概率的进一步认识专项练习(含答案)
2020年第三章 概率的进一步认识 2018年秋单元测试题(含答案)

(2) 投掷次数较多时,平均每 6 次就有 5 次不出现“1”
三、解答题 15、 解: 因为每次抛出前,出现的结果是不确定事件,故不能预测每次抛出后的结果.假 如已经抛掷了 1 000 次,也不能预测第 1 001 次抛掷的结果. 16、解:买 1 张可能中奖,买 100 张也有可能不中奖,因为中奖是一个随机事件,每次试验 都可能发生,也可能不发生.
17. 小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,她们共 做了 60 次试验,试验的结果如下:
朝上的点数 1 2 3 4 5 6 出现的次数 7 9 6 8 20 10 (1)计算“3 点朝上”的频率和“5 点朝上”的频率. (2)小颖说:“根据试验,一次试验中出现 5 点朝上的概率最大”;小红说:“如果投掷 600 次,那么出现 6 点朝上的次数正好是 100 次.”小颖和小红的说法正确吗?为什么? (3)小颖和小红各投掷一枚骰子,用列表或画树形图的方法求出两枚骰子朝上的点数之和 为 3 的倍数的概率.
时间范围
1 年内
2Hale Waihona Puke 年内3 年内4 年内
新生婴儿数 5544
9013
13520
17191
男婴数
2716
男婴出生频率
4899
6812
8590
填写表中的男婴出生频率; 这一地区男婴出生的概率约是_______. 13. 某射手在同一条件下进行射击,结果如下表所示:
射击次数 n 击中靶心数 m 击中靶心频率
B.13
C.14
D.15
7. 下列说法正确的是( )
A.随机事件概率值不可能为 1 B.随机事件概率值可能为 1
C.随机事件概率一定是 0
新北师大版九年级数学上册第三章《概率的进一步认识》章末训练题含答案解析 (1)

一、选择题1.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )A.19B.16C.13D.232.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是( )A.24B.18C.16D.63.同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是( )A.14B.13C.12D.234.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是( )A.13B.12C.23D.345.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是( )A.14B.34C.13D.126.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于( )7.以下说法合适的是( )A.小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是23 B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是12 D.小明做了3次掷均匀硬币的实验,一次正面朝上,2次正面朝下,他再掷一次,正面朝上的概率还是128.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程.根据规定,我市将垃圾分为了四类:可回收物、厨余垃圾、有害垃圾和其他垃圾(如图).现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,则投放正确的概率是( )A.16B.18C.112D.1169.下列四种说法:①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②将2020减去它的12,再减去剩下的13,再减去余下的14,再减去余下的15,⋯⋯,依次减下去,一直到减去余下的12020,结果是1;③实验的次数越多,频率越靠近理论概率;④对于任何实数x,y,多项式x2+y2−4x−2y+7的值不小于2.其中正确的个数是( )A.1B.2C.3D.4 10.同时抛掷两枚均匀硬币,则两枚硬币都出现反面向上的概率是( )二、填空题11.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有3个红球,每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0.25左右,则白球的个数约为.12.在一个不透明的盒子中装有x颗白色棋子和y颗黑色棋子,它们除颜色外完全相同,现从该盒,将取出的棋子放回,再往该盒子中放进6颗子中随机取出一颗棋子,取得白色棋子的概率是25同样的黑色棋子,此时从盒子中随机取出一颗棋子,取得白色棋子的概率是1,那么原来盒子中4的白色棋子有颗.13.当一次试验要涉及,并且可能出现的结果数目较多时,为不重不漏地列出所有结果,通常采用列表法.14.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些球除标注的数字外完全相同.现从中随机依次取出两个球(不放回),则取出的两个小球标注的数字之和为6的概率是.15.有三张卡片分别写着数字1,2,3,将它们背面向上任意放置(背面花色相同),小明先后从中取两张卡片,那么取得的第一张卡片所写数字大于第二张卡片所写数字的概率是.16.小强掷两枚质地均匀的骰子,每个骰子的六个面上分别刻有1到6的点数,则两枚骰子点数相同的概率为.17.一个不透明的口袋中,装有除颜色以外其余都相同的红、黄两种球共15个,摇匀后从中任意摸出一球,记下颜色放回,摇匀再摸出一个,记下颜色放回⋯.经过大量的重复试验,发现摸到红球的频率为0.4,则估计袋中有红球个.三、解答题18.现有A,B两个不透明的袋子,分别装有3个除颜色外完全相同的小球,其中A袋中装有2个白球,1个红球;B袋中装有2个红球,1个白球.小林和小华商定了一个游戏规则:从摇匀后的A,B两袋中各随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,19.如图,有一游戏棋盘和一个质地均匀的正四面体骰子(各面依次标有1,2,3,4四个数字).游戏规则是游戏者每投掷一次骰子,棋子按骰子着地一面所示的数字前进相应的格数.例如:若棋子位于A处,游戏者所投掷骰子着地一面所示数字为3,则棋子由A处前进3个方格到达B 处.请用画树形图法(或列表法)求投掷骰子两次后,棋子恰好由A处前进6个方格到达C处的概率.20.甲、乙两所医院分别有一男一女共4名医护人员支援武汉抗击疫情.(1) 若从这4名医护人员中随机选1名,则选中的是男医护人员的概率是.(2) 若从支援的4名医护人员中随机选2名,求出这两名医护人员来自不同医院的概率.21.为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图所示的统计图.根据统计图所提供的倍息,解答下列问题.(1) 本次抽样调查中的学生人数是;(2) 补全条形统计图;(3) 若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数;(4) 现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率.22.甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选2名同学打第一场比赛,求下列事件的概率.(1) 已确定甲打第一场,再从其余3名同学中随机选取1名,怡好选中乙同学.(2) 随机选取2名同学,其中有乙同学.23.为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:(1) 这次抽查了四类特色美食共种,扇形统计图中a=,扇形统计图中A部分圆心角的度数为;(2) 补全条形统计图;(3) 如果节目组想从A类的甲、乙、丙、丁四种特色美食中随机选择两种进行节目录制,请用列表或画树状图的方法求出恰好选中甲和乙两种美食的概率.24.某市“半程马拉松”的赛事共有两项:A“半程马拉松”,B“欢乐跑”.小明参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到两个项目组.(1) 小明被分配到“半程马拉松”项目组的概率为.(2) 为估算本次赛事参加“半程马拉松”的人数,小明对部分参赛选手作如下调查:调查总人数2050100200500①估算本次赛事参加“半程马拉参加"半程马拉松"人数153372139356参加"半程马拉松"频率0.7500.6600.7200.6950.712松”人数的概率为.(精确到0.1)②若参加“欢乐跑”的人数大约有300人,估计本次参赛选手的人数是多少?25.庆祝改革开放40周年暨我爱我家⋅美丽青羊群众文艺展演圆满落幕,某学习小组对文艺展演中的A舞蹈《不忘初心》,B独舞《梨园一生》,C舞蹈《炫动的玫瑰》,D朝鲜组歌舞《阿里郎+atep》这四个节目开展“我最喜爱的舞蹈节目”调查,随机调查了部分观众(每位观众必选且只能选这四个节目中的一个)并将得到的信息绘制了下面两幅不完整的统计图:(1) 本次一共调查了名观众;并将条形统计图补充完整;(2) 学习小组准备从4个节目中随机选取两个节目的录像带回学校给同学们观看,请用树状图或者列表的方法求恰好选中A舞蹈《不忘初心》和C舞蹈《炫动的玫瑰》的概率.答案一、选择题 1. 【答案】C【解析】将三个小区分别记为 A ,B ,C ,列表如下:A B C A (A,A )(B,A )(C,A )B (A,B )(B,B )(C,B )C(A,C )(B,C )(C,C )由表可知,共有 9 种等可能结果,其中两个组恰好抽到同一个小区的结果有 3 种,∴ 两个组恰好抽到同一个小区的概率为 39=13. 【知识点】列表法求概率2. 【答案】C【解析】∵ 摸到红色球、黑色球的频率稳定在 15% 和 45%,∴ 摸到白球的频率为 1−15%−45%=40%,故口袋中白色球的个数可能是 40×40%=16 个. 【知识点】用频率估算概率3. 【答案】C【解析】画树形图得:由树形图可知共 4 种等可能的结果,一枚硬币正面向上,一枚硬币反面向上的有 2 种结果, ∴ 一枚硬币正面向上,一枚硬币反面向上的的概率为 24=12.【知识点】树状图法求概率4. 【答案】A【解析】根据题意,画出树形图.由图可知,任意翻开两张,共有 12 种等可能情况,其中两张图案一样的共有 4 种情况, 故任意翻开两张,其中两张图案一样的概率为 412=13.【知识点】树状图法求概率5. 【答案】D【解析】方法一:如图,将第二个转盘中的蓝色部分等分成两部分,画树状图得: ∵ 共有 6 种等可能的结果,可配成紫色的有 3 种情况, ∴ 可配成紫色的概率是:36=12. 方法二:列表如下:红蓝红(红,红)(蓝,红)蓝(红,蓝)(蓝,蓝)蓝(红,蓝)(蓝,蓝)由表格知共有 6 种等可能出现的结果数,其中能配成紫色的结果数有 3 种,则 P (配成紫色)=36=12.【知识点】树状图法求概率6. 【答案】C【知识点】树状图法求概率7. 【答案】D【知识点】概率的概念及意义、用频率估算概率8. 【答案】C【解析】可回收物、厨余垃圾、有害垃圾和其他垃圾对应的垃圾桶分别用 A ,B ,C ,D 表示,垃圾分别用 a ,b ,c ,d 表示.设分类打包好的两袋不同垃圾为 a ,b ,画树状图如图:共有 12 个等可能的结果,分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的结果有 1 个,∴ 分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率为 112.【知识点】树状图法求概率9. 【答案】C【知识点】用频率估算概率、完全平方公式10. 【答案】B【知识点】树状图法求概率二、填空题 11. 【答案】 9【解析】设白球的个数约为 a , 根据题意得 3a+3=0.25, 解得:a =9,经检验:a =9 是分式方程的解, 故答案为:9.【知识点】用频率估算概率12. 【答案】 4【解析】根据题意得 {xx+y=25,x x+y+6=14, 解得 {x =4,y =6, 经检验,{x =4,y =6 是方程组的解,所以原来盒子中的白色棋子有 4 颗. 【知识点】公式求概率13. 【答案】两个因素【知识点】列表法求概率14. 【答案】 15【解析】根据题意画树状图如下:共有 20 种等可能的结果,其中取出的两小球标注的数字之和为 6 的有 4 种情况, 所以取出的两小球标注的数字之和为 6 的概率 =420=15.【知识点】树状图法求概率15. 【答案】 12【解析】列出所有等可能情况,如下表.由表可知,取两张卡片的等可能情况共有 6 种,取得的第一张卡片所写数字大于第二张卡片所写数字的情况有 3 种,所以取得的第一张卡片所写数字大于第二张卡片所写数字的概率为 36=12.12311,21,322,12,333,13,2【知识点】列表法求概率16. 【答案】 16【解析】列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)由表可知一共有 36 种情况,两枚骰子点数相同的有 6 种,所以两枚骰子点数相同的概率 =636=16. 【知识点】列表法求概率17. 【答案】 6【解析】设袋中有红球 x 个,根据题意得:x15=0.4, 解得:x =6.答:袋中有红球 6 个. 【知识点】用频率估算概率三、解答题18. 【答案】列表法如下:或画树状图如下:由上表或树状图可知,一共有 9 种等可能的结果,其中颜色相同的结果有 4 种,颜色不同的结果有 5 种.∴P(颜色相同)=49,P(颜色不同)=59. ∵49<59,∴ 这个游戏规则对双方不公平. 【知识点】树状图法求概率19. 【答案】∵共有16种等可能的结果,掷骰子两次后,棋子恰好由A处前进6个方格到达C处的有(2,4),(3,3),(4,2),∴掷骰子两次后,棋子恰好由A处前进6个方格到达C处的概率为316.【知识点】树状图法求概率20. 【答案】(1) 12(2) 画树状图为:(a,b表示甲医院的男女医护人员c,d示乙医院的男女医护人员).共有12种等可能的结果数,其中这两名医护人员来自不同医院的结果数为8,∴这两名医护人员来自不同医院的概率=812=23.【解析】(1) ∵4名医护人员中有两男两女,从中随机抽取一名,共有四种结果,每种结果的概率相同,其中选中的是男医护人员的结果有两种,∴选中的是男医护人员的概率=24=12.【知识点】树状图法求概率、公式求概率21. 【答案】(1) 100(2)(3) 2000×(1−30%−10%−20100)=800(名),∴爱好打球的学生有800名.(4) 画树状图如图所示,共有12种等可能的情况产生,其中满足条件的情况共两种.∴P(一男一女)=812=23.【知识点】树状图法求概率、条形统计图、扇形统计图、用样本估算总体22. 【答案】(1) 已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是13.(2) 从甲、乙、丙、丁4名同学中随机选取2名同学,所有可能出现的结果有:(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁),共有6种,共有6种,它们出现的可能性相同,所有的结果中,满足“随机选取2名同学,其中有乙同学”(记为事件A)的结果有3种,所以P(A)=36=12.【知识点】列表法求概率、公式求概率23. 【答案】(1) 20;40;72∘;(2) B类的种数为20−4−8−6=2,条形统计图为:(3) 画树状图为:共有12种等可能的结果数,其中恰好选中甲和乙两种美食的结果数为2,∴恰好选中甲和乙两种美食的概率=212=16.【解析】(1) 4÷20%=20,所以这次抽查了四类特色美食共20种,扇形统计图中C类所占的百分比=820×100%=40%,即a=40;扇形统计图中A部分圆心角的度数为360∘×20%=72∘.【知识点】条形统计图、扇形统计图、树状图法求概率24. 【答案】(1) 12(2) ① 0.7.②参加欢乐跑的人数为300人,概率为1−0.7=0.3,本次参赛选手总人数为300÷0.3=1000人.【解析】(1) 共有两项,被分配到其中一项的概率为12.(2) ①观察表格可知:估算本次参加“半程马拉松”的人数概率为0.7.【知识点】公式求概率、用频率估算概率25. 【答案】(1) 50补全条形图如下:(2) 如图所示:一共有12种可能,恰好选中A舞蹈《不忘初心》和C舞蹈《炫动的玫瑰》的有2种,故恰好选中A舞蹈《不忘初心》和C舞蹈《炫动的玫瑰》的概率为212=16.【解析】(1) 次调查的总人数为15÷30%=50(人),则B节目的人数为50−(16+15+7)=12(人).【知识点】条形统计图、树状图法求概率。
(必考题)初中数学九年级数学上册第三单元《概率的进一步认识》检测题(包含答案解析)(4)

