多项式含有三项,不能用平方差公式分解因式;D.能变形为x2﹣22,符合平方差公式的特点,能用平方差公式分解因式.故选:D.5.解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.6.解:69×99+32×99﹣99=99(69+32﹣1)=99×100=9900.故选:B.7.解:∵长和宽分别是a,b的长方形的周长为10,面积为4,∴2(a+b)=10,ab=4,∴a+b=5,则a2b+ab2=ab(a+b)=20.故选:C.8.解:a2﹣b2=(a+b)(a﹣b)=(﹣4)×10=﹣40.∴m=﹣40.故选:B.9.解:由ac+bc=b2+ab得,c(a+b)=b(a+b),∴b=c,∴△ABC是等腰三角形.故选:D.10.解:由图可知,大正方形减小正方形剩下的部分面积为:a2﹣b2;拼成的长方形的面积为:(a+b)×(a﹣b),所以得出:a2﹣b2=(a+b)(a﹣b),故选:D.二.填空题11.解:x3+2x2﹣3x=x(x2+2x﹣3)=x(x+3)(x﹣1),故答案为:x(x+3)(x﹣1).12.解:x2﹣6=(x+)(x﹣).故答案为:(x+)(x﹣).13.解:原式=2022+2x202x98+982=(202+98)2=3002=90000.14.解:∵x2+4x+m可分解为(x﹣2)(x+6),∴(x﹣2)(x+6)=x2+4x﹣12,则m=﹣12.故答案为:﹣12.15.解:∵m3+m﹣1=0,∴m3+m=1,∴m4+m3+m2﹣2=m4+m2+m3﹣2=m(m3+m)+m3﹣2=m×1+m3﹣2=m+m3﹣2=1﹣2=﹣1.故答案为:﹣1.三.解答题16.解:(1)原式=2m(x2﹣2xy+y2)=2m(x﹣y)2;(2)原式=(x﹣2)2﹣y2=(x﹣2+y)(x﹣2﹣y).17.解:(1)原式=(x+5)(x﹣3);(2)原式=2y(x2﹣4xy+4y2)=2y(x﹣2y)2;(3)原式=(3x+6y)2﹣(2x﹣2y)2.=(3x+6y+2x﹣2y)(3x+6y﹣2x+2y)=(5x+4y)(x+8y).18.解:(1)∵a﹣b=3,ab=4,∴a2b﹣ab2=ab(a﹣b)=4×3=12;(2)∵a﹣b=3,ab=4,∴a4b2﹣2a3b3+a2b4=a2b2(a2﹣2ab+b2)=(ab)2(a﹣b)2=42×32=144.19.解:a2﹣2ab﹣3b2=a2﹣2ab+b2﹣4b2=(a﹣b)2﹣4b2=(a﹣b+2b)(a﹣b﹣2b)=(a+b)(a﹣3b).20.解:(1)x2﹣6x﹣16=x2﹣6x+9﹣9﹣16=(x﹣3)2﹣25=(x﹣3+5)(x﹣3﹣5)=(x+2)(x﹣8);(2)x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+a+2a)(x+a﹣2a)=(x+3a)(x﹣a).。
人教版八年级数学上册《14.1整式的乘法》练习-带参考答案

人教版八年级数学上册《14.1整式的乘法》练习-带参考答案一、单选题1.下列计算中,正确的是()A.B.C.D.2.计算的结果为()A.1 B.-1 C.2 D.-23.计算:□,□内应填写()A.-10xy B.C.+40 D.+40xy4.长方形一边长为另一边比它小则长方形面积为()A.B.C.D.5.若,则的值是()A.-11 B.-7 C.-6 D.-56.已知,和,那么x,y,z满足的等量关系是()A.B.C.D.7.下列多项式中,与相乘的结果是的多项式是()A.B.C.D.8.若的展开式中常数项为-2,且不含项,则展开式中一次项的系数为()A.-2 B.2 C.3 D.-3二、填空题9..10.比较大小:11.若,则的值是.12.若与的乘积中不含x的一次项,则实数n的值为.13.如图,将两张边长分别为和的正方形纸片分别按图①和图②两种方式放置在长方形内(图①和图②中两张正方形纸片均有部分重叠),未被这两张正方形纸片覆盖的部分用阴影表示.若长方形中边,的长度分别为,n.设图①中阴影部分面积为,图②中阴影部分面积为,当时,的值为.三、解答题14.计算:(1)(2)15.已知,求:(1)的值;(2)的值.16.芳芳计算一道整式乘法的题:(2x+m)(5x﹣4),由于芳芳抄错了第一个多项式中m前面的符号,把“+”写成“﹣”,得到的结果为10x2﹣33x+20.(1)求m的值;(2)计算这道整式乘法的正确结果.17.若关于的多项式与的积为,其中,b,,d,e,f是常数,显然也是一个多项式.(1)中,最高次项为,常数项为;(2)中的三次项由,的和构成,二次项时由,和的和构成.若关于的多项式与的积中,三次项为,二次项为,试确定,的值.参考答案:1.C2.D3.D4.D5.A6.C7.B8.D9.10.<11.1812.313.14.(1)解:原式=(2)解:原式=15.(1)解:∵和.∴(2)解:∵∴.16.(1)解:由题意得所以解得(2)解:17.(1);(2)解:多项式与的积中,三次项为,二次项为由题意得:解得:故。
