数模之开放式基金投资最优决策

数模之开放式基金投资最优决策
数模之开放式基金投资最优决策

开放式基金投资最优决策

一、问 题

某开放式基金现有总额为15亿元的资金可用于投资,目前共有8个项目可供管理人选择,每个项目可重复投资。根据专家经验,对每个项目投资总额不能太高,应有上限。这些项目所需要的投资额已知,一般情况下投资一年后各项目所得利润也可估算出来,如表1所示。

表1 单位:万元

项目编号 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 投资额 6700 6600 4850 5500 5800 4200 4600 4500 年利润 1139 1056 727.5 1265 1160 714 1840 1575 上 限

34000

27000

30000

22000

30000

23000

25000

23000

请帮该公司解决以下问题:

(1)就表1提供的数据,应该投资哪些项目,使得第一年所得利润最高?

(2)在具体投资这些项目时,实际还会出现项目之间互相影响的情况。公司咨询有关专家后,得到以下可靠信息:同时投资项目A 1,A 3,它们的年利润分别是1005万元,1018.5万元;同时投资项目A 4,A 5,它们的年利润分别是1045万元,1276万元;同时投资项目A 2,A 6,A 7,A 8,它们的年利润分别是1353万元,840万元,1610万元,1350万元,该基金应如何投资?

(3)如果考虑投资风险,则应如何投资,使收益尽可能大,而风险尽可能小。投资项目总体风险可用投资项目中最大的一个风险来衡量。专家预测出各项目的风险率,如表2所示。

表2

项目编号 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 风险率(%)

32

15.5

23

31

35

6.5

42

35

(4)开放式基金一般要保留适当的现金,降低客户无法兑现的风险。在这种情况下,将专家的信息都考虑进来,基金该如何决策,使得尽可能降低风险,而一年后所得利润尽可能多?

(5)这个项目投资,是必须资金全部到位才有利润,还是只要第一期资金到位启动后就可以随便投资,然后利润率按第一期利润和投资之比来计算?

二、模型的建立及求解

1.模型1(线性整数规划) (1)假设

1)不考虑其他因素,单纯追求利润最大; 2)预计利润能正确反映各项投资的利润;

3)若对某项目投资,则该项目的总投资额必须是该项目投资额的整数倍; 4)投资过程中交易费为0;

5)该基金中无“庄家”或“金融大鳄”之类恶意操纵。 (2)建模

设x i 为对项目A i 的投资股数,H 表示基金总额,m i 表示项目A i 的投资上限,b i 表示项目A i 每股的预计年利润,c i 表示项目

A i 每股的投资额,则一年后总投资利润i i i x b R ∑

==

8

1

,基金总额约束:H x c i i i ≤∑=8

1

,各项目投资额上限约束:

i i i m x c ≤(i =1,2,…,8),从而建立如下模型。

i i i x b R ∑

==

8

1

max

s.t. 8

,,2,1,8,,2,1,8

1

=∈=≤≤∑

=i N x i m x c H

x c i i i i i i i

(3)求解

应用Lindo 软件包,以题中所给数据为例,编程求得结果,如表3所示。

表3

项目编号 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 投资股数(股)

5 1 1 4 5 2 5 5 投资额 33500

6600

4850

22000

29000

8400

23000

22500

总投资 149850

年利润 5695 1056 727.5 5060 5800 1428 9200 7875 利润率(%) 17

16

15

23

20

17

40

35

总利润

36841.5

从表3可以看出,基本上利润率较高的投资项目对应较强的投资势头,但有的投资项目虽然利润率较高,却未得到相应的投资势头,这说明利润率并不是影响投资的唯一因素,还有另外的因素尚未考虑到,需要继续深入讨论。

2.模型2(非线性整数规划)

考虑到专家的信息,投资项目之间相互影响,修正模型1。 (1)假设

1)专家的信息有较高的可信度,单纯追求利润最大。 2)满足模型1的假设2)~5)。 (2)建模

由于不知道是否各相互影响的项目同时投资时,利润较大,引入0-1变量??