一、选择题1.有一首《对子歌》中唱到:天对地,雨对风,大陆对长空.现将“天,雨,大,空”四个字书写在材质、大小完全相同的卡片上,在暗箱搅匀后,随机抽取两张,恰为“天”、“空”二字的概率为()A.13B.14C.15D.162.在0,1,2三个数中任取两个,组成两位数,则在组成的两位数中是奇数的概率为( )A.14B.16C.12D.343.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.164.如图所示,一个大正方形的面上,编号为1,2,3,4的地块,是四个全等的等腰直角三角形空地,中间是小正方形绿色草坪,一名训练有素的跳伞运动员,每次跳伞都能落在大正方形地面上,则跳伞运动员一次跳伞落在草坪上的概率是()A.12B.14C.16D.185.一枚质地均匀的正方体骰子,其六个面上分别刻有1, 2, 3, 4, 5, 6六个数字,投掷这个骰子一次,得到的点数与3、4作为三角形三边的长,能构成三角形的概率是( )A.12B.56C.13D.236.在四张完全相同的卡片上.分别画有等腰三角形、矩形、菱形、圆,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()A.14B.12C.34D.17.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数大于3的概率为()A.12B.13C.14D.158.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球()A.32个B.36个C.40个D.42个9.一个不透明的袋子中装有除颜色外其余均相同的4个白球,n个黑球,随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀,记为一次试验. 大量重复试验后,发现摸出白球的频率稳定于0.4,则n的值为()A.4 B.6 C.8 D.1010.某学习小组进行“用频率估计概率”的试验时,统计了某一结果出现的频率,并绘制了如图所示的折线统计图,则符合这一结果的试验可能是()A.先后两次抛掷一枚质地均匀的硬币,两次都是反面朝上B.先后两次掷一枚质地均匀的骰子,两次的点数和不大于3C.小聪和小明玩剪刀、石头、布的游戏,小聪获胜D.一个班级中(班级人数为50人)有两人生日相同11.在一个不透明的袋子里装有红球、黄球共40个,这些球除颜色外都相同,小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中黄球的个数最有可能是()A.10 B.15 C.20 D.3012.随机掷一枚质地均匀的硬币两次,落地后至多有一次正面朝下的概率为()A.34B.23C.12D.14二、填空题13.现有四张分别标有数字-5、-2、1、2的卡片,它们除数字不同外其余完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a,放回后从卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线y=2x-1的概率为___________.14.大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是刘军老师的健康码示意图,用打印机打印于边长为2cm的正方形区域内.为了估计图中阴影部分的总面积,刘军老师在正方形区域内随机掷点,经过大量重复试验,发现点落在阴影部分的频率稳定在0.65左右,由此可估计阴影部分的总面积约为__________2cm.15.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是__________.16.在一个不透明的袋子中有四个完全相同的小球,分别标号为1,2,3,4.随机摸取一个小球不放回,再随机摸取一个小球,两次摸出的小球的标号的和等于4的概率是____________.17.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中大约共有___个球.18.一个小球在如图所示的地板上自由滚动,最终停在阴影区域的概率为_______.19.盒子里有10个除颜色外完全相同的球,若摸到红球的概率是35,则红球有_____个.20.某班级准备举办“迎鼠年,闹新春”的民俗知识竞答活动,计划A、B两组对抗赛方式进行,实际报名后,A组有男生3人,女生2人,B组有男生1人,女生4人,若从两组中各随机抽取1人,则抽取到的两人刚好是1男1女的概率是__________.三、解答题21.在如图所示的电路图中,有四个断开的开关A、B、C、D和一个灯泡L.(1)若任意闭合其中一个开关,则灯泡L发亮的概率为;(2)若任意闭合其中两个开关,请用列表法或画树状图法求灯泡L发亮的概率.22.甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情,从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.23.如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).(1)求事件“转动一次,得到的数恰好是1”发生的概率;(2)写出此情境下一个不可能发生的事件;(3)用树状图或列表法,求事件“转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率.24.某公司组织部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若A馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.” 请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.25.小华和小雪玩摸牌游戏,现有同一副扑克牌中的2张“方块”,1张“梅花”和1张“红桃”,共4张扑克牌.游戏规则:先将这些扑克牌背面朝上洗匀后,放置在水平桌面上,再从中随机摸出一张牌,记下花色后放回,称为摸牌一次.(1)小华随机摸牌20次,其中6次摸出的是“红桃”,求这20次中摸出“红桃”的频率;(2)若小雪随机摸牌两次,请利用画树状图或列表的方法,求这两次摸出的牌都是“方块”的概率.26.近年来,小龙虾因肉味鲜美深受人们欢迎.又逢吃虾季,某餐厅为了解消费者对去年销量较好的麻辣味、蒜香味、酱爆味、十三香味这四种不同口味小龙虾的喜爱情况,对某居民区部分居民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有______人,a=______;(2)请把条形统计图补充完整;(3)初二(1)班的小巴同学喜欢吃小龙虾,端午节妈妈从餐厅打包了5只小龙虾给小巴,其中两只是麻辣味,另外3只是蒜香味,小巴吃了5只中的两只.请用画树状图或列表的方法,求小巴吃的两只小龙虾中一只是麻辣味、一只是蒜香味的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】首先画树状图得出所有等可能结果,然后从中找到符合条件的结果数,再根据概率公式求解可得.【详解】解:画树状图如下:由树状图知,共有12种等可能结果,其中恰为“天”、“空”的有2种结果,∴恰为“天”、“空”的概率为21 126=,故选:D.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.2.A解析:A【分析】列举出所有情况,看两位数中是奇数的情况占总情况的多少即可.【详解】解:在0,1,2三个数中任取两个,组成两位数有:12,10,21,20四个,是奇数只有21,所以组成的两位数中是奇数的概率为14.故选A.【点睛】数目较少,可用列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.3.C解析:C【详解】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:2163.故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.4.A解析:A【分析】设大正方形的边长为2a,从而可得大正方形的面积为24a,先求出小正方形绿色草坪的面积,再根据简单事件的几何概率公式即可得.【详解】设大正方形的边长为2a ,则大正方形的面积为22(2)4a a =, 编号为1,2,3,4的地块是四个全等的等腰直角三角形空地,∴等腰直角三角形的直角边均相等,且长为a ,=,,∴小正方形绿色草坪的面积为22)2a =,则跳伞运动员一次跳伞落在草坪上的概率是222142a P a ==, 故选:A . 【点睛】本题考查了简单事件的几何概率计算公式、全等三角形的性质、勾股定理等知识点,根据全等三角形的性质和勾股定理求出小正方形绿色草坪的边长是解题关键.5.B解析:B 【分析】骰子的六个面上分别刻有数字1,2,3,4,5,6,其中能与3、4构成三角形的有2、3、4、5、6,根据概率公式计算可得. 【详解】解:骰子的六个面上分别刻有数字1,2,3,4,5,6,其中能与3、4构成三角形的有2、3、4、5、6,∴能构成等腰三角形的概率是=56, 故选:B . 【点睛】此题主要考查了概率公式的应用,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 6.C解析:C 【分析】在等腰三角形、矩形、菱形、圆中是中心对称图形的有矩形、菱形、圆,直接利用概率公式求解即可求得答案. 【详解】∵等腰三角形、矩形、菱形、圆中是中心对称图形的有矩形、菱形、圆, ∴现从中随机抽取一张,卡片上画的图形恰好是中心对称图形的概率是:34. 故选:C . 【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn.也考查了中心对称图形的定义. 7.A解析:A 【分析】骰子六个面出现的机会相同,求出骰子向上的一面点数大于3的情况有几种,直接应用求概率的公式求解即可. 【详解】∵一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,点数大于3的有4,5,6共3个,∴这个骰子向上的一面点数大于3的概率为3162= 故选:A . 【点睛】考核知识点:概率.熟记概率的公式是关键.8.A解析:A 【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数” 【详解】设盒子里有白球x 个,根据=黑球个数摸到黑球次数小球总数摸球总次数 得: 8808400x =+ 解得:x=32.经检验得x=32是方程的解. 答:盒中大约有白球32个. 故选;A . 【点睛】此题主要考查了利用频率估计概率,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分式方程要验根.9.B解析:B 【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】 解:依题意有:44n=0.4, 解得:n=6. 故选:B . 【点睛】本题考查了利用概率的求法估计总体个数,利用如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn是解题的关键.10.C解析:C 【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案. 【详解】解:A 、先后两次抛掷一枚质地均匀的硬币,两次都是反面朝上的概率为14,不符合题意;B 、先后两次掷一枚质地均匀的骰子,两次的点数和不大于3的概率为112,不符合题意; C 、小聪和小明玩剪刀、石头、布的游戏,小聪获胜的概率为13,符合题意; D 、一个班级中(班级人数为50人)有两人生日相同的概率为1925,不符合题意; 故选:C . 【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.11.D解析:D 【分析】设袋子中红球有x 个,根据摸出红球的频率稳定在0.25左右列出关于x 的方程,求出x 的值,从而得出答案. 【详解】解:设袋子中红球有x 个,根据题意,得:40x=0.25, 解得x=10,∴袋子中红球的个数最有可能是10个,黄球有40-10=30(个)故选:D.【点睛】本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.12.A解析:A【分析】用列举法确定所有等可能的情况,根据落地后至多有一次正面朝下的次数,利用概率公式计算解答.【详解】随机掷一枚质地均匀的硬币两次,共“正、反”,“反、正”,“正、正”,“反、反”,4种情况,落地后至多有一次正面朝下包括“正、反”,“反、正”,“正、正”,3种情况,故至多有一次正面朝下的概率为34.故选:A.【点睛】此题考查了列举法求概率,解题的关键是找到所有的情况.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题13.【分析】利用列表法或画树状图法确定点的坐标的总可能性把坐标之一代入函数的解析式确定在直线上的可能性根据概率公式计算即可【详解】根据题意画树状图如下:∴一共有16种等可能性∵点(-2-5)(11)在直解析:18.【分析】利用列表法或画树状图法,确定点的坐标的总可能性,把坐标之一代入函数的解析式,确定在直线上的可能性,根据概率公式计算即可.【详解】根据题意,画树状图如下:∴一共有16种等可能性,∵点(-2,-5),(1,1)在直线y=2x-1上,∴有2种可能性,∴点(a,b)在直线y=2x-1的概率为216=18,故答案为:18.【点睛】本题考查了用列表法或画树状图法求概率,熟练掌握两种求概率的基本方法是解题的关键.14.【分析】根据频率可以估计阴影部分占正方形的65求出正方形面积即可求【详解】解:因为经过大量重复试验发现点落在阴影部分的频率稳定在左右所以估计阴影部分面积大约占正方形面积的65正方形的面积为:2×2=解析:2.6【分析】根据频率可以估计阴影部分占正方形的65%,求出正方形面积即可求.【详解】解:因为经过大量重复试验,发现点落在阴影部分的频率稳定在0.65左右,所以,估计阴影部分面积大约占正方形面积的65%,正方形的面积为:2×2=4(cm2),由此可估计阴影部分的总面积约为:4×65%=2.6(cm2)故答案为:2.6.【点睛】本题考查了用频率估计概率,解题关键是明确频率估计概率的方法及应用.15.【分析】根据题意把所有可能出现的结果用表格表示出来即可求解【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果其中两人恰好选中同一根绳子的结果共有3种∴两人恰好选中同一根绳子的概率为:故解析:1 3【分析】根据题意,把所有可能出现的结果用表格表示出来,即可求解.【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果,其中两人恰好选中同一根绳子的结果共有3种,∴两人恰好选中同一根绳子的概率为:3193,故答案为:13.【点睛】本题考查用列表法或画树状图法求概率,解题的关键是根据题意列出所有可能出现的结果.16.【分析】先画树状图展示所有12种等可能的结果数其中两次摸出的小球标号的和等于4的占3种然后根据概率的概念计算即可【详解】画树状图得:由树状图可知:所有可能情况有12种其中两次摸出的小球标号的和等于4解析:1 6【分析】先画树状图展示所有12种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.【详解】画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=21 126=,故答案为:16.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.17.【分析】由摸到红球的频率稳定在025附近得出口袋中得到红色球的概率进而求出球个数即可【详解】解:设球个数为x个∵摸到红色球的频率稳定在025左右∴口袋中得到红色球的概率为025∴解得:经检验x=20解析:【分析】由摸到红球的频率稳定在0.25附近得出口袋中得到红色球的概率,进而求出球个数即可.【详解】解:设球个数为x个,∵摸到红色球的频率稳定在0.25左右,∴口袋中得到红色球的概率为0.25,∴514x=,解得:20x,经检验,x=20是原方程解,所以,球的个数为20个,故答案为:20.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.18.【分析】先求出黑色方砖在整个地板中所占的比值再根据其比值即可得出结论【详解】∵由图可知黑色方砖5块共有25块方砖∴黑色方砖在整个地板中所占的比值∴它停在黑色区域的概率是故答案为:【点睛】本题考查了几解析:1 5【分析】先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【详解】∵由图可知,黑色方砖5块,共有25块方砖,∴黑色方砖在整个地板中所占的比值51255=,∴它停在黑色区域的概率是15.故答案为:15.