8年级数学人教版上册同步练习-整式的乘法(含答案解析)

第十四章 整式的乘法与因式分解14.1整式的乘法专题一 幂的性质1.下列运算中,正确的是( )A .3a 2-a 2=2B .(a 2)3=a 9C .a 3•a 6=a 9D .(2a 2)2=2a 4 2.下列计算正确的是( )A .3x ·622x x = B .4x ·82x x = C .632)(x x -=- D .523)(x x =3.下列计算正确的是( )A .2a 2+a 2=3a 4B .a 6÷a 2=a 3C .a 6·a 2=a 12D .( -a 6)2=a 12 专题二 幂的性质的逆用4.若2a =3,2b =4,则23a+2b 等于( ) A .7 B .12 C .432 D .1085.若2m=5,2n=3,求23m+2n的值.专题三 整式的乘法7.下列运算中正确的是( )A .2325a a a +=B .22(2)()2a b a b a ab b +-=--C .23622a a a ⋅=D .222(2)4a b a b +=+8.若(3x 2-2x +1)(x +b )中不含x 2项,求b 的值,并求(3x 2-2x +1)(x +b )的值.9.先阅读,再填空解题: (x +5)(x +6)=x 2+11x +30; (x -5)(x -6)=x 2-11x +30; (x -5)(x +6)=x 2+x -30; (x +5)(x -6)=x 2-x -30.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:________. (2)根据以上的规律,用公式表示出来:________. (3)根据规律,直接写出下列各式的结果:(a +99)(a -100)=________;(y -80)(y -81)=________.专题四 整式的除法 10.计算:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=________. 11.计算:236274319132)()(ab b a b a -÷-.12.计算:(a -b )3÷(b -a )2+(-a -b )5÷(a +b )4.状元笔记【知识要点】 1.幂的性质(1)同底数幂的乘法:nm n m a a a +=⋅ (m ,n 都是正整数),即同底数幂相乘,底数不变,指数相加.(2)幂的乘方:()m nmna a=(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘.(3)积的乘方:()n n nab a b =(n 都是正整数),即积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘. 2.整式的乘法(1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加. (3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.3.整式的除法(1)同底数幂相除:m n m na a a -÷=(m ,n 都是正整数,并且m >n ),即同底数幂相除,底数不变,指数相减.(2)0a =1(a ≠0),即任何不等于0的数的0次幂都等于1.(3)单项式除以单项式:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加. 【温馨提示】1.同底数幂乘法法则与合并同类项法则相混淆.同底数幂相乘,应是“底数不变,指数相加”;而合并同类项法则是“系数相加,字母及字母的指数不变”.2.同底数幂相乘与幂的乘方相混淆.同底数幂相乘,应是“底数不变,指数相加”;幂的乘方,应是“底数不变,指数相乘”.3.