?=否则

同时投资

,

0,,131A A y ,

??

?=否则

同时投资

,

0,,154A A z ,??

?=否则

同时投资

,

0,,,,18762A A A A u 。

设i b '表示受同时投资影响时项目A i 每股的预计年利润,可建立如下模型。

))(1()())(1()(m ax 55445544331133

11x b x b z x b x b z x b x b y x b x b y R +-+'+'++-+'+'= ))(1()(8877662288776622

x b x b x b x b u x b x b x b x b u +++-+'+'+'+'+ s.t. 1

0,,8,,2,1,50020308,,2,1,876254318

1

或==∈≤≤≤≤≤≤=≤≤∑

=u z y i N x u x x x x u z

x x z y x x y i m x c H

x c i i i i i i i

其中

y

x x y 3031≤≤中的30表示A 1,A 3各最多投资5股,6股;

z

x x z 2054≤≤中的20表示A 4,A 5各最

多投资4股,5股;

u

x x x x u 5008762≤≤

中的500表示A 2,A 6,A 7,A 8各最多投资4股,5股,5股,5股。当A 1,A 3同时投资时,x 1x 3>0,y =1;当A 1,A 3不同时投资

时,x 1x 3=0,y =0,故得A 1,A 3是否相互影响的约束可表示为:

y

x x y 3031≤≤。同理可得其他两个是否相互影响的约束。

(3)求解

应用Lingo 软件包,以题中所给数据为例,编程求得结果,如表4所示。

表4

项目编号 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 投资股数 1 0 6 4 5 4 5 5 投资额 6700

29100

22000

29000

16800

23000

22500

总投资额 149100

年利润 1005 0 6111 4180 6380 2856 9200 7875 利润率(%) 15

16

21

19

22

17

40

35

总利润

37607

从表4可以看出,随着利润率的提高,投资势头也相应增强,利润率下降,投资势头也相应减弱,这又一次反映了利润率对投资势头的强大影响。

3.模型3(多目标规划&非线性整数规划)

考虑到专家提供的风险损失率方面的约束,进一步修正模型2。 (1)假设

1)考虑专家预测出的各项目风险率,总体风险用投资项目中最大的一个风险来度量,追求利润尽可能大、风险尽可能小; 2)满足模型2的假设2)。 (2)建模

设q i 表示项目A i 的风险率,则总体风险}{max 8

1i i i i x c q Q ≤≤=,投资总利润R 同模型2,从而可建立如下模型。

max R min Q

s.t. 同模型2

利用α—法构造评价函数Q R P )1(αα--=,其中权系数)

0(*

*

)

0()0(*Q

Q

R R

Q Q

-+--=

α,R *,Q *分别

为R ,Q 的最优值,R (0),Q (0)分别为Q ,R 取最优值时R ,Q 的取值,可以把上述双目标规划化为如下单目标规划。

Q R P )1(max αα--=

s.t. 同模型2

不过确定权系数的常用方法是根据专家意见和经验给出。 (3)求解

引入变量s =Q ,目标函数化为s

R P )1(αα--=

,在满足上述约束条件的基础上,还要对s 加以约束:

s x c q i i i ≤,i =1,2,…,8。应用Lingo 软件包,以题中所给的数据为例,编程求得结果,如表5所示,即在考虑利润和风险的基础上,均衡两者的权,得出的最佳折中方案。

表5

项目编号 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 投资股数 5 4 0 4 0 0 5 5 投资额 33500

26400

22000

23000

22500

总投资额 127400

利润率(%) 17 16 15 23 20 17 40 35 风险率(%) 32 15.5 23 31 35 6.5 42 35 年利润 5965

4224

5060

9200

7875

总利润 32054

总体风险

10720(A 1的风险)

从表5可以看出,利润率和风险率对投资的影响都很大,对利润率和风险率都大的项目应谨慎投资,对风险大,利润过小的项目应少投资,甚至不投资。但对风险较大而利润较小的项目A 1投资最多,说明权系数的选择不适当。