【点睛】本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.19.6【解析】【分析】用概率表示该色求所占比例可求红球个数【详解】由已知可得:红球个数10×=6故答案为6【点睛】本题考核知识点:概率解题关键点:理解概率意义解析:6【解析】【分析】用概率表示该色求所占比例,可求红球个数.【详解】由已知可得:红球个数10×35=6故答案为6【点睛】本题考核知识点:概率. 解题关键点:理解概率意义.20.【分析】利用列表法把所有情况列出来再用概率公式求解即可【详解】列表如下根据表格可知共有25种可能的情况出现其中抽取到的两人刚好是1男1女的有14种情况∴抽取到的两人刚好是1男1女的概率是故答案为:【解析:14 25【分析】利用列表法把所有情况列出来,再用概率公式求解即可.【详解】列表如下根据表格可知共有25种可能的情况出现,其中抽取到的两人刚好是1男1女的有14种情况∴抽取到的两人刚好是1男1女的概率是1425故答案为:14 25.【点睛】本题考查了概率的问题,掌握列表法和概率公式是解题的关键.三、解答题21.(1)14;(2)12【分析】(1)根据概率公式直接填即可;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【详解】解:(1)有4个开关,只有D开关一个闭合小灯发亮,所以任意闭合其中一个开关,则小灯泡发光的概率是14;(2)根据题意,列表如下A B C DAAB AC ADBBABC BDCCACBCD DDADBDC∴6种P ∴(灯泡L 发光)61122==. 【点睛】本题主要考查概率的求法.是跨学科综合题,综合物理学中电学知识,结合电路图,正确判断出灯泡发光的条件,掌握根据题意正确画出树状图或列表法以及概率的计算方法是解题的关键.22.13. 【分析】选择自己喜欢的方式,规范求解即可. 【详解】解:设甲、乙两医院的医生分别记为男1,女1,男2,女2, 画树状图如图,由图可知,共12种等可能情况,其中符合条件的有4种,41123P ∴==. 【点睛】本题考查了列表法或画树状图法求概率,熟练掌握两种方法,并能规范计算是解题的关键. 23.(1)13;(2)事件“转动一次,得到的数恰好是2”或事件“转动两次,第一次与第二次得到的两数之和为3”;(3)见解析,59【分析】(1)转动一次,得到的数共有三种可能,即可得到答案; (2)根据题意,找概率为0的事件,即可得到答案; (3)根据题意画树状图即可得到答案;【详解】解:(1)转动一次,得到的数共有三种可能,其中为1-的有一种,(-1)13P =所指的数为; (2)答案不唯一,如:事件“转动一次,得到的数恰好是2”或事件“转动两次,第一次与第二次得到的两数之和为3”; (3)画树状图如下:共有9种可能,其中两次绝对值相等的有5种,()59P ∴=所指两数的绝对值相等;【点睛】本题主要考查了列表法与树状图法,准确计算是解题的关键.24.(1)见解析;(2)列表见解析,小明获得门票的概率P 1=38,小华获得门票的概率P 2=58,这个规则对双方不公平. 【分析】(1)A 展馆的门票数除以它所占的百分比,算出门票总数,乘以B 展馆门票所占的百分比即为B 展馆门票数,C 所占的百分比等于整体1减去其余百分比,根据所求出的数据将统计图补充完整即可;(2)列举出所有情况,看小明抽得的数字比小华抽得的数字大的情况占所有情况的多少即可求得小明赢的概率,进而求得小明赢的概率,比较即可. 【详解】解:(1)B 展馆门票的数量=20÷10%×25%=50(张); C 所占的百分比=1−10%−25%−10%−40%=15%. 如图,补充完整的条形统计图和扇形统计图:(2)列表如下:共有16种可能的结果,且每种结果的可能性相同,其中小明可能获得门票的结果有6种,分别是(2,1),(3,1),(3,2),(4,1),(4,2),(4,3). ∴小明获得门票的概率P 1=616=38, 小华获得门票的概率P 2=1−38=58.∵P 1<P 2,∴这个规则对双方不公平. 【点睛】此题主要考查了条形统计图、扇形统计图、概率,利用表格列举出所有可能的结果进而求出相应的概率是解题的关键. 25.(1)310;(2)见解析,14【分析】(1)直接根据“频率=频数÷数据总数”求解即可;(2)根据题意列出图表得出所有等情况数,找出符合题意的情况数,然后根据概率公式即可得出答案. 【详解】解:(1)小华随机摸牌20次,其中6次摸出的是“红桃”, ∴这20次中摸出“红桃”的频率为632010=. (2)先将2张“方块”分别记作1A 、2A , 1张“梅花”记作B ,1张“红桃”记作C ,然后列表如下: 第二次 第一次1A2ABC1A()11,A A()12,A A ()1,A B ()1,C A 2A()21,A A()22,A A ()2,A B()2,A CB()1,B A()2,B A(),B B(),CBC()1,C A()2C,A(),C B(),C C∴P(这两次摸出的牌都是“方块”)41164==.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.26.(1)800,15;(2)麻辣味有320人,酱爆味的有120人,补图见解答;(3)35.【分析】(1)根据十三香味的人数和所占的百分比求出总人数,用蒜香味的人数除以总人数求出蒜香味所占的百分比,再用整体1减去其它味所占的百分比即可求出a的值;(2)用总人数乘以各自所占的百分比求出麻辣味和酱爆味的人数,从而补全统计图;(3)根据题意画出树状图得出所有等可能等情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.【详解】】解:(1)本次参加抽样调查的居民有:80÷36360︒︒=800(人);蒜香味所占的百分比是:280800×100%=35%,则a%=1-35%-40%-36360︒︒=15%,即a=15;故答案为:800,15;(2)麻辣味的人数有:800×40%=320(人),酱爆味的人数有:800×15%=120(人),补全统计图如下:。
(北师大版)长沙市九年级数学上册第三单元《概率的进一步认识》检测(有答案解析)

一、选择题1.有四根长度分别为2cm、3cm、4cm、5cm的木棒,从中任取三根,并将它们首尾相连,能组成三角形的概率为()A.14B.23C.34D.122.王老师的讲义夹里放了大小相同的试卷12张,其中语文5张,数学4张,外语3张,他随机从讲义夹中抽出1张,抽出的试卷恰好是数学试卷的概率是()A.14B.13C.512D.123.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.164.如图所示,一个大正方形的面上,编号为1,2,3,4的地块,是四个全等的等腰直角三角形空地,中间是小正方形绿色草坪,一名训练有素的跳伞运动员,每次跳伞都能落在大正方形地面上,则跳伞运动员一次跳伞落在草坪上的概率是()A.12B.14C.16D.185.将分别标有“走”“向”“伟”“大”“复”“兴”汉字的小球装在一个不透明的口袋中,这些球除汉字外完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字组成“复兴”的概率是()A.16B.115C.18D.1126.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是()A.14B.12C.35D.347.连续掷两次骰子,出现点数之和等于4的概率为()A.136B.118C.112D.198.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )A.12B.13C.23D.169.典典、诺诺、悦悦三人参加学校的“幸运就是我”节目.幸运的是,她们都得到了一件精美的礼物.其过程是这样的:墙上挂着两串礼物(如下图),每次只能从其中一串的最下端取一件,直到礼物取完为止.典典第一个取得礼物,然后诺诺、悦悦依次取得第2件、第3件礼物.事后她们打开这些礼物品仔细比较发现礼物B最精美,那么取得礼物B可能性最大的是()A.典典B.诺诺C.悦悦D.无法确定10.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.611.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为()A.13B.14C.16D.13612.已知数据:117,4,5-,2π1-,0.其中无理数出现的频率为()A.0.2B.0.4C.0.6D.0.8二、填空题13.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是__________.14.同时掷两枚质地均匀的骰子;两枚骰子点数之和为10的概率为__________.15.一个不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同.搅匀后从中任意摸出2个球,摸出两个颜色不同的小球的概率为_____.16.李老师想从小明、小红、小丽和小亮四个人中用抽签的方式抽取两个人做流动值周生,则小红和小丽同时被抽中的概率是______.17.有六张大小形状相同的卡片,分别写有1~6这六个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则a的值使得关于x的分式方程26122 axx x--=--有整数解的概率为_____.18.小刚和小亮用图中的转盘做“配紫色”游戏:分别转动两个转盘各一次,若其中的一个转盘转出了红色,另一个转出了蓝色,则可配成紫色,此时小刚赢,否则小亮赢.若用P1表示小刚赢的概率,用P2 表示小亮赢概率,则两人赢的概率P1________P2(填写>,=或<)19.小丽在4张同样的纸片上各写了一个正整数,从中随机抽取2张,并将它们上面的数相加.重复这样做,每次所得的和都是5,6,7,8中的一个数,并且这4个数都能取到.猜猜看,小丽在4张纸片上各写下的数是__________.20.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.己知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为__________.三、解答题21.小明和小华想利用抽取扑克牌游戏决定谁去参加市里举办的“创建全国文明城市,争做文明学生”的演讲比赛,游戏规则是:将4张除了数字2、3、4、5不同外,其余均相同的扑克牌,数字朝下随机平铺于桌面,一人先从中随机取出1张,另一人再从剩下的3张扑克牌中随机取出一张,若取出的2张扑克牌上数字和为偶数,则小明去参赛,否则小华去参赛.(1)用列表法或画树状图法,求小明参赛的概率;(2)你认为这个游戏公平吗?请说明理由.22.为加强素质教育,某学校自主开设了A书法、B阅读、C足球、D器乐四门选修课程供学生选择,每门课程被选到的机会均等.(1)学生小明计划选修两门课程,请写出所有可能的选法;(用树状图或列表法表示选法)(2)若学生小明和小刚各计划选修一门课程,则他们两人恰好同时选修书法或足球的概率是多少?23.森林防火,人人有责.前不久,华蓥市公安局结合华蓥山竹林风景线建设,在华蓥山国家森林公园、石林景区,以“严防森林火灾、保护绿水青山”为主题,开展了森林防灭火知识宣传.广安市某校为了解九年学生对森林防灭火知识的了解程度,在九年级学生中做了一次抽样调查,并将结果分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调査结果绘制了如下两幅尚不完整的统计图.请根据两幅统计图中的信息解答下列问题:(1)这次参与调查的学生一共有______人,并补全条形统计图.(2)若该校九年级共有1000名学生,请你估计该校九年级学生中“基本了解”森林防灭火知识的学生有多少人?(3)九(2)班被调查的学生中A等级的有5人,其中3名男生2名女生.现打算从这5名学生中任意抽取2名进行电话采访,请用列表或画树状图的方法求恰好抽到一男一女的概率.24.为弘扬开州传统文化,某校开展“言子儿进课堂”的活动,该校随机抽取部分学生,按四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对言子儿的喜欢情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次共抽取_______名学生进行统计调查,扇形统计图中,D类所对应的扇形圆心角的度数为_________;(2)将条形统计图补充完整;(3)若调查的A类学生中有2名男生,其余为女生,现从中抽2人进行采访,请画树状图或列表法求刚好选中2名恰好是1男1女的概率.25.在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是.(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是奇数的概率.26.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为A、B、C、D四个等次,绘制成如图所示的不完整的统计图,请你依图解答下列(1)a=,b=,c=;(2)请将条形统计图补充完整,并计算表示C等次的扇形所对的圆心角的度数为°;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出任取三根木棒的所有情况,再求出能组成三角形的所有情况,利用概率公式直接计算即可.【详解】解:2cm、3cm、4cm、5cm的根木棒中,共有以下4种组合:2,3,4;2,3,5;2,4,5;3,4,5;其中共有以下方案可组成三角形:①取2cm,3cm,4cm;由于4﹣2<3<4+2,能构成三角形;②取2cm,4cm,5cm;由于5﹣2<4<5+2,能构成三角形;③取3cm,4cm,5cm;由于5﹣3<4<5+3,能构成三角形;所以有3种方案符合要求.故能组成三角形的概率是P=3 4故答案选:C【点睛】本题考查了三角形的三边关系和概率公式,正确找到所有组成三角形的情况是解题的关2.B解析:B【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学4页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为41123=.故选:B.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.3.C解析:C【详解】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:2163=.故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.4.A解析:A【分析】设大正方形的边长为2a,从而可得大正方形的面积为24a,先求出小正方形绿色草坪的面积,再根据简单事件的几何概率公式即可得.【详解】设大正方形的边长为2a ,则大正方形的面积为22(2)4a a =, 编号为1,2,3,4的地块是四个全等的等腰直角三角形空地,∴等腰直角三角形的直角边均相等,且长为a ,由勾股定理得:等腰直角三角形的斜边长为22a a 2a +=, 即小正方形绿色草坪的边长为2a ,∴小正方形绿色草坪的面积为22(2)2a a =,则跳伞运动员一次跳伞落在草坪上的概率是222142a P a ==, 故选:A . 【点睛】本题考查了简单事件的几何概率计算公式、全等三角形的性质、勾股定理等知识点,根据全等三角形的性质和勾股定理求出小正方形绿色草坪的边长是解题关键.5.B解析:B 【分析】根据题意列表得出所有等情况数和两次摸出的球上的汉字是“复”“兴”的情况数,再根据概率公式即可得出答案. 【详解】解:根据题意画图如下:共有30种等情况数,其中两次摸出的球上的汉字是“复”“兴”的有2种, 则随机摸出一球,两次摸出的球上的汉字组成“复兴”的概率是213015; 故选:B . 【点睛】此题考查了树状图法或列表法求概率.树状图法适合两步或两步以上完成的事件;列表法适合两步完成的事件,解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.B解析:B【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【详解】解:从长度分别为2、4、6、7的四条线段中任选三条有如下4种情况:2、4、6;2、4、7;2、6、7;4、6、7;其中能构成三角形的有2、6、7;4、6、7这两种情况,所以能构成三角形的概率是21 42 =,故选:B.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.构成三角形的基本要求为两小边之和大于最大边.7.C解析:C【分析】列举出所有情况,看点数之和等于4的情况数占总情况数的多少即可.【详解】解:如图所示:4的情况为13,22,31共3种,于是P(点数之和等于4)=31= 3612.故选:C.【点睛】本题考查概率的求法与运用,由于两次实验出现的情况较多,用列表法较好.