真应力—真应变曲线
【国家自然科学基金】_真应力-真应变曲线_基金支持热词逐年推荐_【万方软件创新助手】_20140801

2013年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
科研热词 流变应力 高温试验 铝合金 遗传算法 本构模型 拉伸试验 变形 动态再结晶 位错 热变形 热压缩变形 热压缩 本构方程 加工图 tial合金 高温变形行为 高温变形 颈缩 真应力应变曲线 热塑性 激活能 本构关系 有限元 数值模拟 强化 应变率 塑性材料 塑性应变比 动态回复 准静态拉伸 β 相变点 tb8钛合金 q235钢 pp mo/cu-al2o3复合材料 cu-ni-si-p-cr合金 cu-cr-zr合金 cu-cr-zr-ce合金 6061铝合金板材
2008年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
科研热词 高温力学行为 铝合金 挤压铸造 超高碳钢 等温压缩 真应力-真应变曲线 真应力-真应变 温度 流变行为 本构模型 本构关系 应变速率敏感性指数 应变速率 变形机制 压缩超塑性 动态本构关系 ti53311s钛合金 tc16钛合金 hopkinson压杆试验
推荐指数 4 3 3 3 3 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20 1
2014年 序号 1 2 3 4
2014年 科研热词 混杂增强 本构方程 弥散铜 动态再结晶 推荐指数 1 1 1 1
推荐指数 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2010年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
应力应变曲线怎么分析

应力应变曲线怎么分析
应力应变曲线是材料力学中最重要的曲线,它可以反映材料在加载过程中的变形特性。
应力应变曲线的分析是材料力学研究的基础,也是材料加工、设计和应用的重要依据。
应力应变曲线的分析主要包括以下几个方面:
1、应力应变曲线的形状:应力应变曲线的形状可以反映材料的弹性模量、塑性模量、断裂应力和断裂应变等特性。
2、应力应变曲线的斜率:应力应变曲线的斜率可以反映材料的弹性模量、塑性模量、断裂应力和断裂应变等特性。
3、应力应变曲线的峰值:应力应变曲线的峰值可以反映材料的抗压强度、抗拉强度、断裂应力和断裂应变等特性。
4、应力应变曲线的偏移:应力应变曲线的偏移可以反映材料的疲劳性能、断裂应力和断裂应变等特性。
5、应力应变曲线的拐点:应力应变曲线的拐点可以反映材料的塑性模量、断裂应力和断裂应变等特性。
通过对应力应变曲线的分析,可以更好地了解材料的力学性能,从而为材料的加工、设计和应用提供参考。
名义应力应变曲线和真实应力应变曲线

名义应力应变曲线和真实应力应变曲线引言在材料力学的研究中,应力和应变是两个重要的概念。
应力是对物体单元面积上的内部力的描述,而应变是物体在受到外力作用下的形变程度。
材料的力学性质可以通过应力-应变曲线来描述。
然而,由于不同的测量方法和条件,得到的应力-应变曲线可能存在一定的差异。
本文将详细探讨名义应力应变曲线和真实应力应变曲线之间的关系。
一. 名义应力应变曲线名义应力应变曲线是指在无外界影响下,通过直接测量外力和承受力的比值得到的应力应变关系曲线。
在测试材料的强度、刚度和塑性等力学性质时,常使用名义应力应变曲线进行研究。
名义应力应变曲线由弹性阶段、屈服点、塑性阶段和破坏点四个主要区域组成。
1. 弹性阶段在名义应力应变曲线的弹性阶段,应变与应力成线性关系,材料在这个阶段内具有完全弹性变形能力。
如果外力移除,材料能够完全恢复其原始形状。
这是因为在弹性阶段内材料分子间发生的位移微小,分子间的作用力可以通过弹性形变来恢复原状。
2. 屈服点当外力继续增大,超过弹性极限时,材料发生塑性变形。
在名义应力应变曲线中,屈服点是指材料从弹性变形进入塑性变形的临界点。
在屈服点之前,应力和应变之间存在一个线性关系,这个线性关系称为胶性区。
屈服点之后的应力应变曲线呈现非线性增长,形成了塑性区。
3. 塑性阶段在塑性阶段,应力应变曲线表现出非线性增长的特点。
由于材料内部发生了位移和位错的形成,原子和分子之间的排列发生改变,使材料的原始形状无法恢复。
塑性阶段内材料受外力的影响,会发生塑性变形和变形硬化。
材料的塑性行为在这个阶段内得到了充分的表现和研究。
4. 破坏点在名义应力应变曲线的最后一个阶段,材料不再具备耐久性能,终会达到破坏点。
此时材料无法承受更多的应力,产生破裂。
破坏点是在研究材料强度时的一个重要参数,它可以反映材料的破坏极限。
二.真实应力应变曲线真实应力应变曲线是指在考虑材料体积的变化后得到的应力应变关系曲线。
由于在受力过程中材料会发生体积的改变,名义应力应变曲线难以完整描述真实的应力应变行为,因此需要引入真实应力的概念。
真实应力-应变曲线