4.模型4(多目标规划&非线性整数规划)

模型3中未考虑保留适当的现金,从开放式基金具有由投资者随时赎回的特性来理解,相比交易所挂牌上市的证券,开放式基金以其单位基金净值作为赎回标准,可以在有效规避二级市场的股价波动风险的同时保证其流动性。对于突发性的赎回请示,基金管理人往往会通过保留一定的资金来应付。基于此,我们在模型3的基础上追加考虑保留适当的现金,用以降低客户无法兑付的风险,进一步修正模型3。

(1)假设

1)考虑保留部分资金,追求利润最大、风险最小; 2)不考虑原始投资人1%的认购费率、0.5%的赎回费率; 3)考虑保留资金的存储利润; 4)满足模型3中的假设。 (2)建模

模型3中未考虑投资者的风险偏好,而这个因素直接涉及投资方向和势头,对模型结果的影响很大。

在实际中,对于不同风险偏好的投资者,其最佳投资方案有所不同。为了反映实际情况,我们把投资者偏好合并分类,各自对应的权值为:高度冒险:W R =0.8,W Q =0.2;比较冒险:W R =0.6,W Q =0.4;中性冒险:W R =0.5,W Q =0.5;比较保守:W R =0.4,W Q =0.6;高度保守:W R =0.2,W Q =0.8。W R ,W Q 在满足W R +W Q =1的条件下,具体取值可适当调整,这并不影响算法的实现。

1)风险偏好与效用函数。投资的目的是为了将来更大的消费,即财富的增加。不同的财富水平投资者获得的效用是不同的,同样的财富增加量对不同的投资者,其带来的效用增加也有所不同。财富x 与效用U 之间的数量关系通常称为财富的效用函数,记为U (x )。U (x )一般是增函数,即0)(≥'x U ,但对于不同的投资者其增长的形态不同。以下是三种典型效用函数形态。

风险回避型 这种人对财富的增加不很敏感,或财富增加的边际效用是递减的,通常不愿意为增加财富而冒大风险,如图1所示。

风险中性型 这种人对财富增加的态度始终是相同的,边际效用是一常数,如图2所示。

风险偏爱型 这种人对财富具有强烈的渴望,越富越想富,财富增加的边际效用是递增的,因而愿意为增加财富而承担较大的风险,如图3所示。

图1

图2

图3

以上三种基本形态均可用下列二次效用函数表示:

:风险偏爱型

:风险中性型:风险回避型

000)(2

<=>-=ββββx

x x U

虽然实际的效用函数有可能不是二次的,但二次效用函数具有更好的概率特性。

2)投资心理曲线。一般来说,人们的心理变化是一个模糊的概念,在此,对一个投资方案的看法(即对投资者的吸引力)的变化就是一个典型的模糊概念。通过查找心理学的相关资料,我们定义投资者的心理曲线为2

)

/(1)

(λx e

x u --=

)0(>λ,其中λ表示投资者平均收入的相关因子,称为实力因子,一般为常数。实力因子是反映不同投资者的平均收入和

消费水平的标准。确定一个投资方案应该尽力考虑所有不同投资者的实力因子,而在我国不同地区的收入和消费水平是不同的,因此不同地区的实力因子也不尽相同,要统一来评估这些方案的合理性,就应该对同一实力因子进行研究。为此我们以中等地区的收入水平为例,根据相关网站的统计数据,不妨取人均年收入为1.5万元,按我国的现行制度,平均工作年限为35年,则人均收入为52.5万元。取2

)

/5.52(1)5.52

(λ--=e

u =0.5(即吸引力的中位数),则λ≈6.30589。

3)保留现金比例。设保留现金比例为g ,不同投资者所占人群比例为i μ,又得知他们的风险偏好不同,主观风险权系数为W Qi ,i =1,2,3,4,5,则

)/(5

1

5

1

∑∑===

i Qi

Qi i i W W g μ

根据投资心理曲线,参照风险偏好和效用函数,并根据网上调查,得知投资者基本上划分为5种类型,通过代入模型计算,得到相关信息如表6所示。

表6

风险偏好 高度冒险 比较冒险 中度冒险 比较保守 高度保守 所占人群比例(%) 8.5 24.5 33 26.5 7.5 风险权系数归一化 0.08

0.16

0.20 0.24

0.32

保留现金比例(%)