用到的知识点为:概率=所求情况数与总情况数之比.8.A解析:A 【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可. 【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为61122=. 故答案为A . 【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.9.C解析:C 【分析】因为数量不多,所以可直接列举出所有情况,比较得到B 的可能性即可. 【详解】解:∵取得礼物共有三种情况:(1)典典A ,诺诺B ,悦悦C ;(2)典典C ,诺诺A ,悦悦B ;(3)典典A ,诺诺C ,悦悦B .∴典典取得礼物B 的概率=0;诺诺取得礼物B 的概率1=3;悦悦取得礼物B 的概率2=3∴悦悦取得礼物B 可能性最大 故选:C . 【点睛】本题考查随机事件发生的可能性,当数量不大时可直接列举出所有的情况,当数量比较大时通常都会用列表法或是树状图来列举.10.D解析:D 【分析】直接利用概率公式进行求解,即可得到答案. 【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个. ∴1张抽奖券中奖的概率是:102030100++=0.6,故选:D.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.11.C解析:C【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.【详解】列表得:∴两个骰子的点数相同的概率为:61=366故选:C【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比12.B解析:B【分析】根据无理数的定义和“频率=频数÷总数”计算即可.【详解】-,共2个解:共有5个数,其中无理数有,2π1所以无理数出现的频率为2÷5=0.4.故选B.【点睛】此题考查的是无理数的判断和求频率问题,掌握无理数的定义和频率公式是解决此题的关键.二、填空题13.【分析】根据题意把所有可能出现的结果用表格表示出来即可求解【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果其中两人恰好选中同一根绳子的结果共有3种∴两人恰好选中同一根绳子的概率为:故解析:1 3【分析】根据题意,把所有可能出现的结果用表格表示出来,即可求解.【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果,其中两人恰好选中同一根绳子的结果共有3种,∴两人恰好选中同一根绳子的概率为:3193,故答案为:13.【点睛】本题考查用列表法或画树状图法求概率,解题的关键是根据题意列出所有可能出现的结果.14.【分析】利用列表法确定所有可能的情况确定两枚骰子点数之和为10的情况的数量根据概率公式计算得出答案【详解】解:列表:1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7解析:1 12【分析】利用列表法确定所有可能的情况,确定两枚骰子点数之和为10的情况的数量,根据概率公式计算得出答案.【详解】解:列表:12345612345672345678 3456789 45678910 567891011 6789101112∴P(两枚骰子点数之和为10)=336=1 12,故答案为:1 12.【点睛】此题考查利用列举法求事件的概率,正确列出所有等可能的情况,熟记概率的计算公式是解题的关键.15.【分析】用列表法列举出所有等可能出现的情况从中找出两个球颜色不同的结果数进而求出概率【详解】解:用列表法表示所有可能出现的结果如下:共有12种不同的结果数其中两个球颜色不同的有6种∴摸出两个颜色不同解析:1 2【分析】用列表法列举出所有等可能出现的情况,从中找出两个球颜色不同的结果数,进而求出概率.【详解】解:用列表法表示所有可能出现的结果如下:共有12种不同的结果数,其中两个球颜色不同的有6种,∴摸出两个颜色不同的小球的概率为61122,故答案为:12.【点睛】本题考查随机事件的概率,可用列表法和树状图法来解,属于中考常考题型.16.【分析】首先根据题意画出树状图然后由树状图求得所有等可能的结果与小红和小丽同时被抽中的情况再利用概率公式即可求得答案【详解】画树状图得:∵共有12种等可能的结果小红和小丽同时被抽中的有2种情况∴小红解析:1 6【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小红和小丽同时被抽中的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有12种等可能的结果,小红和小丽同时被抽中的有2种情况,∴小红和小丽同时被抽中的概率是:P =16.故答案为1 6【点睛】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.17.【分析】先把分式方程化为整式方程解整式方程得到x=且x≠2利用有理数的整除性得到a=2或3然后根据概率公式求解【详解】把分式方程去分母得ax﹣2﹣(x﹣2)=6∴(a﹣1)x=6∵分式方程有整数解∴解析:13.【分析】先把分式方程化为整式方程,解整式方程得到x=61a-且x≠2,利用有理数的整除性得到a=2或3,然后根据概率公式求解.【详解】把分式方程26122axx x--=--去分母得ax﹣2﹣(x﹣2)=6,∴(a﹣1)x=6,∵分式方程有整数解,∴x =61a -且x ≠2, ∴a =2或3,∴a 的值使得关于x 的分式方程26122ax x x --=--有整数解的概率=13.故答案为13. 【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.分式方程的增根是令分母等于0的未知数的值,不是原分式方程的解.也考查了概率公式.18.<【分析】由于第二个转盘红色所占的圆心角为120°则蓝色部分为红色部分的两倍即相当于分成三个相等的扇形(红蓝蓝)再列出表根据概率公式计算出小刚赢的概率和小亮赢的概率即可得出结论【详解】解:用列表法将解析:< 【分析】由于第二个转盘红色所占的圆心角为120°,则蓝色部分为红色部分的两倍,即相当于分成三个相等的扇形(红、蓝、蓝),再列出表,根据概率公式计算出小刚赢的概率和小亮赢的概率,即可得出结论. 【详解】解:用列表法将所有可能出现的结果表示如下:所以小刚赢的概率是131124P ==;则小亮赢的概率是213144P =-= 所以12P P <; 故答案为:< 【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.19.2335或2344【分析】首先假设这四个数字分别为:ABCD 且A≤B≤C≤D 进而得出符合题意的答案【详解】解:四个数只能是2335或2344理由:设这四个数字分别为:ABCD且A≤B≤C≤D故A+B解析:2,3,3,5或2,3,4,4【分析】首先假设这四个数字分别为:A,B,C,D且A≤B≤C≤D,进而得出符合题意的答案.【详解】解:四个数只能是2,3,3,5或2,3,4,4理由:设这四个数字分别为:A,B,C,D且A≤B≤C≤D,故A+B=5,C+D=8,(1)当A=1时,得B=4,∵A≤B≤C≤D,∴B=C=D=4,不合题意舍去,所以A≠1,(2)当A=2时,得B=3,(I)当C=B=3时,D=5,(II)当C>B时,∵A≤B≤C≤D,∴C=D=4,故综上所述:这四个数只能是:2,3,3,5或2,3,4,4.故答案为:2,3,3,5或2,3,4,4.【点睛】此题主要考查了应用类问题,利用分类讨论得出是解题关键.20.22【分析】袋中黑球的个数为利用概率公式得到然后利用比例性质求出即可【详解】解:设袋中黑球的个数为根据题意得解得即袋中黑球的个数为个故答案为:22【点睛】本题主要考查概率的计算问题关键在于根据题意对解析:22【分析】袋中黑球的个数为x,利用概率公式得到5152310x=++,然后利用比例性质求出x即可.【详解】解:设袋中黑球的个数为x,根据题意得5152310x=++,解得22x=,即袋中黑球的个数为22个.故答案为:22.【点睛】本题主要考查概率的计算问题,关键在于根据题意对概率公式的应用.三、解答题21.(1)13;(2)不公平,理由见解析【分析】(1)先列出表格,展示出所有等可能的结果,数出符合条件的结果数,利用概率公式,即可求解;(2)分别求出小明和小华去参赛的概率,进而即可求解.【详解】解:(1)列表如下P∴(小明参赛)41 123 ==;(2)游戏不公平,理由:P(小明参赛)13 =,P∴(小华参赛)12133 =-=,1233≠,∴这个游戏不公平.【点睛】本题主要考查概率和游戏的公平性,掌握列树状图和列表格展示等可能的结果,是解题的关键.22.(1)树状图见解析,共有6种可能的选法;(2)18.【分析】(1)利用直接列举得到所有6种等可能的结果数;(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.【详解】解:(1)画树状图如下:共有12种等可能的结果数,不重复的选法有6种:AB、AC、AD、BC、BD、CD.(2)画树状图如下:共有16种等可能的结果数,其中他们两人恰好修书法或足球的结果数为2,所以他们两人恰好选修书法或足球的概率为21 168=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.(1)200,补图见解析;(2)估计该校九年级学生中“基本了解”森林防灭火知识的学生有400人;(3)35.【分析】(1)由“不了解”的人数及其所占的百分比即可求出总人数.根据总人数可求出C等级的人数,即可补全统计图.(2)利用C等级的人数所占的百分比乘以该校九年级的人数即可估算.(3)利用列表法列举出所有事件发生的情况,再找出抽到一男一女的情况,最后根据概率公式计算即可.【详解】(1)2010%=200÷人.C等级的人数为200(406020)80-++=(人),补全条形统计图如下:(2)801000400200⨯=(人),故估计该校九年级学生中“基本了解”森林防灭火知识的学生有400人.(3)列表如下:男1男2男3女1女2男1男1,男2男1,男3男1,女1男1,女2男2男2,男1男2,男3男2,女1男2,女2男3男3,男1男3,男2男3,女1男3,女2女1女1,男1女1,男2女1,男3女1,女2女2女2,男1女2,男2女2,男3女2,女1故恰好抽到一男一女的概率为123 205=.【点睛】本题考查条形和扇形统计图相关联,列表法或树状图法求概率.掌握条形和扇形统计图的特点和能够正确列出表格是解答本题的关键.24.(1)50,72°;(2)补全图形见解析;(3)3 5【分析】(1)根据选择C的人数和所占的百分比,可以求得本次抽取的学生人数,再求得D类占总体的比例乘以360即为圆心角的度数;(2)用总人数减去其它的人数即为A类的人数,据此可以补充条形统计图;(3)画树状图展示所有20种等可能的结果数,找出被抽到的两个学生恰好是1男1女的结果数,然后根据概率公式计算.【详解】解:(1)这次共抽取:12÷24%=50(人),D类所对应的扇形圆心角的大小103607250︒⨯=︒,故答案为50,72°;(2)A类学生:50-23-12-10=5(人),条形统计图补充如下(3)A类学生中有2名男生,则有3名女生,画树状图为:共有20种等可能的结果数,其中被抽到的两个学生恰好是1男1女的结果数为12,所以被抽到的两个学生性别相同的概率123 205 ==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.25.(1)34;(2)23【分析】(1)根据口袋中数字不大于3的小球有3个,即可确定概率;(2)通过列表或画树状图写出所有的等可能结果,然后数出两次摸出小球上的数字和恰好是奇数的结果,即可得到概率.【详解】解:(1)34;(2)列表得:1234 1——(1,2)(1,3)(1,4)2(2,1)——(2,3)(2,4)3(3,1)(3,2)——(3,4)4(4,1)(4,2)(4,3)——两次摸出小球上的数字和恰好是奇数的情况有8种:即:(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3).∴P(两次摸出小球上的数字和恰好是奇数)=82123=.【点睛】本题考查了概率的计算,熟练掌握画树状图或列表法求概率是解题的关键.26.(1)2,45,20;(2)图见解析,72;(3)1 6【分析】(1)用A 等次的人数除以它所占的百分比得到调查的总人数,再分别求出a 和B 等次的人数,然后计算出b 、c 的值;(2)先补全条形统计图,然后用360°乘以C 等次所占的百分比得到C 等次的扇形所对的圆心角的度数;(3)画树状图展示所有12种等可能的结果数,再找出甲、乙两名男生同时被选中的结果数,然后根据概率公式求解. 【详解】解:(1)1230%40÷=, 405%2a =⨯=; 401282%100%45%40b ---=⨯=,即45b =; 8%100%20%40c =⨯=,即20c =; 故答案为:2,45,20;(2)B 等次人数为40128218---=, 条形统计图补充为:C 等次的扇形所对的圆心角的度数20%36072=⨯︒=︒; 故答案为72︒; (3)画树状图为:共有12种等可能的结果数,其中甲、乙两名男生同时被选中的结果数为2, 所以甲、乙两名男生同时被选中的概率21126==. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.也考查了统计图.。
(典型题)初中数学九年级数学上册第三单元《概率的进一步认识》测试卷(有答案解析)(1)

一、选择题1.有一首《对子歌》中唱到:天对地,雨对风,大陆对长空.现将“天,雨,大,空”四个字书写在材质、大小完全相同的卡片上,在暗箱搅匀后,随机抽取两张,恰为“天”、“空”二字的概率为( )A .13 B .14 C .15 D .162.从{3,2,1,0,1,2,3}---这七个数中随机抽取一个数记为a ,则a 的值是不等式组352132x x x x ⎧+>⎪⎪⎨⎪<+⎪⎩的解,但不是方程2320x x -+=的实数解的概率为( ). A .17 B .27 C .37 D .473.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是( )A .15B .25C .35D .454.一枚质地均匀的正方体骰子,其六个面上分别刻有1, 2, 3, 4, 5, 6六个数字,投掷这个骰子一次,得到的点数与3、4作为三角形三边的长,能构成三角形的概率是( ) A .12 B .56 C .13 D .235.三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a 、b 、c ,则以a 、b 、c 为边长能构成等腰三角形的概率是( )A .19B .13C .59D .796.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球( ) A .4个 B .12个 C .8个 D .不确定 7.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )A .12B .13C .23D .168.在四张完全相同的卡片上.分别画有等腰三角形、矩形、菱形、圆,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是( )A .14B .12C .34D .19.如图,转盘的红、黄、蓝、紫四个扇形区域的圆心角分别记为α,β,γ,θ.自由转动转盘,则下面说法错误的是( )A .若90α>︒,则指针落在红色区域的概率大于0.25B .若αβγθ>++,则指针落在红色区域的概率大于0.5C .若αβγθ-=-,则指针落在红色或黄色区域的概率和为0.5D .若180γθ+=︒,则指针落在红色或黄色区域的概率和为0.510.从2,cos45°,π,0,17五个数中,随机抽取一个数,抽到无理数的概率是( )A .15B .25C .35D .45 11.在一个不透明的袋子里装有红球、黄球共40个,这些球除颜色外都相同,小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中黄球的个数最有可能是( ) A .10 B .15 C .20 D .3012.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同.从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有( )A .6个B .10个C .15个D .30个二、填空题13.疫情防控期间,各学校严格落实测体温进校园的防控要求,某学校开设了A ,B ,C 三个测温通道.某天早晨,小明和小红两位同学随机通过测温通道进入校园,则小明和小红从同一通道进入校园的概率为______.14.大冶市现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为参加全市汉字听写大赛,则恰好选中一男一女两位同学参赛的概率是________________. 15.随机往如图所示的正方形区域内撒一粒豆子,豆子恰好落在空白区域的概率是______.16.乐乐同学有两根长度为4cm ,7cm 的木棒,母亲节时他想自己动手给妈妈钉一个三角形相框,桌上有五根木棒,从中任选一根,使三根木棒首尾顺次相连,则能钉成三角形相框的概率是__________.17.往如图所示的地板中随意抛一颗石子(石子看作一个点),石子落在阴影区域的概率为___________18.有4根细木棒,它们的长度分别是2cm、4cm、6cm、8cm.从中任取3根恰好能搭成一个三角形的概率是_____.19.投掷一枚质地均匀的骰子两次,第一次出现的点数记为a,第二次出现的点数记为b.那么方程20-+=有解的概率是__________。