§3.6 真实应力-应变曲线
应力-应变曲线反映变形体变形时应力随应变强化的规律。
初始屈服应力S
一般屈服应力( 流动应力S ,Y ) 真实应力:变形体内实际承受应力的大小。
影响流动应力的因素
材料属性, 温度, 应变, 应变速率
建立真实应力-应变曲线方法
拉伸试验,
压缩试验,
扭转试验
流动应力S 的公式表达形式
失稳点b,Fb = Fmax。
dF A0 edS Sed 0
dS Sd 0
dS
d
b
Sb
二、 压缩试验曲线
拉伸试验曲线:失稳,精确范围( < 0.3); 压缩试验曲线:摩擦(S ),精确范围( 2);
1、直接消除摩擦的圆柱体压缩法
S
P A
P A0e
ln H0
H
2、外推法 摩擦力影响和式样尺寸D0/H0 有关,根据不同的D0/H0 , 外推出D0/H0 = 0时的S,得到 真实应力-应变曲线。
1 1
Fd F(0)
1、拉伸图和条件应力-应变曲线
0
F A0
l
l0
b d
c
Fb= Fmax
Fp Fc
三个变形阶段:
ph
特征点:弹性极限点p,屈服点c,失稳点b,断裂点k。
?
k
Δl()
2、真实应力-应变曲线 用真实应力与应变表示的曲线。
S( ) ; S( ) ; S( )
2 2t
24
1 3 平面应变问题
2
3
1 2 2 2 3 2 3 1 2
2 3
6 1 1.1551
S 800 0.25
8001.151 0.25 443
新版材料性能学重点(完整版)-新版.pdf

7、 努氏硬度适用于测定表面渗层、镀层及淬硬层的硬度,渗层截面上的硬度分布
8、 维氏硬度
维氏硬度的试验原理与布氏硬度基本相似, 是根据压痕单位面积所承受的载荷来计算硬
度值。维氏硬度试验所用的压头是两相对面夹角 α 为 136°的金刚石四棱锥体。在载荷 F 作
用下,试样表面被压出一个四方锥形压痕,测量压痕的对角线长度,计算压痕表面积
10、 包申格效应 :材料经预先加载产生少量塑性变形(残余应变小于
4%),而后同向
加载,规定残余伸长应力,反向加载,规定残余伸长应力降低的象。
原因:预塑性变形,位错增殖、运动、缠结;
同相加载,位错运动受阻,残余伸长应
力增加;反向加载,位错被迫作反向运动,运动容易残余伸长应力降低。
可以通过热处理加以消除。 对材料进行较大的塑性变形或对微量塑变形的材料进行再结
时突然下降, 随后, 在外力不增加或上下波动的情况下试样可以继续伸长变形,
这种现象称
为材料在拉伸实验时的屈服现象
14、 屈服强度 材料屈服时所对应的应力值也就是材料抵抗起始塑性变形或产生微量的塑性变形的能 力,这一应力值称为材料的屈服强度(屈服点)
15、 影响金属材料屈服强度的因素 (1) 晶体结构 (2) 晶界与亚结构 (3) 溶质元素 (4) 第二相 (5) 温度 (6) 应变速率与应力状态
比弹性模数是指材料的弹性模数与其单位体积质量(密度)的比值,也称为比模数或比
刚度
3、 影响弹性模数的因素①键合方式和原子结构(不大)②晶体结构(较大)③
化学成分
(间隙大于固溶)④微观组织(不大)⑤温度(很大)⑥加载条件和负荷持续时间(不
大)
4、 比例极限和弹性极限
比例极限 σ p 是保证材料的弹性变形按正比关系变化的最大应力,即在拉伸应力-
名义应力应变曲线和真实应力应变曲线