19.96

保留的资金存入银行比闲置更有利,这笔资金是用来应对突发性的赎回请求的,随时都可能用到它,因此采用活期存款的

方式,存款年利润按0.72%计。将此代入模型3,并把基金总额约束修正为:H g x c i i i )1(8

1

-≤∑=,得模型4。

(3)求解

应用Lingo 软件包,以题中所给数据为例,编程求得结果,如表7所示。

表7

项目编号 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 投资股数 5 0 0 4 0 4 5 5 投资额 33500

22000

16800

23000

22500

总投资额 117800

年利润 5695

5060

2856

9200

7875

保留资金 29940 存款利润 215.568 总利润 30901.568 总体风险

10720

以上是在假设这一年中未发生突发性的赎回请求,保留资金未被动用的情况下的总利润。考虑到最不好的情况,即保留资

金还未存入银行就被动用,无存款利润可言。综上所述,我们认为用于保留的资金为29940万元比较合适,总利润应该在(30686,30901.568)范围内。

5.模型5(非线性整数规划) (1)假设

1)不考虑风险因素,单纯追求利润最大; 2)投资额是连续的;

3)第一期资金到位启动后就可以随便投资,然后利润率按第一期利润和投资之比来计算。 (2)建模

设x i 为对项目A i 的投资金额,i =1,2,…,8。考虑到假设2)、3),项目之间有无影响时的利润率分别为i

i i

c b a =

,i

i i c b a '=

'

引入0-1变量??

?=否则

投资,

0,1i i A v ,i =1,2,…,8,则A i 的投资金额的上下限约束为:i i i i i v m x v c ≤≤,可建立

如下模型。

))(1()())(1()(m ax 5544554433113311

x a x a z x a x a z x a x a y x a x a y R +-+'+'++-+'+'= ))(1()(8877662288776622

x a x a x a x a u x a x a x a x a u +++-+'+'+'+'+ s.t. 8

,,2,1,10,,,8

,,2,1,010

35707510

66101028,,2,1,12

87627547

318

1

===≥?≤≤?≤≤?≤≤=≤≤≤∑

=i v u z y i x u

x x x x u z

x x z y

x x y i v m x v c H

x i i i i i i i i i 或

其中

y

x x y 7

3110

102?≤≤中的102×107表示A 1,A 3各最多投资34000万元,30000万元。当A 1,A 3同时投

资时,1,031=>y x x ;当A 1,A 3不同时投资时,0,031==y x x 。同理可得其他两个是否相互影响的约束。

(3)求解

应用Lingo 软件包,以题中所给数据为例,编程求得结果,如表8所示。

表8

项目编号 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 投资金额 27000

30000

22000

23000

25000

23000

总投资额 150000

年利润 4050

6300

5060

3910

10000

8050

总利润

37370

从表8可以看出,这种投资方案将资金全部抛出,未留“适当”现金,不符合开放式基金的特点,欠妥。比较模型5和模型2的结果,可知模型5的方案中总投资额、总利润与利润率分别为150000万元、37370万元、24.9%,而模型2的方案中总投资额、总利润与利润率分别为149100万元、37607万元、25.2%,显然模型2的投资方案比模型5的更好。这说明在投资时,只有投资以单位投资额的整数倍投入,利润才会以相应倍数增大。如果投资不是以单位投资额的整数倍投入,利润的增长则明显滞后,利润率明显偏低,是不合算的方案。同时模型2的方案中留下了一部分资金备用,符合开放式基金客户投资、撤资自由