(常考题)北师大版初中数学九年级数学上册第三单元《概率的进一步认识》检测题(包含答案解析)

一、选择题1.小明在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则最可能符合这一结果的实验是()A.掷一枚骰子,出现3点的概率B.抛一枚硬币,出现反面的概率C.任意写一个整数,它能被3整除的概率D.从一副扑克中任取一张,取到“大王”的概率2.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()A.12B.13C.14D.13.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.164.三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长能构成等腰三角形的概率是()A.19B.13C.59D.795.在一个不透明的口袋中,装有若干个红球和6个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率稳定在0.6,则估计口袋中大约有红球()A.24个B.10个C.9个D.4个6.有三个质地、大小一样的纸条上面分别写着三个数,其中两个正数,一个负数,任意抽取一张,记下数的符号后,放回摇匀,再重复同样的操作一次,试问两次抽到的数字之积是正数的概率为()A.13B.49C.59D.237.现有两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1、2、3,从每组牌中各摸出一张牌.两张牌的牌面数字之和等于4的概率是()A.29B.13C.59D.238.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.69.我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是()A.18B.38C.58D.1210.如图,电路图上有四个开关A、B、C、D和一个小灯泡,则任意闭合其中两个开关,小灯泡发光的概率是()A.12B.13C.14D.1611.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球()A.32个B.36个C.40个D.42个12.老师组织学生做分组摸球实验.给每组准备了完全相同的实验材料,一个不透明的袋子,袋子中装有除颜色外都相同的3个黄球和若干个白球.先把袋子中的球搅匀后,从中随意摸出一个球,记下球的颜色再放回,即为一次摸球.统计各组实验的结果如下:一组二组三组四组五组六组七组八组九组十组摸球的次数100100100100100100100100100100摸到白球的次数41394043383946414238请你估计袋子中白球的个数是()A.1个B.2个C.3个D.4个二、填空题13.在一个不透明的布袋中装有52个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,则布袋中黑球的个数可能有________.14.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是__________.15.一个袋子中6个红球,若干白球,它们除颜色外完全相同,现在经过大量重复的摸球试验发现,摸出一个球是白球的频率稳定在0.4附近,则袋子中白球有_____个.16.一个不透明的袋子中装有若干个除颜色外都相同的小球,小明每次从袋子中随机摸出一个球,记录下颜色,然后放回,重复这样的试验3000次,记录结果如下:实验次数n100200300500800100020003000摸到红球次数m6512417830248162012401845摸到红球频率m0.650.620.5930.6040.6010.6200.6200.615n估计从袋子中随机摸出一个球恰好是红球的概率约为_______________.(精确到0.1)17.小玲在一次班会中参加知识抢答活动,现有语文题5道,数学题6道,综合题7道,她从中随机抽取1道,抽中数学题的概率是_________.18.从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球5个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有___个白球.19.在一个不透明的塑料袋中装有红色白色球共40个.除颜色外其他都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在20%左右,则口袋中红色球可能有________个.20.对一批防PM2.5口罩进行抽检,经统计合格口罩的概率是0.9,若这批口罩共有2000只,则其中合格的大约有__只.三、解答题21.从2名男生和2名女生中随机抽取上海迪斯尼乐园志愿者.(1)抽取1名,恰好是男生的概率是;(2)抽取2名,用列表法或画树状图法求恰好是1名男生和1名女生的概率.22.某校有A,B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐,用列表或列树状图的方法解决下列问题:(1)求甲、乙、丙三名学生在同一个餐厅用餐的概率.(2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率.23.为加强素质教育,某学校自主开设了A书法、B阅读、C足球、D器乐四门选修课程供学生选择,每门课程被选到的机会均等.(1)学生小明计划选修两门课程,请写出所有可能的选法;(用树状图或列表法表示选法)(2)若学生小明和小刚各计划选修一门课程,则他们两人恰好同时选修书法或足球的概率是多少?24.小秋打算去某影城看电影.她用手机打开购票页面,座位已选情况如图所示(虚线边框内为黄金区域,其余为普通区域;深色为已售座位,白色为可选座位).求下列事件的概率:(1)小秋独自观影,他选择第4排或第5排的概率是_________;(2)小秋约小叶一同观影,求小秋选择2个同排相邻的座位恰好都在黄金区域的概率.25.如图三张不透明的卡片,正面图案分别是我国著名的古代数学家祖冲之、杨辉和赵爽的头像,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀从中随机抽出一张,记录图像后放回,重新洗匀后再从中随机抽取一张,请你用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“祖冲之”的概率.26.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据统计图可知试验结果的频率在30%—40%之间,然后分别计算出四个选项的概率,概率在30%—40%之间即符合题意.【详解】A、掷一枚骰子,出现4点的概率为16,不符合题意;B、抛一枚硬币,出现反面的概率为12,不符合题意;C、任意写出一个整数,能被3整除的概率为13,符合题意;D、从一副扑克中任取一张,取到“大王”的概率为1 54.故答案为C.【点睛】本题主要考查了利用频率估计概率以及运用概率公式求概率,掌握利用频率估计概率的方法成为解答本题的关键.2.C解析:C【详解】解:∵共有4个球,红球有1个,∴摸出的球是红球的概率是:P=14.故选C.【点睛】本题考查概率公式.3.C解析:C【详解】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:21=.63故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.4.C解析:C【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与构成等腰三角形的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有27种等可能的结果,构成等腰三角形的有15种情况,∴以a、b、c为边长正好构成等腰三角形的概率是:155=.279故选:C.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.5.D解析:D【分析】设口袋中红球有x个,用黄球的个数除以球的总个数等于摸到黄球的频率,据此列出关于x的方程,解之可得答案.【详解】解:设口袋中红球有x个,根据题意,得:66x=0.6,解得x=4,经检验:x=4是分式方程的解,所以估计口袋中大约有红球4个,故选:D.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.6.C解析:C【分析】根据题意画出树状图得出所有等可能的结果与两次抽到的数字之积是正数的情况数,然后利用概率公式求解即可.【详解】解:两个正数分别用a,b表示,一个负数用c表示,画树状图如下:共有9种等情况数,其中两次抽到的数字之积是正数的有5种,则两次抽到的数字之积是正数的概率是59;故选:C.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.B解析:B【分析】画树状图列出所有情况,看数字之和等于4的情况数占总情况数的多少即可.【详解】画树状图得:则共有9种等可能的结果,其中两张牌的牌面数字之和等于4的有3种结果, ∴两张牌的牌面数字之和等于4的概率为 39=13, 故选:B . 【点睛】本题考查列表法和树状图法,解题的关键是可以不重复不遗漏的列出所有可能的结果.8.D解析:D 【分析】直接利用概率公式进行求解,即可得到答案. 【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个. ∴1张抽奖券中奖的概率是:102030100++=0.6,故选:D . 【点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.9.B解析:B 【分析】画树状图得出所有情况数和遇到两次红灯的情况数,根据概率公式即可得答案. 【详解】根据题意画树状图如下:共有8种等情况数,其中遇到两次红灯的有3种, 则遇到两次红灯的概率是38,故选:B . 【点睛】本题考查利用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比;根据树状图得到遇两次红灯的情况数是解题关键.10.A解析:A 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案. 【详解】 解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况, ∴小灯泡发光的概率为612=12. 故选:A . 【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.A解析:A 【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数” 【详解】设盒子里有白球x 个, 根据=黑球个数摸到黑球次数小球总数摸球总次数得:8808400x =+ 解得:x=32.经检验得x=32是方程的解. 答:盒中大约有白球32个. 故选;A . 【点睛】此题主要考查了利用频率估计概率,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分式方程要验根.12.B解析:B 【分析】由表格可知共摸球1000次,其中摸到白球的频率稳定在0.4,由此知袋子中摸出一个球,是白球的概率为0.4,据此根据概率公式可得答案. 【详解】解:由表格可知共摸球1000次,其中摸到白球的频率稳定在0.4, ∴在袋子中摸出一个球,是白球的概率为0.4, 设白球有x 个,则3xx+=0.4, 解得:x=2, 故选:B . 【点睛】本题主要考查利用频率估计概率及概率公式,熟练掌握频率估计概率的前提是在大量重复实验的前提下是解题的关键.二、填空题13.13【分析】在同样条件下大量反复试验时随机事件发生的频率逐渐稳定在概率附近可以从比例关系入手设出未知数列出方程求解【详解】解:设袋中有黑球x 个由题意得:=02解得:x=13经检验x=13是原方程的解解析:13 【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解. 【详解】解:设袋中有黑球x 个,由题意得:52xx +=0.2, 解得:x=13,经检验x=13是原方程的解, 则布袋中黑球的个数可能有13个. 故答案为:13. 【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.14.【分析】根据题意把所有可能出现的结果用表格表示出来即可求解【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果其中两人恰好选中同一根绳子的结果共有3种∴两人恰好选中同一根绳子的概率为:故解析:1 3【分析】根据题意,把所有可能出现的结果用表格表示出来,即可求解.【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果,其中两人恰好选中同一根绳子的结果共有3种,∴两人恰好选中同一根绳子的概率为:3193=,故答案为:13.【点睛】本题考查用列表法或画树状图法求概率,解题的关键是根据题意列出所有可能出现的结果.15.4【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】设袋子中白球有x个由题意得=04解得:x=4经检验x=4是原方程的解故袋子中白球有4个故答解析:4【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】设袋子中白球有x个,由题意得,6xx+=0.4,解得:x=4,经检验x=4是原方程的解故袋子中白球有4个, 故答案为:4. 【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn是解题关键. 16.6【分析】利用表格中摸到红球频率估计随机摸出一个球恰好是红球的概率即可【详解】解:由表格中的数据可得摸到红球频率大约为06则随机摸出一个球恰好是红球的概率约为06故答案为06【点睛】本题主要考查了利解析:6 【分析】利用表格中摸到红球频率估计随机摸出一个球恰好是红球的概率即可. 【详解】解:由表格中的数据可得,摸到红球频率大约为0.6,则随机摸出一个球恰好是红球的概率约为0.6. 故答案为0.6. 【点睛】本题主要考查了利用频数估计概率,明确题意、掌握频率和概率的关系是解答本题的关键.17.【分析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数【详解】解:抽中数学题的概率为故答案为:【点睛】本题考查了概率正确利用概率公式计算是解题的关键解析:13【分析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数. 【详解】解:抽中数学题的概率为615673=++,故答案为:13. 【点睛】本题考查了概率,正确利用概率公式计算是解题的关键.18.10【分析】先由频率=频数÷数据总数计算出频率再由简单事件的概率公式列出方程求解即可【详解】解:摸了150次其中有50次摸到黑球则摸到黑球的频率是设口袋中大约有x 个白球则解得故答案为:10【点睛】考解析:10【分析】先由“频率=频数÷数据总数”计算出频率,再由简单事件的概率公式列出方程求解即可. 【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是5011503=, 设口袋中大约有x 个白球,则5153x =+, 解得10x =. 故答案为:10. 【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.19.8【分析】设有红球有x 个利用频率约等于概率进行计算即可【详解】设红球有x 个根据题意得:=20解得:x =8即红色球的个数为8个故答案为:8【点睛】本题考查了由频率估计概率的知识解题的关键是了解大量重复解析:8 【分析】设有红球有x 个,利用频率约等于概率进行计算即可. 【详解】 设红球有x 个, 根据题意得:40x=20%, 解得:x =8,即红色球的个数为8个, 故答案为:8. 