名义应力应变曲线和真实应力应变曲线一、名义应力应变曲线和真实应力应变曲线的基本概念名义应力应变曲线和真实应力应变曲线是材料力学中常见的两个概念,它们分别描述了材料在外部受到载荷时的变形情况。
其中,名义应力指的是外部载荷与截面积之比,即σ=F/A;而真实应力则指的是在考虑材料内部各种因素(如材料微观结构、晶粒大小等)影响后得到的载荷与截面积之比,即σ'=F/A。
二、名义应力应变曲线和真实应力应变曲线的区别1. 名义应力-应变曲线名义应力-应变曲线通常是指在不考虑材料内部各种因素对其性能影响时得到的载荷与截面积之比随着材料受到外界作用而发生的相对伸长量(即形变)之间的关系图。
该图通常呈现出一个典型的S型弯曲形状,其中包含了四个主要阶段:弹性阶段、屈服阶段、塑性流动阶段和断裂阶段。
其中,弹性阶段是指材料在受到外界作用时,其形变量与载荷之间呈线性关系的阶段;屈服阶段则是指当材料的应力达到一定值时,其形变量不再随载荷增加而线性增长,而是开始出现非线性变化的阶段;塑性流动阶段则是指当材料的应力继续增大时,其形变量将会进一步增加,并逐渐呈现出一个稳定的流动状态;断裂阶段则是指当材料无法承受更大的应力时,其形变量将会突然增加并最终导致材料破裂。
2. 真实应力-应变曲线真实应力-应变曲线通常是指在考虑了材料内部各种因素对其性能影响后得到的载荷与截面积之比随着材料受到外界作用而发生的相对伸长量之间的关系图。
该图通常呈现出一个相对平缓、光滑且无明显弯曲点的形态。
这主要是因为在考虑了各种因素影响后,真实应力与名义应力之间存在一定程度上的差异。
具体来说,在弹性阶段,真实应力与名义应力之间的差异较小,但随着载荷的增加,该差异将会逐渐增大,并在材料进入屈服阶段时达到最大值。
此后,在塑性流动阶段中,真实应力与名义应力之间的差异将会逐渐减小,并最终趋于一致。
三、两种曲线的意义和应用1. 名义应力-应变曲线的意义和应用名义应力-应变曲线是描述材料在外部受到载荷时变形情况的重要工具。
应力-应变曲线

应力-应变曲线MA 02139,剑桥麻省理工学院材料科学与工程系David Roylance2001年8月23日引言应力-应变曲线是描述材料力学性能的极其重要的图形。
所有学习材料力学的学生将经常接触这些曲线。
这些曲线也有某些细微的差别,特别对试验时会产生显著的几何变形的塑性材料。
在本模块中,将对表明应力-应变曲线特征的几个点作简略讨论,使读者对材料力学性能的某些方面有初步的总体了解。
本模块中不准备纵述“现代工程材料的应力-应变曲线”这一广阔的领域,相关内容可参阅参考文献中列出的博依(Boyer )编的图集。
这里提到的几个专题——特别是屈服和断裂——将在随后的模块中更详尽地叙述。
“工程”应力-应变曲线在确定材料力学响应的各种试验中,最重要的恐怕就是拉伸试验1了。
进行拉伸试验时,杆状或线状试样的一端被加载装置夹紧,另一端的位移δ是可以控制的,参见图1。
传感器与试样相串联,能显示与位移对应的载荷)(δP 的电子读数。
若采用现代的伺服控制试验机,则允许选择载荷而不是位移为控制变量,此时位移)(P δ是作为载荷的函数而被监控的。
图1 拉伸试验在本模块中,应力和应变的工程测量值分别记作e σ和e ε,它们由测得的载荷和位移值,及试样的原始横截面面积和原始长度按下式确定0A 0L1 应力-应变试验及材料力学中几乎所有的试验方法都由制定标准的组织,特别是美国试验和材料学会(ASTM)作详尽的规定。
金属材料的拉伸试验由ASTM 试验E8规定;塑料的拉伸试验由ASTM D638规定;复合材料的拉伸试验由ASTM D3039规定。
当以应变e ε为自变量、应力e σ为函数绘制图形时,就得到如图2所示的工程应力-应变曲线。
图2 退火的多晶体铜在小应变区的工程应力-应变曲线(在许多塑性金属中,这一曲线具有典型性)在应力-应变曲线的初始部分(小应变阶段),作为合理的近似,许多材料都服从胡克定律。
于是应力与应变成正比,比例常数即弹性模量或杨氏模量,记作E :随着应变的增大,许多材料的应力与应变最终都偏离了线性的比例关系,该偏离点称为比例极限。
应力 应变 曲线