的特点,而模型5的方案中未留下任何备用资金,一旦客户要求撤资,开放式基金就有失信的风险,不利于其长久发展。

三、灵敏度分析

决策变量x i 相应的影子价格称为缩减成本RC i ,i =1,2,…,8,RC i 的值表示当x i 增加一个单位(其他变量保持不变)时,目标函数增加的量,如表9所示。

表9

股 份 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 模型1 RC i 1139 1056 727.5 1265 1160 714 1840 1575 模型2 RC i 1005 1056 1018.5 0 1276 714 1840 1575 模型3 RC i 1930 224.44 0 0 246.54 0 391.1 334.7 模型4

RC i

1930

246.54

151.7

391.1

334.7

从表9可以发现,x 1的变化对各目标函数最优值的影响最大,x 7次之。

四、模型的进一步分析

实际上,投资的收益和风险都是随机的,考虑如下问题。

某投资公司经理欲将50万元基金用于股票投资,股票的收益是随机的。经过慎重考虑,他从所有上市交易的股票中选择了3种股票作为候选的投资对象,从统计数据的分析得到:股票A 每股的年期望收益为5元,标准差(均方差)为2元;股票B 每股的年期望收益为8元,标准差为6元;股票C 每股的年期望收益为10元,标准差也为10元;股票A ,B 收益的相关系数为5/24,股票A ,C 收益的相关系数为-0.5,股票B ,C 收益的相关系数为-0.25。目前股票A ,B ,C 的市价分别为20元,25元,30元。

(1)如果该投资人期望今年得到至少20%的投资回报,应如何投资可使风险最小(这里用收益的方差或标准差衡量风险)? (2)投资回报率与风险的关系如何? 1.建模

设x 1,x 2,x 3分别表示投资股票A ,B ,C 的数量。国内股票通常以“一手”(100股)为最小单位出售,故此处设股票数量以100股为单位。相应地,期望收益和标准差以百元为单位。

记股票A ,B ,C 每手的收益分别为s 1,s 2,s 3(百元),根据题意,s i (i =1,2,3)是随机变量,投资的总收益

332211s x s x s x s ++=也是随机变量。用E 和D 分别表示随机变量的数学期望和方差(标准差的平方),r 和cov 表示

两个随机变量的相关系数和协方差,则

1

Es

=5,2

Es

=8,3

Es

=10,1

Ds

=4,2

Ds

=36,3

Ds

=100,12r =5/24,13r =-0.5,23r =-0.25,

5

.2),cov(2

11221==Ds

Ds r s s ,

10

),cov(3

1

1331-==Ds

Ds r s s ,

=),cov(32s s 153

2

23

-=Ds Ds

r 。

故投资的总期望收益为3

32

21

11Es

x Es

x Es x Es z ++== 3211085x x x ++=,投资总收益的方差为

+

+++==),cov(221213

2

32

2

21212s s x x Ds

x Ds

x Ds x Ds z

3231212

32

22

13232313130205100364),cov(2),cov(2x x x x x x x x x s s x x s s x x --+++=+

实际上投资者可能面临许多约束条件,如是否需要将资金全部用来购买股票,没有购买股票的资金是否可以存入银行或做其他投资。此处假设不一定需要将资金全部用来购买股票,没有购买股票的资金也闲置不用,而只考虑可用于投资的资金总额的限制,即5000

302520321≤++x x x 。

问题(1)的模型为二次规划:

min z 2

s.t. ?

??

??∈≥++≤++N

x x x x x x x x x 321321321,,100010855000302520

问题(2)的模型为:

min 12z z z -=

α

s.t. ?

??