【点睛】本题考查了由频率估计概率的知识,解题的关键是了解大量重复实验中事件发生的频率等于事件发生的概率.20.【分析】用这批口罩的只数×合格口罩的概率列式计算即可得到合格的只数【详解】2000×09=2000×09=1800(只)故答案为:1800【点睛】本题主要考查了用样本估计总体生产中遇到的估算产量问题解析:【分析】用这批口罩的只数×合格口罩的概率,列式计算即可得到合格的只数. 【详解】2000×0.9=2000×0.9=1800(只). 故答案为:1800. 【点睛】本题主要考查了用样本估计总体,生产中遇到的估算产量问题,通常采用样本估计总体的方法.三、解答题21.(1)12;(2)图表见解析,P=23【分析】(1)根据题意,抽取1名志愿者总共有4种可能,男生有2人,利用概率公式即可求解抽取1名恰好是男生的概率;(2)根据题意列表,可分别得到总共有多少种等可能的结果与符合条件的结果,根据概率公式即可求解.【详解】(1)抽取1名,恰好是男生的概率为:2142P==,(2)列表得:由表格可知:总共有12种等可能的结果,其中恰好是1名男生和1名女生的结果有8种结果,所以抽取2名,恰好是1名男生和1名女生的概率为:82123P==.【点睛】本题考查了概率的求解,解题关键是准确列出表格,得到所有的等可能结果,再从中选取符合条件的结果,然后利用概率公式计算.22.(1)14;(2)78【分析】(1)画树形图展示所有8种等可能的结果数,再找出甲、乙、丙三名学生在同一个餐厅用餐的结果数,然后根据概率公式求解;(2)从树状图中找出甲、乙、丙三名学生中至少有一人在B餐厅用餐的结果数,然后根据概率公式求解.【详解】解:画树状图如下:甲、乙、丙选择餐厅的所有可能结果有8种,(1)甲、乙、丙三名学生在同一个餐厅用餐的可能结果有2种,∴P(甲、乙、丙三名学生在同一个餐厅用餐)2184==;(2)甲、乙、丙三名学生中至少有一人在B餐厅用餐的可能结果有7种,∴P(甲、乙、丙三名学生中至少有一人在B餐厅用餐)=78.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.(1)树状图见解析,共有6种可能的选法;(2)18.【分析】(1)利用直接列举得到所有6种等可能的结果数;(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.【详解】解:(1)画树状图如下:共有12种等可能的结果数,不重复的选法有6种:AB、AC、AD、BC、BD、CD.(2)画树状图如下:共有16种等可能的结果数,其中他们两人恰好修书法或足球的结果数为2,所以他们两人恰好选修书法或足球的概率为21 168=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24.(1)12;(2)12【分析】(1)由概率公式求解即可;(2)由概率公式求解即可.【详解】解:(1)由题意知:白色为可选座位,共2+2+1+3=8(个)其中,第4排1个空位,第5排3个空位,共4个空位,小秋独自观影,他选择第4排或第5排的概率是41 82 =,故答案为:12;(2)小秋选择2个同排相邻的座位共有4个结果,其中小秋选择2个同排相邻的座位恰好都在黄金区域的结果有2个,∴小秋选择2个同排相邻的座位恰好都在黄金区域的概率为21 =42.【点睛】.此题考查的是概率的应用与计算.用到的知识点为:概率=所求情况数与总情况数之比.25.1 9【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【详解】解:用A表示祖冲之,用B表示杨辉,用C表示赵爽,列表如下:“祖冲之”的有1种结果,所以抽出的两张卡片上的图案都是“祖冲之”的概率为19.【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.26.(1)14;(2)甲组抽到A小区,同时乙组抽到C小区的概率为112.【分析】(1)直接根据概率公式求解即可;(2)根据题意画出树状图得出所有等可能的情况数和甲组抽到A小区,同时乙组抽到C 小区的情况数,然后根据概率公式即可得出答案.【详解】解:(1)共有A,B,C,D四个小区甲组抽到A小区的概率是14.答案为:14.(2)根据题意画树状图如下:∵共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率为112.【点睛】本题考查了树状图法求概率,树状图法适合两步或两步以上完成的事件,用到的知识点为:概率=所求情况数与总情况数之比.。
北师大版数学九年级上册第三章《概率的进一步认识》试卷含答案

北师大版数学九上第三章《概率的进一步认识》试卷、答案一、选择题(共12小题;共36分)1. 甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是A. B. C. D.2. 甲、乙两名同学在一次用频率去估计概率的实验中,统一了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是A. 从一个装有个白球和个红球的袋子中任取两球,取到两个白球的概率B. 任意写一个正整数,它能被整除的概率C. 抛一枚硬币,连续两次出现正面的概率D. 掷一枚正六面体的骰子,出现点的概率3. 小茜课间活动中,上午大课间活动时可以先从跳绳、乒乓球、健美操中随机选择一项运动,上午课外活动再从篮球、武术、太极拳中随机选择一项运动.则小茜上午、下午都选中球类运动的概率是A. B. C. D.4. 将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是A. B. C. D.5. 在不透明的袋子中有黑棋子枚和白棋子若干(它们除颜色外都相同),现随机从中摸出枚记下颜色后放回,这样连续做了次,记录了如下的数据:次数黑棋数根据以上数据,估算袋中的白棋子数量为A. 枚B. 枚C. 枚D. 枚6. 现有两枚质地均匀的骰子,每枚骰子的六个面上都分别标上数字,,,,,.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为的概率是A. B. C. D.7. 小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是A. B. C. D.8. 小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是A. 掷一枚质地均匀的硬币,正面朝上的概率B. 从一个装有个白球和个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率C. 从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率D. 任意买一张电影票,座位号是的倍数的概率9. 学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是A. B. C. D.10. 小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时“参加社会调查”的概率为A. B. C. D.11. 王大伯为了估计他家鱼塘里有多少条鱼,从鱼塘里捞出条鱼,将它们做上标记,然后放回鱼塘.经过一段时间后,再从鱼塘中随机捕捞条鱼,其中有标记的鱼有条,请你估计鱼塘里鱼的数量大约有A. 条B. 条C. 条D. 条12. 一个布袋内只装有个黑球和个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是A. B. C. D.二、填空题(共6小题;共24分)13. 在一个暗箱里放有个除颜色外其余完全相同的球,这个球中红球只有个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在,那么可以推测出大约是.14. 淘淘和丽丽是非常要好的九年级学生,在月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.15. 一个不透明的袋子中装有除颜色外均相同的个黑球、个白球和若干个红球.每次摇匀随机摸出一个球,记下颜色后再放回袋子中,通过大量重复摸球试验后,发现摸到红球的频率稳定于,由此可估计袋子中约有红球个.16. 在一个不透明的口袋中,装有,,,四个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.17. 如图,随机地闭合开关,,,,中的三个,能够使灯泡,同时发光的概率是.18. 在一只不透明的口袋中放人红球个,黑球个,黄球个,这些球除色不同外其他完全相同.搅匀后随机从中摸出一个,恰好是黄球的概率为,则放人口袋中的黄球总数.三、解答题(共7小题;共60分)19.(8分)甲、乙两个人做游戏:在一个不透明的口袋中装有张相同的纸牌,它们分别标有数字,,,.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.20.(10分)在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色球只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球的次数摸到白球的次数摸到白球的频率(1)请你估计,当很大时,摸到白球的频率将会接近(精确到).(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是.(3)试估算口袋中黑、白两种颜色的球有多少只.21. (8分)小华和小军做摸球游戏,袋中装有编号为,,的三个小球,袋中装有编号为,,的三个小球,两袋中的所有小球除编号外都相同,从两个袋子中分别随机摸出一个小球,若袋摸出的小球的编号与袋摸出小球的编号之差为偶数,则小华胜,否则小军胜.这个游戏对双方公平吗?请说明理由.22. (8分)小明和小亮用如图所示的两个转盘(每个转盘被分成三个面积相等的扇形)做游戏,转动两个转盘各一次,若两次数字之和为奇数,则小明胜;若两次数字之和为偶数,则小亮胜,这个游戏对双方公平吗?说说你的理由.23. (8分)在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有个,黄球有个,蓝球有个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢,赢的一方得电影票.游戏规则是:两人各摸次球,先由小明从纸箱里随机摸出个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.24.(10分)“六一”期间,某公园游戏场举行“游园”活动.有一种游戏的规则是:在一个装有个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个喜羊羊玩具.已知共有人次参加这种游戏,公园游戏场发放的喜羊羊玩具为个.(1)求参加一次这种游戏活动得到喜羊羊玩具的频率.(2)请你估计袋中白球接近多少个.25. (8分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字,,.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.答案第一部分1. C2. A3. A4. B5. C6. C7. C8. B9. C 【解析】本题考查列表法求概率.将征征、舟舟两名同学参加社团的可能情况列表如下:航模征征彩绘征征泥塑征征航模舟舟航模舟舟航模征征航模舟舟彩绘征征航模舟舟泥塑征征彩绘舟舟彩绘舟舟航模征征彩绘舟舟彩绘征征彩绘舟舟泥塑征征泥塑舟舟泥塑舟舟航模征征泥塑舟舟彩绘征征泥塑舟舟泥塑征征由上表可知征征和舟舟选择的可能情况有种,其中征征和舟舟选到同一社团的可能情况有种,所以概率为.10. A11. C12. D 【解析】列表法:符合题意的情况用“”表示,不符合题意用“”表示.黑白白黑白白所以(两次黑).第二部分13.14.15.16.17.【解析】随机地闭合开关,,,,中的三个共有种可能,能够使灯泡,同时发光有种可能(,,或,,).随机地闭合开关,,,,中的三个,能够使灯泡,同时发光的概率是.18.第三部分19. 不公平,根据题意列表如下:所有等可能的情况有种,其中两次摸出的纸牌上数字之和是的倍数的情况有:,,,,,共种,所以甲获胜,乙获胜,则该游戏不公平.20. (1)【解析】根据题意可得当很大时,摸到白球的频率将会接近.(2);【解析】因为当很大时,摸到白球的频率将会接近;所以摸到白球的概率是;摸到黑球的概率是.(3)因为摸到白球的概率是,摸到黑球的概率是,所以口袋中黑、白两种颜色的球,有白球是个,黑球是个.21. 列表如下共有种等可能结果,其中袋中数字减去袋中数字为偶数有种等可能结果.;小华胜则小军胜的概率为.,不公平.22. 这个游戏对双方不公平.理由如下:画树状图为:共有种等可能的结果数,其中两次数字之和为奇数的结果数为,两次数字之和为偶数的结果数为,小明胜的概率,小亮胜的概率,而,这个游戏对双方不公平.23. 不公平,画树状图如图所示.由上述树状图知,所有可能出现的结果共有种.小明赢,小亮赢.此游戏对双方不公平,小亮赢的可能性大.24. (1)因为所以参加一次这种游戏活动得到喜羊羊玩具的频率为.(2)因为试验次数很大,频率接近概率,所以估计从袋中任意摸出一个球恰好是红球的概率是.设袋中白球有个,则根据题意,得,解得.经检验是方程的解.所以估计袋中白球接近个.25. (1)所有可能出现的结果如图:【解析】树状图法:甲乙所有可能出现的结果从上面的表格(或树状图)可以看出,总共有种结果,每种结果出现的可能性相同,其中两人抽取相同.数字的结果有种,所以两人抽取相同数字(2)不公平.从上面的表格(或树状图)可以看出,两人抽取数字和为的倍数有种,两人抽取数字和为的倍数有种,所以甲获胜;乙获胜.因为,所以甲获胜的概率大,游戏不公平.。
北师大版九年级数学上册第三章《概率的进一步认识》单元同步测试题(含答案) (23)

概率的进一步认识单元检测题(典型题汇总)一、选择题1. A、B、C、D四名选手参加50米决赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道,若A首先抽签,则A抽到1号跑道的概率是()A.1 B. C. D.2. 在一次质量抽测中,随机抽取某摊位20袋食盐,测得各袋的质量如下(单位:g):492 496 494 495 498 497 501502 504 496 497 503 506 508507 492 496 500 501 499根据以上抽测结果,任买一袋该摊位的食盐,质量在497.5~501.5g之间的概率为()A. B. C. D.3. 下列词语所描述的事件是随机事件的是( )A.守株待兔 B.拔苗助长 C.刻舟求剑 D.竹篮打水4. 在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是()A. B. C.D.5. 在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有()A.4个 B.6个 C.34个 D.36个6. 将100个数据分成8个组,如下表:则第六组的频数为()A.12 B.13 C.14 D.157. 下列说法正确的是( )A.随机事件概率值不可能为1 B.随机事件概率值可能为1C.随机事件概率一定是0 D.以上说法都不对8. 下列说法中正确的个数是()①不可能事件发生的概率为0;②一个对象在实验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.A.1 B.2 C.3 D.4二、填空题9. 从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100 400 800 1 000 2 000 5 000发芽种子粒数85 398 652 793 1 604 4 005发芽频率0.850 0.745 0.851 0.793 0.802 0.80110. 在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为.11. 在一个不透明的布袋子中有只有颜色不同的10个球,连续10次从中任意摸出1个球,放回搅匀再摸.在连续10次试验中,摸到红球的频率是30%,在连续500次试验中摸到红球的频率是40%,那么袋中很可能有红球________个.12. 某个地区从某年起几年内的新生婴儿数及其中男婴数如下表:时间范围1年内2年内3年内4年内新生婴儿数5544 9013 13520 17191男婴数2716 4899 6812 8590男婴出生频率这一地区男婴出生的概率约是_______.13. 某射手在同一条件下进行射击,结果如下表所示:射击次数n 击中靶心数m 击中靶心频率10 9 0.920 19 0.9550 44 0.88100 91 0.91200 178 0.89500 451 0.90214. 投掷一枚正六面体的骰子,每个面上依次有数字1,2,3,4,5,6.(2)掷得的数不是“ 1” 的概率是__________,意思是__________.