运用同底数幂的乘法(除法)法则时,必须化成同底数的幂后才能运用上述法则进行计算. 4.在单项式(多项式)除以单项式中,系数都包括前面的符号,多项式各项之间的“加、减”符号也可以看成系数的符号来参与运算. 【方法技巧】1.在幂的性质中,公式中的字母可以表示任意有理数,也可以表示单项式或多项式. 2.单项式与多项式相乘,多项式与多项式相乘时,要按照一定的顺序进行,否则容易造成漏项或增项的错误.3.单项式与多项式相乘,多项式除以单项式中,结果的项数与多项式的项数相同,不要漏项.参考答案:1.C 解析:A 中,3a 2与-a 2是同类项,可以合并,3a 2―a 2=2a 2,故A 错误;B 中,(a 2)3=a 2×3=a 6,故B 错误;C 中,a 3•a 6=a 3+6=a 9,故C 正确;D 中,(2a 2)2=22(a 2)2=4a 4,故D 错误.故选C . 2.C 解析:3x ·2235x xx +==,选项A 错误;4x ·2246x x x +==,选项B 错误;23236()x x x ⨯-=-=-,选项C 正确;32236()x x x ⨯==,选项D 错误. 故选C .3.D 解析:A 中,22223a a a +=,故A 错误;B 中,624a a a ÷=,故B 错误;C 中,628a a a ⋅=,故C 错误. 故选D .4.C 解析:23a+2b =23a ×22b =(2a )3×(2b )2=33×42=432.故选C .5.解:23m+2n=23m·22n=(2m)3·(2n)2 =53·32=1125.7.B 解析:A 中,由合并同类项的法则可得3a+2a=5a ,故A 错误;B 中,由多项式与多项式相乘的法则可得22(2)()22a b a b a ab ab b +-=-+-=222a ab b --,故B 正确;C 中,由单项式与单项式相乘的法则可得232322a a a +⋅==52a ,故C 错误;D 中,由多项式与多项式相乘的法则可得222(2)44a b a ab b +=++,故D 错误. 综上所述,选B . 8.解:原式=3x 3+(3b -2)x 2+(-2b+1)x+b ,∵不含x 2项,∴3b -2=0,得. ∴(3x 2-2x+1)(x+23)=3x 3-2x 2+x+2x 2-43x+23=3x 3-13x+23.9.解:(1)观察积中的一次项系数、常数项与两因式中的常数项的关系是: 一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积; (2)根据以上的规律,用公式表示出来:(a+b )(a+c )=a 2+(b+c )a+bc ;(3)根据(2)中得出的公式得:(a+99)(a -100)=a 2-a -9900;(y -80)(y -81)=y 2-161y+6480. 10.-12x+3y -16解析:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=(3x 3y )÷(-6x 2y )-18x 2y 2÷(-6x 2y )+x 2y÷(-6x 2y )=-12x+3y -16.11.解:原式。
人教版八年级上数学14.1整式的乘法课后训练(含答案)

20
1 |y
3| =0,请你计算
3(x- 7)12÷(y+ 3)5 的值.
2
23.将 4 个数 a , b,c,d 排成 2 行、 2 列,两边各加一条竖直线记成
ab
ab
,定义
=
cd
cd
6x 5 6x 1
ad- bc,上述记号就叫做 2 阶行列式.若
=- 20,求 x 的值.
6x 1 6x 5
参考答案
9a2b
的多项式是
__________ .
13.计算:
23
(1)( -5a b )(- 3a);
3
2
(2)(2 x) ·(- 5x y);
(3)2ab(5ab2+ 3a2b);
(4)(3 x+ 1)( x+ 2) . 14.计算: (1)412÷43;
(2) ( 1) 4 ( 1 )2 ;
2
2
(3)32 m+1÷3m-1.
课后训练
ቤተ መጻሕፍቲ ባይዱ
基础巩固
1.下列计算: ① a2n·an= a3n ; ②22 ·33= 65; ③ 32 ÷32= 1; ④ a3÷a2 = 5a; ⑤ (- a)2·(- a)3
=a5.其中正确的式子有 (
).
A.4 个
B.3 个
C.2 个
2.若 (2x-1) 0= 1,则 (
).