??∈≥++≤++N

x x x x x x x x x 321321321,,100010855000302520

其中α为风险偏好系数,10≤≤α。当α

=0时,表明投资者是完全的冒险型,不考虑风险;当α充分大时,表明投资

者是保守型的,希望规避风险。取不同的α求解,即可大致看出投资回报率与风险的关系。

2.求解

利用Lingo 软件包,编程求得问题(1)的结果:股票A ,B ,C 各购买132,15,22(手),投资额为3675(百元),总期望收益为1000(百元),风险(方差)为68116,标准差为261(百元)。

对问题(2),通过试探发现α从0.0001~0.1以0.0001的步长变化可以得到很好的近似结果,图4给出了对应的总期望收

益与风险(标准差)之间的关系。

图4 (单位:百元)

由于每1元投资于股票C 的预期收益最大,因此50万元可能的最大预期收益为16.6667万元。从图4可以看出,当预期收益在0~14万元左右增加时,风险基本上线性增加;若预期收益超过14万元,则风险迅速增加。因此可见,对于那些对收益和风险没有特殊偏好的投资者来说,转折点处的投资组合方案比较理想,经过对计算结果(数据输出)的检查可得,这个方案大致是股票A ,B ,C 各购买153,35,35(手)。

五、模型的评价

1.模型的优点

(1)采用较为成熟的数学理论建立模型,可信度比较高。 (2)模型的计算采用专业数学软件,可信度较高,便于推广。

(3)模型经多次修正,综合考虑到了风险偏好等方面,给出的最优决策对于有关部门有较大的参考价值。 2.模型的缺点

(1)模型虽然综合考虑了很多因素,但为了建立模型,理想化了许多影响因素,具有一定的局限性,得到的最优方案可能与实际有一定的出入。

(2)模型5只考虑了利润最大,没有考虑风险最小,模型结果与实际有一定差距。

六、模型的推广

1.模型建立思想还可以进一步解决彩票投注、企业投资、车辆调度、运输费用等方面的规划问题。

2.问题(3)的模型还可以考虑用“理想点法”、“-λ法”、“极大极小法”等求解多目标规划问题,然后对各种方法得到的投资方案进行比较,优选出更合理的方案。

3.模型应该进一步考虑随便投资(利润按利润率求解)的问题,求解该情况下的最优解,以及考虑多阶段投资等问题。

数学建模案例分析--对策与决策方法建模6决策树法

§6 决策树法 对较为复杂的决策问题,特别是需要做多个阶段决策的问题,最常用的方法是决策树法。决策树法是把某个决策问题未来发展情况的可能性和可能结果所做的预测用树状图画出来。其步骤如下: 1、用方框表示决策点。从决策点画出若干条直线或折线,每条线代表一个行动方案,这样的直线或折线称为方案枝。 2、在各方案枝的末端画一个园圈,称为状态点,从状态点引出若干直线或折线,每条线表示一个状态,在线的旁边标出每个状态的概率,称为概率枝。 3、把各方案在各个状态下的损益期望值算出标记在概率枝的末端。 4、把计算得到的每个方案的损益期望值标在状态点上,然后通过比较,选出损益期望值最小的方案为最优方案。 例1某厂准备生产一种新产品,产量可以在三种水平n1、n2、n3中作决策。该产品在市场上的销售情况可分为畅销、一般和滞销三种情况,分别为S1、S2、S3。通过调查,预测市场处于这三种情况的概率分别为0.5、0.3、0.2。三种决策在各种不同市场情况下的利润见下表: 表1 基于各种决策的各种市场情况的利润表(万元) 我们可以计算每种决策下利润的期望值: 实行在水平n1下生产的利润的期望值为:90×0.5+30×0.3-60×0.2=42 实行在水平n2下生产的利润的期望值为:60×0.5+50×0.3-10×0.2=43 实行在水平n3下生产的利润的期望值为:10×0.5+9×0.3-6×0.2=6.5 由于在水平n2下生产利润的期望值最大,因而应选择产量水平n2生产。 可以应用决策树帮助解决这样的决策问题,把各种决策和情况画在图1上: 图1