应力应变曲线
应力-应变曲线描述了材料在受到外部力作用下的应力和应变之间的关系。
应力(stress)指的是材料在单位面积上受到的力的大小,通常以强度(N/m^2)作为单位。
应力-应变曲线的横轴通常表示材料的应变(strain),应变指的是材料在受到力后产生的形变程度,通常以长度的相对变化或者角度的相对变化表示。
应力-应变曲线通常可以分为四个阶段:
1. 弹性阶段(Elastic region):当材料受到小应力时,材料会表现出弹性行为,即应变与应力成正比。
在这个阶段,应力增加时材料会发生形变,但一旦外力消失,材料会恢复到原来的形状。
2. 屈服阶段(Yield Point):当材料受到足够大的应力时,材料会超过其弹性限度,开始发生可见的形变。
这个阶段的应力-应变曲线通常表现为一个明显的曲线,材料开始变得塑性。
3. 塑性阶段(Plastic region):在这个阶段,材料受到的应力继续增加,但应变的增加速度逐渐减慢。
材料开始发生不可逆的塑性变形。
4. 断裂阶段(Fracture point):当材料受到过大的应力时,材料会发生断裂,即完全失去其机械性能。
应力-应变曲线的形状和材料的性质,结构和处理方式等因素密切相关。
不同材料(如金属、塑料、陶瓷等)的应力-应变曲线会有所不同,也受到温度、湿度等环境条件的影响。
这在工程设计和材料选择中具有重要的意义,可以帮助工程师评估材料的强度、延展性、可塑性和抗断裂性等性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真应力—真应变曲线
真应力—真应变曲线,又被称为工程应力-应变曲线,是指在材料
受到外界力学作用时,真实的应力和真实的应变之间的关系曲线。
其
标准公式如下:
σ = F / A
ε = ΔL / L
其中,σ表示真应力,F表示外界施加的力,A表示受力的横截面积;ε表示真应变,ΔL表示材料拉伸或压缩后的长度变化,L表示原始长度。
真应力—真应变曲线一般呈现出以下几个阶段:
1. 弹性阶段
在材料受到外界作用前,材料的分子结构是松散的,当外界作用
施加后,材料分子发生位移,出现应力状态,导致材料发生弹性变形。
这个阶段的真应变是正比于真应力的,也就是线性的。
2. 屈服阶段
在真应力逐渐增加的过程中,当真应变达到一定程度时,材料开始发生非弹性变形,这个阶段称为屈服阶段。
在这个阶段中,材料的分子结构开始逐渐发生改变,随着外界作用的增加,材料逐渐失去了弹性变形的能力。
3. 塑性阶段
在屈服阶段之后,材料发生了较大的非弹性变形,这个阶段是材料的塑性阶段。
在这个阶段中,随着真应力的继续增加,真应变也会一直增加,但是呈非线性的增长趋势。
4. 硬化阶段
在材料的塑性阶段中,材料呈现出逐渐增加的强度,这个现象称为硬化。
材料经过这个阶段后,其材料性质和原本不同,材料分子的结构更加紧密,相应的材料的强度也会增加。
5. 断裂阶段
当材料遇到了最大的应力,或者应力长时间失控,就有可能导致材料的破裂或者断裂。
在断裂阶段中,材料的真应力急剧下降,而真应变则仍然保持在一定程度。