三、解答题15. 在硬币还没有抛出前,你能否预测每次抛出的结果?假如你已经抛掷了1 000次,你能否预测第1 001次抛掷的结果?16. 某种彩票的中奖概率是1%,买1张就不会中奖吗?买100张就一定会中奖吗?谈谈你的看法.17. 小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,她们共做了60次试验,试验的结果如下:朝上的点数 1 2 3 4 5 6出现的次数7 9 6 8 20 10(1)计算“3点朝上”(2)小颖说:“根据试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树形图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.18. 某彩票的中奖机会是,买1张彩票一定不会中奖吗?买1000张彩票一定会中奖吗?参考答案一、选择题DBACB DBC二、填空题9、0.810、11、412、(1)0.49,0.54,0.50,0.50;(2)0.5013、0.914、(1)投掷次数较多时,平均每6次就有1次“ 1” 出现(2)投掷次数较多时,平均每6次就有5次不出现“1”三、解答题15、解:因为每次抛出前,出现的结果是不确定事件,故不能预测每次抛出后的结果.假如已经抛掷了1 000次,也不能预测第1 001次抛掷的结果.16、解:买1张可能中奖,买100张也有可能不中奖,因为中奖是一个随机事件,每次试验都可能发生,也可能不发生.17、解:(1)“3点朝上”出现的频率是=;“5点朝上”出现的频率是=.(2)小颖的说法是错误的.这是因为,“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.只有当试验的次数足够多时,该事件发生的频率稳定在事件发生的概率附近.小红的判断是错误的,因为事件发生具有随机性,故“6点朝上”的次数不一定是100次.(3)列表如下:P(点数之和为3的倍数)= = .18、买1张彩票有可能中奖,买1000张彩票不一定会中奖.概率的进一步认识单元检测题(典型题汇总)(120分,90分钟) 题 号一 二 三 总 分 得 分 一、选择题(每题3分,共30分)1.小明制作了十张卡片,上面分别标有1~10这十个数.从这十张卡片中随机抽取一张恰好能被4整除的概率是( )A.110B.25C.15D.3102.从一定高度抛一个瓶盖100次,落地后盖面朝下的有55次,则下列说法中错误的是( )A .盖面朝下的频数是55B .盖面朝下的频率是0.55C .盖面朝下的概率不一定是0.55D .同样的试验做200次,落地后盖面朝下的有110次3.两道单选题都含A ,B ,C ,D 四个选项,瞎猜这两道题,恰好全部猜对的概率是( )A.12B.14C.18D.1164.事件A :打开电视,它正在播广告;事件B :抛掷一枚均匀的骰子,朝上的点数小于7;事件C :在标准大气压下,温度低于0 ℃时冰融化.3个事件的概率分别记为P (A ),P (B ),P (C ),则P (A ),P (B ),P (C )的大小关系正确的是( )A .P (C )<P (A )=P (B ) B .P (C )<P (A )<P (B )C .P (C )<P (B )<P (A )D .P (A )<P (B )<P (C )(第5题)5.某展览大厅有2个入口和2个出口,其示意图如图所示,参观者可从任意一个入口进入,参观结束后可从任意一个出口离开.小明从入口1进入并从出口A 离开的概率是( )A.12B.13C.14D.166.王阿姨在网上看中了一款防雾霾口罩,付款时需要输入11位的支付密码,她只记得密码的前8位,后3位由1,7,9这3个数字组成,但具体顺序忘记了,她第一次就输入正确密码的概率是( )A.12B.14C.16D.187.同时抛掷A ,B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两个小立方体朝上的数字分别为x ,y ,并以此确定点P (x ,y ),那么点P 落在函数y =-2x +9的图象上的概率为( )A.118B.112C.19D.168.在一个不透明的盒子里装有只颜色不同的黑、白两种球共40个.小亮做摸球试验,他将盒子内的球搅匀后从中随机摸出一个球,记下颜色后放回,不断重复上述过程,对试验结果进行统计后,小亮得到下表中的数据:则下列结论中正确的是( )A .n 越大,摸到白球的概率越接近0.6B .当n =2 000时,摸到白球的次数m =1 200C .当n 很大时,摸到白球的频率将会稳定在0.6附近D .这个盒子中约有28个白球9.让图中的两个转盘分别自由转动一次(两个转盘均被分成4等份),当转盘停止转动时,两个指针分别落在某两个数所表示的区域内,则这两个数的和是5的倍数或3的倍数的概率等于( )A.316B.38C.916D.1316(第9题) (第10题) (第14题) (第18题)10.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为3的线段的概率为( )A.14B.25C.23D.59二、填空题(每题3分,共24分)11.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面朝上的概率是________.12.在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出n =________.13.从8,12,18,32中随机抽取一个根式,化简后与2的被开方数相同的二次根式的概率是________.14.如图,电路图上有四个开关A ,B ,C ,D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C 都可以使小灯泡发光,任意闭合其中两个开关,使小灯泡发光的概率为________.15.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他第一次就能走出迷宫的概率是________.16.某市举办“体彩杯”中学生篮球赛,初中男子组有市区学校的A ,B ,C 三个队和县区学校的D,E,F,G,H五个队.如果从A,B,D,E四个队与C,F,G,H四个队中各抽取一个队进行首场比赛,那么参加首场比赛的两个队都来自县区学校的概率是________.17.在一个暗盒中放有若干个白色球和2个黑色球(这些球除颜色外无其他区别),若从中随机取出1个球是白色球的概率是35,则在暗盒中随机取出2个球都是白色球的概率是________.18.如图,一个质地均匀的正四面体的四个面上依次标有数-2,0,1,2,连续抛掷两次,朝下一面的数分别是a,b,将其作为点M的横、纵坐标,则点M(a,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是________.三、解答题(19题8分,20题10分,其余每题12分,共66分)19.如图,小明做了A,B,C,D四张同样规格的硬纸片,它们的背面完全相同,正面分别画有等腰三角形、圆、平行四边形、正方形.小明将它们背面朝上洗匀后,随机抽取两张.请你用列表或画树状图的方法,求小明抽到的两张硬纸片上的图形既是轴对称图形又是中心对称图形的概率.(第19题)20.一个瓶中装有一些幸运星,小王为了估计这个瓶中幸运星的颗数,他是这样做的:先从瓶中取出20颗幸运星做上记号,然后把这些幸运星放回瓶中,充分摇匀,再从瓶中取出30颗幸运星,发现有6颗幸运星带有记号,请你帮小王估算出原来瓶中幸运星的颗数.21.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.求:(1)取出纸币的总额是30元的概率;(2)取出纸币的总额可购买一件51元的商品的概率.22.学校实施新课程改革以来,学生的学习能力有了很大的提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图①②).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了________名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.(第22题)23.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24.端午节吃粽子是中华民族的传统习俗,今年某商场销售甲厂家的高档、中档、低档三个品种及乙厂家的精装、简装两个品种的盒装粽子.现需要在甲、乙两个厂家中各选购一个品种.(1)写出所有选购方案(利用树状图或表格求选购方案).(2)如果(1)中各种选购方案被选中的可能性相同,那么甲厂家的高档粽子被选中的概率是多少?(3)现某中学准备购买两个品种的粽子共32盒(价格如下表)发给学校的“留守儿童”,让他们过一个愉快的端午节,其中指定购买了甲厂家的高档粽子,再从乙厂家购买一个品种.若恰好用了1 200元,请问:购买了多少盒甲厂家的高档粽子?参考答案一、1.C 2.D 3.D 4.B 5.C6.C 点拨:因为后3位由1,7,9这3个数字组成,所以后3位可能的结果有:179,197,719,791,917,971.所以她第一次就输入正确密码的概率是16.故选C.7.B 点拨:列表如下:∴有36种等可能情况,点P(x,y)落在y=-2x+9的图象上的有(2,5)(3,3)(4,1)共3种情况,故其概率为336=1 12.8.C9.C点拨:列表如下:所有等可能的情况有16种,其中两个数的和是5的倍数或3的倍数的情况有9种,则P=916,故选C.(第10题)10.B点拨:如图,正六边形中连接任意两点可得15条线段,其中AC,AE,BD,BF,CE,DF这6条线段的长度为3,∴所求概率为615=2 5.二、11.34 点拨:随机掷一枚质地均匀的硬币两次,可能出现的结果有(正,正)、(正,反)、(反,正)、(反,反)4种,且每种结果出现的可能性相同,至少有一次正面朝上的结果有3种,故所求概率是34.12.10 13.34 14.12 15.1816.38点拨:列表如下:由表格可知共有16种等可能情况,参加首场比赛的两个队都来自县区学校的有6种情况,所以概率为616=38.17.31018.716 点拨:列表如下:(第18题)由表格知共有16种等可能的结果,而落在以A (-2,0),B (2,0),C (0,2)为顶点的三角形内(包含边界)的点有(-2,0),(0,0),(1,0),(2,0),(0,1),(1,1),(0,2),共7种,如图,所以点M 落在以A (-2,0),B (2,0),C (0,2)为顶点的三角形内(包含边界)的概率是716.三、19.解:列表如下:由表格可看出,所有可能出现的结果共有12种,每种结果出现的可能性都相同,其中抽到的两张硬纸片上的图形既是轴对称图形又是中心对称图形的结果共有2种,故所求概率P =212=16.20.解:设原来瓶中幸运星大约有x 颗,则有20x =630.解得x =100.经检验,符合题意.∴原来瓶中幸运星大约有100颗.21.解:某人从钱包内随机取出2张纸币,可能出现的结果有3种,即10元与20元,10元与50元,20元与50元,并且它们出现的可能性相等.(1)取出纸币的总额是30元(记为事件A )的结果有1种,即10元与20元,所以P (A )=13.(2)取出纸币的总额可购买一件51元的商品(记为事件B )的结果有2种,即10元与50元,20元与50元,所以P (B )=23.22.解:(1)20 (2)补图如图所示.(第22题)(3)列表如下,A 类学生中的两名男生分别记为男A 1和男A 2,共有6种等可能的结果,其中,一男一女的有3种,所以恰好选中一名男生和一名女生的概率为36=12.23.解:(1)所求概率P =36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果, ∴P (小亮胜)=936=14,P (小丽胜)=936=14.∴该游戏是公平的.24.解:(1)画树状图如图所示:(第24题)或列表如下: 共有6种选购方案:(高档,精装)、(高档,简装)、(中档,精装)、(中档,简装)、(低档,精装)、(低档,简装).(2)因为选中甲厂家的高档粽子的方案有2种,即(高档,精装)、(高档,简装),所以甲厂家的高档粽子被选中的概率为26=13. (3)由(2)可知,当选用方案(高档,精装)时,设分别购买高档粽子、精装粽子x 1盒、y 1盒,根据题意,得⎩⎪⎨⎪⎧x 1+y 1=32,60x 1+50y 1=1 200. 解得⎩⎪⎨⎪⎧x 1=-40,y 1=72.经检验,不符合题意,舍去. 当选用方案(高档,简装)时,设分别购买高档粽子、简装粽子x 2盒、y 2盒,根据题意,得⎩⎪⎨⎪⎧x 2+y 2=32,60x 2+20y 2=1 200. 解得⎩⎪⎨⎪⎧x 2=14,y 2=18.经检验,符合题意. 故该中学购买了14盒甲厂家的高档粽子.19、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率的进一步认识专项练习(含答案)一、选择题(本大题共22小题,共66.0分)1.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A. 12B. 13C. 23D. 162.以下说法合理的是()A. 小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是23B. 某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C. 某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是12D. 小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是123.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数100200300400500正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A. 20B. 300C. 500D. 8004.国家出台全面二孩政策,自2016年1月1日起家庭生育无需审批.如果一个家庭已有一个孩子,再生一个孩子,那么两个都是女孩的概率是()A. 12B. 13C. 14D. 无法确定5.如图,小球从A口往下落,在每个交又口都有向左或向右两种可能,且可能性相同,则小球最终从E口落出的概率为()A. 12B. 14C. 16D. 186.某市公园的东、南、西、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A. 12B. 14C. 16D. 1167.不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是()A. 49B. 29C. 23D. 138.下列说法错误的是()A. 方差可以衡量一组数据的波动大小B. 抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C. 一组数据的众数有且只有一个D. 抛掷一枚图钉针尖朝上的概率,不能用列举法求得9.如图.随机闭合开关K1、K2、K3中的两个,则能让两盏灯泡L1、L2同时发光的概率为()A. 16B. 12C. 23D. 1310.下面四个实验中,实验结果概率最小的是()A. 如(1)图,在一次实验中,老师共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,估计出的钉尖朝上的概率B. 如(2)图,是一个可以自由转动的转盘,任意转动转盘,当转盘停止时,指针落在蓝色区域的概率C. 如(3)图,有一个小球在的地板上自由滚动,地板上的每个格都是边长为1的正方形,则小球在地板上最终停留在黑色区域的概率D. 有7张卡片,分别标有数字1,2,3;4,6,8,9;将它们背面朝上洗匀后,从中随机抽出一张,抽出标有数字“大于6”的卡片的概率11.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A. 5B. 10C. 12D. 1512.一个盒子里装有除颜色外都相同的3个球,其中2个红球,1个白球.现从盒子里随意摸出1个不放回,再摸出1个,两次均摸到红球的概率是()A. 13B. 12C. 23D. 5613.在一个不透明的袋子里装有5个红球和若干个白球,它们除颜色外其余完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计袋中的白球大约有()个A. 25B. 20C. 15D. 1014.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()A. 12B. 23C. 25D. 71015.