D.1 个
1
A . x≥
1. C 2.D 3.A 4.A 5.D 6.D 7. A 点拨: 原式=- a12÷a12=- 1.
8.A 点拨: 本题易错选 D,D 的正确结果为 ax+ 1,在实际运算中, “ 1”这一项经常
被看作 0 而忽视,应引起特别的重视. 9. B 点拨: 原式= 14a2b2÷7ab2- 21ab2÷7ab2= 2a-3. 10. C 点拨: 原式= 8m4n÷4m2n- 12m3n2÷4m2n+ 4m2n3÷4m2n=2 m2- 3mn+ n2. 11. a10 4a2 x2y4
14.1.4 整式的乘法 第3课时 多项式与多项式相乘

14.如果(x2+x-3)(x2-2x+2a) 的展开式中不含常数项,则 a 等于 ( B ) 1 A. 5
a c
B.0
C.5
D.-5
15.将 4 个数 a,b,c,d 排成两行、两列,两边各加一条竖直线记成
a b ,定义 d c
b = ad - bc , 上 述 记号 就 叫 做 二 阶 行 列 式 . 若 d
17.计算: (1)(a-1)(a-2)-a(a-5); 解:2a+2 (2)3x(x+2)-(x+1)(3x-4); 解:7x+4 (3)(x+3)(x+4)-x(x+2)-5.
解:5x+7
18.(1)解方程:(x-3)(x+8)=(x+4)(x-7)+2(x+5); 解:x=1 (2)求出使(3x+2)(3x-4)>9(x-2)(x+3)成立的非负整数解.
易错点:多项式与多项式相乘易漏或误判符号导致出错 11.计算:3(2x-1)(x+6)-5(x-3)(x+6). 解:x2+18x+72
12.若(x+2)(x-m)的积中,x的一次项系数为3,则m的值 为( A ) A.-1 B.2 C.3 D.6 13.若(x2-mx+1)(x-2)的积中,x的二次项系数为0,则m 的值是( C ) A.1 B.-1 C.-2 D.2
B.(m-3)(m-2)=m2-6m+5
C.(a+5)(a-2)=a2+3a-10
D.(3x+2)(3x-1)=9x2-3x-2
3.计算(a-b)(a2+ab+b2)的结果是( A )
A.a3-b3
B.a3-3a2b+3ab2-b3
C.a3+b3 D.a3-2a2b+2ab2-b3
4.计算:(2x+3)(3x-2)=______________ 6x2+5x-6 ; (a+b)(a-b)=___________ ; a2-b2 x3+8 (x+2)(x2-2x+4)=____________ .
2024年人教版八年级数学上册教案及教学反思第14章14.1.4 整式的乘法(第3课时)

第十四章整式的乘法与因式分解14.1.4 整式的乘法第3课时一、教学目标【知识与技能】1.探究同底数幂除法的性质和单项式除以单项式、多项式除以单项式的法则,并会应用法则计算.2.会进行单项式除以单项式、多项式除以单项式的运算,理解整式除法运算的原理.【过程与方法】1.经历探究整式的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条件的表达能力.2.体会知识间逻辑关系、类比探究在研究除法问题时的价值,体会转化思想在整式除法中的作用.【情感、态度与价值观】感受数学法则、公式的简洁美、和谐美.二、课型新授课三、课时第3课时四、教学重难点【教学重点】应用整式除法法则进行计算.【教学难点】根据乘、除互逆的运算关系得出同底数幂的除法运算法则.五、课前准备教师:课件、直尺、计算器等。
学生:练习本、钢笔或圆珠笔。
六、教学过程(一)导入新课木星的质量约是1.9×1024吨,地球的质量约是5.98×1021吨,你知道木星的质量约为地球质量的多少倍吗?(出示课件2)木星的质量约为地球质量的(1.90×1024)÷(5.98×1021)倍.想一想:上面的式子该如何计算?(二)探索新知1.师生互动,探究同底数幂的除法法则教师问1:请完成下面的题目:(出示课件4)(1)25×23;(2)x6×x4;(3)2m×2n.学生回答:(1)28;(2)x10;(3)2m+n.教师问2:本题是直接利用什么乘法法则计算的?学生回答:同底数幂的乘法法则:底数不变,指数相加.教师问3:思考下面的题该如何计算?