图中的方框(□)称为决策点,圆圈(○)称为状态点,从方框出发的线段称为对策分支,表示可供选择的不同对策。在圆圈下面的线段称为概率分支,表示在此种对策下可能出现的各种情况。在概率分支上注明了该情况出现的概率。在每一个概率分支的末端注明了对应对策和对应情况下的收益(利润)。在计算时,我们把相应的期望值写在相应的状态点旁边,再由比较大小后选择最优决策,在图上用∥表示舍弃非最优的对策,并在决策点上注明最优决策所对应的期望利润。 图2 利用决策树还可以解决多阶段的决策问题。 例2 某公司在开发一种新产品前通过调查推知,该产品未来的销售情况分前三年和后三年两种情况。因此生产该产品有两种可供选择的方案:建造大厂和建造小厂。如果建造大厂,投资费用5000万元,当产品畅销时,每年可获利2000万元,当产品滞销时,每年要亏损120万元。如果建造小厂,投资费用1000万元,当产品畅销时,每年可获利300万元,当产品滞销时,每年仍可获利150万元。若产品畅销可考虑在后三年再扩建,扩建投资需2000万元,随后三年每年可获利1000万元;也可不再扩建。预测这六年该产品畅销的概率为0.6,滞销的概率为0.4。试分析该公司开发新产品应如何决策? 根据问题的各种情况可以画出决策树如下:这是一个两阶段的决策问题。注意到图中有两个决策点,反映建小厂的方案中可以分成前三年和后三年两个阶段,并在后三年还要做出一次决策。 图3 把各种数据填到图适当的位置后,由后向前计算获利的期望值。由图可见应采用决策:建造大厂。 500 900 1000*3=3000 300*3=900 6.5

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学建模题型

1、问题描述(问题与假设) 随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货.乘船渡河的方案由商人决定.商人们怎样才能安全过河? 假设:1. 过河途中不会出现不可抗力的自然因素。 2. 当随从人数大于商人数时,随从们不会改变杀人的计划。 3.船的质量很好,在多次满载的情况下也能正常运作。 4. 随从会听从商人的调度。 2、问题模型与求解(公式、图、表、算法或代码等) 模型的建立: x(k)~第k 次渡河前此岸的商人数 x(k),y(k)=0,1,2,3,4; y(k)~第k 次渡河前此岸的随从数 k=1,2,….. s(k)=[ x(k), y(k)]~过程的状态 S~允许状态集合 u(k)~第k 次渡船上的商人数 u(k), v(k)=0,1,2; v(k)~ 第k 次渡船上的随从数 k=1,2….. d(k)=( u(k), v(k))~过程的决策 D~允许决策集合 D={u,v u+v=1,2,u,v=0,1,2} 状态因决策而改变s(k+1)=s(k)+(-1)^k*d(k)~状态转移律 求d(k)∈D(k=1,2,….n),使s(k) ∈S 并按转移律s(k+1)=s(k)+(-1)^k*d(k) 由(4,4)到达(0,0) 数学模型: 模型分析: 由(2)(3)(5)可得 Yk Xk -≥-44 化简得 Yk k ≤X 关键代码:

clear clc n=3;m=3;h=2; m0=0;n0=0; tic LS=0; LD=0; for i=0:n for j=0:m if i>=j&n-i>=m-j|i==n|i==0 LS=LS+1; S(LS,:)=[i j]; end if i+j>0&i+j<=h&(i>=j|i==0) LD=LD+1; D(LD,:)=[i j]; end end end N=15; Q1=inf*ones(2*N,2*N); Q2=inf*ones(2*N,2*N); t=1; le=1; q=[m n]; f0=0; while f0~=1&t