不透明的袋子中有三个小球,上面分别写着数字“1”,“2”,“3”,除数字外三个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为4的概率是()A. 14B. 12C. 13D. 2316.5月12日为母亲节,小南和小开为各自的母亲买一束鲜花,现有三种不同类型的鲜花可供选择:康乃馨、百合和玫瑰,两人恰好选择到同种类型鲜花的概率为()A. 13B. 12C. 23D. 1917.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A. 13B. 23C. 19D. 2918.从1,2,3,4中任取两个不同的数,分别记为a和b,则a2+b2>19的概率是()A. 12B. 512C. 712D. 1319.在一次联欢晚会上,某班进行以下游戏,准备两个不透明的袋子和7个小球(大小、形状完全一样),一个袋子里放置3个小球,球面上分别写着“好”“运”“来”,另一个袋子里放置4个小球,球面上分别写着“新”“年”“好”“运”.现从两个袋子里各随机抽取一个球,球面上的字可以组成“好运”字样的获得一等奖,则获得一等奖的概率为()A. 112B. 18C. 16D. 1420.现有三张质地大小完全相同的卡片,上面分别标有数字−2,−1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是()A. 13B. 12C. 23D. 4921.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A. 49B. 13C. 16D. 1922.有三把外观一样但型号不同的锁,各配有一把钥匙.现遗失一把钥匙,用剩余的两把钥匙各随机从三把锁中选一把开锁一次,两次都不能打开的概率为()A. 19B. 13C. 49D. 23二、填空题(本大题共17小题,共51.0分)23.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为______ .24.在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ.两次摸球的所有可能的结果如表所示,则两次摸出的球都是红球的概率是______.25.在一个不透明的口袋中装有3个红球、1个黑球,这些球除颜色外其他都相同,在看不到球的条件下,随机地从这个袋子中摸出两个球,摸到的两个球都是红球的概率是______.26.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是______.27.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有3个红球,每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0.25左右,则白球的个数约为______.28.扬州某毛绒玩具厂对一批毛绒玩具进行抽检的结果如下:从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是______.(精确到0.01)29.一个不透明的口袋中有四个完全相同的小球,其上分别标有数字1,2,4,8.随机摸取一个小球后不放回,再随机摸取一个小球,则两次取出的小球上数字之积等于8的概率是______.30.一个不透明的口袋中装有5个分别标有数字1,2,3,4,5的小球,这些小球除数字外,其他完全相同,将小球充分搅拌均匀后,从中随机摸出两个小球,则这两个小球上的数字之积为偶数的概率为________.31.如表是某班同学随机投掷一枚硬币的试验结果.下面有三个推断:①表中没有出现“正面向上”的频率是0.5的情况,所以不能估计“正面向上”的概率是0.5;②这些次试验投掷次数的最大值是500,此时“正面向上”的频率是0.48,所以“正面向上”的概率是0.48;③投掷硬币“正面向上”的概率应该是确定的,但是大量重复试验反映的规律并非在每一次试验中都发生;其中合理的是______(填写序号).32.如果从长度分别为2、4、6、7的四条线段中随机抽取三条线段,那么抽取的三条线段能构成三角形的概率是______.33.柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:种子数n307513021048085612502300发芽数m287212520045781411872185发芽频0.93330.96000.96150.95240.95210.95090.94960.9500率mn依据上面的数据可以估计,这种植物种子在该实验条件下发芽的概率约是______(结果精确到0.01).34.西湖文化广场内有浙江省博物馆武林馆区,浙江省科技馆,浙江自然博物馆,小明和小皓要去展馆做志愿者,每人只选择去1个展馆.则他们在同一个展馆做志愿者的概率是______ ,至少有一人在浙江自然博物馆的概率是______ .35.小明、小颖、小华参加演讲比赛,原定出场顺序是小明第一个出场,小颖第二个出场,小华第三个出场,为了比赛的公平性,要求这三名选手用抽签的方式重新确定出场顺序,则抽签后每名选手的出场顺序都发生变化的概率是_________.36.黔东南下司“蓝莓谷”以盛产“优质蓝莓”而吸引来自四面八方的游客.某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中,“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是kg.37.如图,随机闭合开关S1,S2,S3中的两个,能让灯泡发光的概率是____.38.如图,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡发光的概率是___.39.现有5张除正面数字外完全相同的卡片,正面数字分别为1,2,3,4,5,将卡片背面朝上洗匀,从中随机抽出一张记下数字后放回,洗匀后再次随机抽出一张,则抽出的两张卡片上所写数字相同的概率是________.三、计算题(本大题共2小题,共12.0分)40.在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另外有2名男生和2名女生获得音乐奖.(1)从获得美术奖和音乐奖的7名学生中选1名参加颁奖大会,求刚好是男生的概率;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表法或画树状图法求刚好是一男生一女生的概率.41.用10个除颜色外均相同的球设计一个摸球游戏:(1)使摸到红球的概率为1;5(2)使摸到红球和白球的概率都是2.5四、解答题(本大题共41小题,共328.0分)42.生死守护,致敬英雄.湘潭28名医护人员所在的湖南对口支援湖北黄冈医疗队红安分队,精心救治每一位患者,出色地完成了医疗救治任务.为致敬英雄,某校音乐兴趣小组根据网络盛传的“红旗小姐姐”跳的儋州调声组建了舞蹈队.现需要选取两名学生作为舞蹈队的领舞,甲、乙两班各推荐了一男生和一女生.(温馨提示:用男 1、女 1;男 2、女 2分别表示甲、乙两班4个学生)(1)请用列举的方法写出所有可能出现的结果;(2)若选取的两人来自不同的班级,且按甲、乙两班先后顺序选取.请用列表或画树状图的方法求出恰好选中一男一女的概率.43.中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是______部,中位数是______部;(2)扇形统计图中“4部”所在扇形的圆心角为______度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.44.为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.45.为关注学生出行安全,调查了某班学生出行方式,调查结果分为四类:A−骑自行车,B−步行,C−坐社区巴士,D−其它,并将调査结果绘制成以下两幅不完整的统计图.请你根据统计图,解答下列问题:(1)本次一共调査了多少名学生?(2)C类女生有______名,D类男生有______名,并将条形统计图.....补充完整.(3)若从被调查的A类和D类学生中分别..随机选取一位同学进行进一步调查,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.46.为了激励学生热爱数学,刻苦钻研,马鞍山市某学校八年级举行了一次数学竞赛,成绩由低到高分为A,B,C,D,E五个等级.竞赛结束后老师随机抽取了部分学生的成绩情况绘制成如下的条形图和扇形图,请根据提供的信息解答以下问题.(1)补全条形统计图和扇形统计图.(2)在本次抽样调查中,成绩的众数和中位数分别处于哪个等级?(3)成绩为E等级的五个人中有3名男生2名女生,若从中任选两人,则两人恰好是一男一女的概率为多少?47.某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为______,扇形统计图中“C”对应扇形的圆心角的大小为______°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.48.2020年春季在新冠疫情的背景下,全国各大中小学纷纷开设空中课堂,学生要面对电脑等电子产品上网课.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)本次调查的学生总人数为______,并补全条形统计图;(2)该校共有学生1800人,请你估计该校对视力保护“非常重视”的学生人数;(3)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护交流,请利用树状图或列表法,求出恰好抽到一男一女的概率.49.在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:t<8;B档:8≤t<9;C档:9≤t<10;D档:t≥10.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.50.某中学组织七、八、九年级学生参加全区作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)此次参赛的作文篇数共有______篇;(2)扇形统计图中九年级参赛作文对应的圆心角是______度.并补全条形统计图;(3)经过评审,全校有4篇作文获特等奖,其中有一篇来自九年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法,求出九年级特等奖作文被选登在校刊上的概率.51.东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了如图不完整的统计图表.作业情况频数频率非常好______ 0.22较好68______一般______ ______不好40______请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了多少名学生?(2)将统计表中所缺的数据填在表中横线上;(3)若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的作业本中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.52.小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排,志愿者被随机分到A组(体温检测)、B组(便民代购)、C组(环境消杀).(1)小红的爸爸被分到B组的概率是______;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)53.某阅读网站现开通了A、B、C、D这4本书的免费下载权限,每位用户可免费下载其中2本阅读.(1)求甲用户选择下载的2本书是A、B的概率;(2)甲、乙两个用户选择下载的2本书均不相同的概率是54.刘老师将1个红球和若干个黄球放入一个不透明的口袋中并搅匀,这些球除颜色不同外其余都相同.他让若干学生进行摸球试验,每次摸出一个球,记下颜色后,放回搅匀,经过多次实验发现,从袋中摸出一个球是红球的频率稳定在0.25附近.(1)估算袋中黄球的个数;(2)在(1)的条件下,小强同学从中任意摸出一个球,放回并摇匀,再摸一次球,用画树状图或列表的方法计算他两次都摸出黄球的概率.55.有一个可自由转动的转盘,被分成了三个大小相同的扇形,分别标有数字2,4,6;另有一个不透明的瓶子,装有分别标有数字1,3,5的三个完全相同的小球.小杰先转动一次转盘,停止后记下指针指向的数字(若指针指在分界线上则重转),小玉再从瓶子中随机取出一个小球,记下小球上的数字.(1)请用列表或画树状图的方法(选其中一种)表示出所有可能出现的结果;(2)若得到的两数字之和是3的倍数,则小杰贏;若得到的两数字之和是7的倍数,则小玉赢,此游戏公平吗?为什么?56.2018年“我要上春晚”进入决赛阶段,最终将有甲、乙、丙、丁4名选手进行决赛的终极较量,决赛分3期进行,每期比赛淘汰1名选手,最终留下的歌手即为冠军.假设每位选手被淘汰的可能性都相等.(1)甲在第1期比赛中被淘汰的概率为______;(2)求甲在第2期被淘汰的概率.57.小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.58.小明代表学校参加“我和我的祖国”主题宣传教育活动,该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用A、B、C 表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用D、E表示),参加人员在每个阶段各随机抽取一个项目完成.(1)用画树状图或列表的方法,列出小明参加项目的所有等可能的结果:(2)求小明恰好抽中B、D两个项目的概率.59.新学期,某校开设了“防疫宣传”“心理疏导”等课程.为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B级为良好,C级为及格,D级为不及格.将测试结果绘制了如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是______名;(2)扇形统计图中表示A级的扇形圆心角α的度数是______,并把条形统计图补充完整;(3)该校八年级共有学生500名,如果全部参加这次测试,估计优秀的人数为______;(4)某班有4名优秀的同学(分别记为E、F、G、H,其中E为小明),班主任要从中随机选择两名同学进行经验分享.利用列表法或画树状图法,求小明被选中的概率.60.央行今年推出数字货币,支付方式即将变革,调查结果显示,目前支付方式有:A微信、B支付宝、C现金、D其他.调查组对某超市一天内购买者的支付方式进行调有统计:得到如图两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了______名购买者;(2)请补全条形统计图.在扇形统计图中A种支付方式所对应的圆心角为______度.(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“现金”三种付款方式中选一种方式进行付款,请用树状图或列表法求出两人恰好选择同一种付款方式的概率.61.《歌手−当打之年》是湖南卫视最受欢迎的娱乐节目,奇袭挑战赛在每周五晚准时进行,7名主打歌手进行比赛的同时还要接受1名奇袭歌手挑战.近期即将进行终极奇袭战,奇袭歌手艾热将挑战徐佳莹(女)、米希亚(女)、萧敬腾、华晨宇、周深、声入人心男团、旅行团乐队.(1)当主持人询问艾热准备奇袭哪位歌手时,艾热透露“希望和男性嗓音去比试”,那周深被奇袭的概率是______;(2)7名主打歌手比赛的上场顺序是通过抽签方式进行,若已经知道前4位歌手的上场顺序,还有华晨宇、米希亚、周深不知道,那么华晨宇和周深两位是相邻出场的概率是多少.(请用“画树状图”或“列表”等方法写出分析过程)62.“只要人人献出一点爱,世界将变成美好的人间”.某大学利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“A、B、AB、O”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表,图):血型统计表(1)本次随机抽取献血者人数为______人,图中m=______;(2)补全表中的数据;(3)若这次活动中该校有1300人义务献血,估计大约有多少人是A型血?(4)现有4个自愿献血者,2人为O型,1人为A型,1人为B型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O型的概率.63.为落实立德树人的根本任务,加强思改、历史学科教师的专业化队伍建设.某校计划从前来应聘的思政专业(一名研究生,一名本科生)、历史专业(一名研究生、一名本科生)的高校毕业生中选聘教师,在政治思想审核合格的条件下,假设每位毕业生被录用的机会相等(1)若从中只录用一人,恰好选到思政专业毕业生的概率是______:(2)若从中录用两人,请用列表或画树状图的方法,求恰好选到的是一名思政研究生和一名历史本科生的概率.。