(1)( )( )×23=28 (2)x6·( )( )=x10(3)( )( )×2n=2m+n学生回答:可以把乘法法则反过来利用.教师问4:反过来就我们今天要学的同底数幂的除法,能不能先试着写成除法形式?学生讨论后解答:(1)28÷23=?;(2)x10÷x6=?;(3)2m+n÷2n=?教师问5:你是如何计算的呢?学生回答:本题逆向利用同底数幂的乘法法则计算.教师问6:能不能试着完成下列各题:计算:(1)28÷23;(2)x10÷x6;(3)2 m+n÷2n学生回答:(1) 28÷23=25;(2) x10÷x6=x4;(3) 2 m+n÷2n =2m教师问7:观察下面的等式,你能发现什么规律?(出示课件5)(1)28÷23=25=28-3;(2) x10÷x6=x4=x10-6;(3) 2 m+n÷2n =2m =2m-n学生回答:底数不变,指数相减.教师总结:同底数幂相除,底数不变,指数相减.教师问8:以上法则能用字母表示吗?学生总结:a m÷a n=a m-n.教师问9:对指数有何要求吗?学生回答:m,n都是正整数,且m>n.教师总结:a m ÷a n=a m–n(m,n都是正整数,且m>n)教师问10:如何验证其正确性呢?学生回答:验证:因为a m–n·a n=a m–n+n=a m,所以a m ÷a n=a m–n.教师问11:对于除法运算,有没有什么特殊要求呢?学生回答:对于除法运算应要求除数(或分母)不为零,所以底数不能为零.即a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n).教师问12:计算:a m÷a m学生计算a m÷a m时,可能会出现1或a0两个答案.教师顺势归纳:从除法的意义可知商为1,另一方面,如果依照同底数幂的除法计算,得a0.所以规定:a0=1(a≠0).教师问13:为什么规定a0=1(a≠0)时要说明a≠0呢?学生回答:因为当a=0时,分母或除数为0,式子无意义.总结点拨:(出示课件6)同底数幂的除法一般地,我们有a m÷a n=a m–n(a ≠0,m,n都是正整数,且m>n)即同底数幂相除,底数不变,指数相减.规定:a0=1(a ≠0)这就是说,除0以外任何数的0次幂都等于1.例1:计算:(出示课件7)(1)x8÷x2; (2) (ab)5÷(ab)2.师生共同解答如下:解:(1)x8 ÷x2=x8–2=x6;(2) (ab)5÷(ab)2=(ab)5–2=(ab)3=a3b3.总结点拨:计算同底数幂的除法时,先判断底数是否相同或变形相同,若底数为多项式,可将其看作一个整体,再根据法则计算.例2:已知a m=12,a n=2,a=3,求a m–n–1的值.(出示课件9)师生共同解答如下:解:∵a m=12,a n=2,a=3,∴a m–n–1=a m÷a n÷a=12÷2÷3=2.总结点拨:解此题的关键是逆用同底数幂的除法,对a m–n–1进行变形,再代入数值进行计算.2.复习旧知,探究单项式除以多项式的法则教师问14:计算:4a2x3·3ab2学生回答:4a2x3·3ab2=12a3b2x3教师问15:计算:12a3b2x3÷ 3ab2学生讨论回答:(出示课件11)解法1:12a3b2x3÷ 3ab2相当于求( )·3ab2=12a3b2x3.由(1)可知括号里应填4a2x3.解法2:原式=4a2x3· 3ab2÷ 3ab2=4a2x3.理解:上面的商式4a2x3的系数4=12 ÷3;a的指数2=3–1,b的指数0=2–2,而b0=1,x的指数3=3–0.教师问15:类比上述研究过程计算以下两题.(1)-2x3÷(-x);(2)8m2n2÷2m2n.学生回答:(1)2x2 ;(2)4n教师问16:通过计算,你又发现什么规律?学生回答:单项式相除,把系数和同底数的幂分别相除.师生互动合作交流,得出单项式除以单项式的法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.总结点拨:(出示课件12)单项式除以单项式的法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.例3:计算:(出示课件13)(1)28x4y2÷7x3y;(2)–5a5b3c ÷15a4b.师生共同解答如下:解:(1)原式=(28 ÷7)x4–3y2–1=4xy;(2)原式=(–5÷15)a5–4b3–1c=- 1ab2c.3总结点拨:单项式除以单项式要按照法则逐项进行,不得漏项,并且要注意符号的变化.3.师生互动,学习多项式除以单项式的法则教师问17:一幅长方形油画的长为(a+b),宽为m,求它的面积.(出示课件16)学生回答:面积为(a+b)m=ma+mb.教师问18:若已知油画的面积为(ma+mb),宽为m,如何求它的长?学生回答:长为(ma+mb)÷m.教师问19:如何计算(am+bm) ÷m?(出示课件17)学生讨论后回答:计算(am+bm) ÷m就相当于求( ) ·m=am+bm,教师问20:()填什么呢?学生回答:a+b教师问21:am ÷m+bm ÷m=?学生回答:a+b教师问22:观察上边的问题,你发现了什么?学生回答:(am+bm) ÷m=am ÷m+bm ÷m教师问23:计算下列各式:(1)(ax+bx)÷x; (2)(a2+ab)÷a;(3)(4x2y+2xy2)÷2xy.学生回答:(1) a+b; (2) a+b;(3) 2x+y.教师问24:说你是怎样计算的?学生回答:多项式除以单项式,用多项式的每一项除以单项式.教师问25:它们的项数之间有什么发现吗?师生共同解答如下:在学生独立解决问题之后,及时引导学生反思自己的思维过程,并对自己计算所得的结果进行观察,总结出计算的一般方法和结果的项数特征:商式与被除式的项数相同.教师问26:你能归纳出多项式除以单项式的法则吗?(出示课件18)学生归纳,教师点拨:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.教师问27:你能把这句话写成公式的形式吗?学生回答:(am+bm)÷m=am÷m+bm÷m.关键:应用法则是把多项式除以单项式转化为单项式除以单项式.例4:计算:(12a3–6a2+3a) ÷3a. (出示课件19)师生共同解答如下:解:(12a3–6a2+3a) ÷3a=12a3÷3a+(–6a2) ÷3a+3a÷3a=4a2+(–2a)+1=4a2–2a+1.总结点拨:多项式除以单项式,实质是利用乘法的分配律,将多项式除以单项式问题转化为单项式除以单项式问题来解决.计算过程中,要注意符号问题.例5:先化简,后求值:[2x(x2y–xy2)+xy(xy–x2)]÷x2y,其中x=2015,y=2014.(出示课件21)师生共同解答如下:解:原式=[2x3y–2x2y2+x2y2–x3y]÷x2y,=x–y.把x=2015,y=2014代入上式,得原式=x–y=2015–2014=1.(三)课堂练习(出示课件24-29)1.下列说法正确的是( )A.(π–3.14)0没有意义B.任何数的0次幂都等于1C.(8×106)÷(2×109)=4×103D.若(x+4)0=1,则x≠–42.下列算式中,不正确的是( )A.(–12a5b)÷(–3ab)=4a4B.9x m y n–1÷3x m–2y n–3=3x2y2C. 4a2b3÷2ab=2ab2D.x(x–y)2÷(y–x)=x(x–y)3.已知28a3b m÷28a n b2=b2,那么m,n的取值为( )A.m=4,n=3 B.m=4,n=1C.m=1,n=3 D.m=2,n=34.一个长方形的面积为a2+2a,若一边长为a,则另一边长为_____________.5. 已知一多项式与单项式–7x5y4 的积为21x5y7–28x6y5,则这个多项式是______.6.计算:(1)6a3÷2a2;(2)24a2b3÷3ab;(3)–21a2b3c÷3ab; (4)(14m3–7m2+14m)÷7m.7. 先化简,再求值:(x+y)(x–y)–(4x3y–8xy3)÷2xy,其中x=1,y=–3.8. (1)若32•92x+1÷27x+1=81,求x的值;(2)已知5x=36,5y=2,求5x–2y的值;(3)已知2x–5y–4=0,求4x÷32y的值.参考答案:1.D2.D3.A4.a+25. –3y3+4xy6. 解:(1) 6a3÷2a2=(6÷2)(a3÷a2)=3a.(2) 24a2b3÷3ab=(24÷3)a2–1b3–1=8ab2.(3)–21a2b3c÷3ab=(–21÷3)a2–1b3–1c= –7ab2c;(4)(14m3–7m2+14m)÷7m=14m3÷7m-7m2÷7m+14m÷7m= 2m2–m+2.7. 解:原式=x2–y2–2x2+4y2=–x2+3y2.当x=1,y=–3时,原式=–12+3×(–3)2=–1+27=26.8. 解:(1)32•34x+2÷33x+3=81,即3x+1=34,解得x=3;(2)52y=(5y)2=4,5x–2y=5x÷52y=36÷4=9.(3)∵2x–5y–4=0,移项,得2x–5y=4.4x÷32y=22x÷25y=22x–5y=24=16.(四)课堂小结今天我们学了哪些内容:a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n)a0=1(a≠0)(am+bm)÷m=am÷m+bm÷m.(五)课前预习预习下节课(14.2)的相关内容。
2014年秋人教版八年级数学上14.1整式的乘法(3)同步习题精讲课件

C
-1 7.(3 分)计算:(-0.125)15×(215)3=____
8.(12 分)用简便方法计算: 1 2014 (1)(- ) ×161 008; 4
解:(1)16
18 (2)3 ×(- ) ; 9
18
解:(2)9
2 199 3 200 (3)(0.5×3 ) ×(-2× ) . 3 11 解:(3) 6 11
【易错盘点】 【例】计算:(-5a5b2)3. 【错解】(-5a5b2)3=-5a15b6
【错因分析】幂的乘方等于把积中每一个因
式分别乘方,再把所得的幂相乘,错解中系数
“-5”没有乘方.
【正解】-125a15b6
一、选择题(每小题3分,共12分)
9.计算-(-3a2b3)4的结果是( D ) A.81a8b12 B.12a6b 7 C.-12a6b7 D.-81a8b12
(2)已知|2a+b-4|+(4a-b-2)2=0,求代数
1 式( -3ab2)2的值. 4
解:a=1,b=2,原式=36
(3)已知2x+3· 3x+3=36x-2,求x的值. 解:7
【综合运用】
时,求(ambm)n的值;
m m n
1 19.(14分)(1)当ab= ,m=5,n=3 2
1 5×3 1 15 解:(1)(a b ).(10分)计算: (1)(-2a)6-(-3a3)2+[-(2a)2]3; 解:-9a6 (2)[3(m+n)2]3· [-2(m+n)3]2. 解:108(m+n)12
18.(12分)(1)已知n为正整数,且x3n=2,求 (2x3n)2+(-3x2n)3的值; 解:原式=4(x3n)2-27(x3n)2=-23(x3n)2=- 92
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时训练
1.计算(-2a)3的结果是()
A.-8a3
B.-6a3
C.6a3
D.8a3
2.在①-(3ab)2=9a2b2;②(4x2y3)2=8x4y6;③[(xy)3]2=x6y6;④a6b3c3=(a2bc)3中,计算错误的个数是()
A.1
B.2
C.3
D.4
3.下列计算正确的是()
A. (1
9
)100×999=9
B. (2
5) 2 021× (−5
2
) 2 020=-2
5
C. (−1
8
)100×0.125100=-1
D.(-0.25)100×(-4)100=1
4.计算(a2b)3的结果是()
A.a2b3
B.a5b3
C.a6b
D.a6b3
5.下列运算正确的是()
A.a2+a2=a4
B.a3·a4=a12
C.(a3)4=a12
D.(ab)2=ab2
6.下列计算中,正确的是()
A.(xy)3=xy3
B.(2xy)3=6x3y3
C.(-3x2)3=27x5
D.(a2b)n=a2n b n
7.下列计算中,正确的有()
①m2·m2=2m2;②(-a m-1)2=a2m-2;
③(-5x3)3=125x9;④(a3b2)n=a3n b2n.
A.1个
B.2个
C.3个
D.4个
8.如果(a n·b m·b3)3=a9b15,那么m,n的值为()
A.m=9,n=-4
B.m=3,n=4
C.m=2,n=3
D.m=9,n=6
9. (1)若x n =4,y n =9,则(xy)n
= ;
(2)若(a m b n b)3=a 9b 15
,则m+n= .
10. (1)若a 2n =4,则(3a 2n )2
的值是 ;
(2)若(-x 2·A)3=x 6y 3
,则A= .
11. (1)(-2a)3
= ;
(2)(-2x 2y)3
= ;
(3)(3a 2)2·a 3
= ;
(4)( )4=x 4y 8
.
12. (1)82 020
×(0.125)
2 021
=
;
(2) (−
3
16
)
2 021
× (−51
3
)
2 020
= .
13. (1)(-a 3b)2
·b= ;
(2)(2x2n+1)3(-3x n)2=.
14.(1)若a n=-2,b n=7,则(ab)n=;
(2)已知(a n b m+4)3=a9b6,则m n=. 15.计算:
(1)(-2x5y4z)5;
(2)(3a2b2)2·(-2a2)4·(-b2)5;
(3)(-a3b n)2·(a n-1b2)3;
(4)(-2x2y)3+8(x2)2·(-x2)·(-y)3.
16.用简便方法计算:
(1) (−3
10
)
2 020
· (31
3
)
2 020
;
(2) (−16
) 8
·364
;
(3)0.1259
×(-8)10
+ (25
) 11
× (212
) 12
.
17. 计算下列各题: (1)(-5m 3)2
-[(2m)2]3
;
(2)x5·x+(2x2)3+(-3x2)3;
(3)2a3(a3)2-(3x3)3+(5x)2·x7;
(4)(-6m3)2·m3+(-5m)2·m7-(4m3)3.
18.计算下列各题:
(1) (−51
7) 2 020× (7
36
) 2 020;
)5;
(2)34×74× (−1
21
)3×26×(-2)12.
(3)0.1253× (−1
4
19.(1)若a n=-1
,b2n=2(n为正整数),求1+(-ab)4n+a3n b6n的
3
值.
(2)若2x+5y=3,求4x·32y的值.
20.已知x+y=a,试求(x+y)3(2x+2y)3(3x+3y)3的值.
答案:
1. A
2. B
3. D
4. D
5. C
6. D
7. B
8. C
9.(1)36(2)7
10.(1)144(2)-y
11.(1)-8a3 (2)-8x6y3(3)9a7
(4)±xy2
12.(1)1 8
(2)-3
16
13. (1)a6b3
(2)72x8n+3
14.(1)-14(2)-8
15. (1)解:原式=-32x25y20z5;(2)解:原式=-144a12b14;(3)解:原式=a3n+3b2n+6;
(4)解:原式=0.
16.(1)解:原式= (3
10) 2 020· (10
3
) 2 020= (3
10
×10
3
) 2 020
=1;
(2)解:原式= (1
6)8·(62)4= (1
6
)8·68=1;
(3)解:原式=(-0.125×8)9×(-8)+ (2
5×5
2
)11×5
2
=8+5
2
=101
2
.
17. (1)解:原式=25m6-64m6=-39m6;(2)解:原式=x6+8x6-27x6=-18x6;(3)解:原式=2a9-27a9+25a9=0;(4)解:原式=36m9+25m9-64m9=-3m9.
1 18.(1)解:原式= (−
367×736) 2 020=1; (2)解:原式=34×74× (−
121) 4× (−121) = [3×7× (−
121)] 4× (−121) =-121;
(3)解:原式=0.1253× (−14
) 3×(22)3×[(-2)4]3 = (18) 3× (−14
) 3×43×163 = [18× (−14)×4×16] 3=-8.
19. (1)解:∵a n =-13,b 2n
=2(n 为正整数), ∴a 4n =181,a 3n =-127,b 6n =8,b 4n
=4, ∴1+(-ab)4n +a 3n b 6n =1+181×4+ (−127) ×8=6181
. (2)解:4x ·32y =22x ·25y =2
2x+5y =23=8. 20. 解:(x+y)3(2x+2y)3(3x+3y)3
=(x+y)3[2(x+y)]3[3(x+y)]3
=(x+y)3·8(x+y)3·27(x+y)3
=216(x+y)9=216a 9.。