数学建模感想

学习数学建模心得体会 这学期参加数学建模培训,使我感触良多:它所教给我们的不单是一些数学方面的知识,更多的其实是综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好的锻炼和提高。它还让我了解了多种数学软件,以及运用数学软件对模型进行求解。 到目前为止,我们已经学习科学计算与数学建模这门课程半个学期了,渐渐的对这门课程有点了解了。我觉得开设数学建模这一门学科是应了时代的发展要求,因为随着科学技术的发展,特别是计算机技术的飞速发展和广泛应用,科学研究与工程技术对实际问题的研究不断精确化、定量化、数字化,使得数学在各学科、各领域的作用日益增强,而数学建模在这一过程中的作用尤为突出。在前一阶段的学习中我了解到它不仅仅是参加数学建模比赛的学生才要学的,也不仅仅是纯理论性的研究学习,这门课程是在实际生产生活中有很大的应用,突破了以前大家对数学的误解,也在一定程度上培养了我们应用数学工具解决实际问题的能力。具体结合教材内容说,在很多时候课本里的都是引用实际生产生活的例子,这样我们更能够切切实实感受到这门课程对实际生产生活的帮助,而并非是我们空想着学这门课有什么作用啊,简直是浪费时间啊什么的。现在我就说说我到目前为止学到了什么,首先,我知道了数学建模的基本步骤:第一步我们肯定是要将现实问题的信息归纳表述为我们的数学模型,然后对我们建立的数学模型进行求解,这一步也可以说是数学模型的解答,最后一步我们要需要从那个数学世界回归到现实世界,也就是将数学模型的解答转化为对现实问题的解答,从而进一步来验证现实问题的信息,这一步是非常重要的一个环节,这些结果也需要用实际的信息加以验证。 这个步骤在一定程度上揭示了现实问题和数学建模的关系,一方面,数学建模是将现实生活中的现象加以归纳、抽象的产物,它源于现实,却又高于现实,另一方面,只有当数学模型的结果经受住现实问题的检验时,才可以用来指导实践,完成实践到理论再回归到实践的这一循环。 数学模型主要是将现实对象的信息加以翻译,归纳的产物。通过对数学模型的假设、求解、验证,得到数学上的解答,再经过翻译回到现实对象,给出分析、决策的结果。其实,数学建模对我们来说并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念。例如,我们平时出远门,会考虑一下出行的路线,以达到既快速又经济的目的;一些厂长经理为了获得更大的利润,往往会策划出一个合理安排生产和销售的最优方案……这些问题和建模都有着很大的联系。而在学习数学建模训练以前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道该这样做,却不很清楚为什么会这样做,现在,我们这种陈旧的思考方式己经在被数学建模训练中培养出的多角度、层次分明、从本质上区分问题的新颖多维的思考方式所替代。这种凝聚了许多优秀方法为一体的思考方式一旦被你把握,它就转化成了你自身的素质,不仅在你以后的学习工作中继续发挥作用,也为你的成长道路印下了闪亮的一页。 数学建模所要解决的问题决不是单一学科问题,它除了要求我们有扎实的数学知识外,

第1章 数学建模与误差分析

第1章数学建模与误差分析 1.1 数学与科学计算 数学是科学之母,科学技术离不开数学,它通过建立数学模型与数学产生紧密联系,数学又以各种形式应用于科学技术各领域。数学擅长处理各种复杂的依赖关系,精细刻画量的变化以及可能性的评估。它可以帮助人们探讨原因、量化过程、控制风险、优化管理、合理预测。近几十年来由于计算机及科学技术的快速发展,求解各种数学问题的数值方法即计算数学也越来越多地应用于科学技术各领域,相关交叉学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算生物、计算经济学等。 科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算,是一种使用计算机解释和预测实验中难以验证的、复杂现象的方法。科学计算是伴随着电子计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机应用于高科技领域的必不可少的纽带和工具。科学计算涉及数学的各分支,研究它们适合于计算机编程的数值计算方法是计算数学的任务,它是各种计算性学科的联系纽带和共性基础,兼有基础性和应用性的数学学科。它面向的是数学问题本身而不是具体的物理模型,但它又是各计算学科共同的基础。 随着计算机技术的飞速发展,科学计算在工程技术中发挥着愈来愈大的作用,已成为继科学实验和理论研究之后科学研究的第三种方法。在实际应用中所建立的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型,如将复杂的非线性模型忽略一些因素而简化为线性模型,但这样做往往不能满足精度要求。因此,目前使用数值方法来直接求解较少简化的模型,可以得到满足精度要求的结果,使科学计算发挥更大作用。了解和掌握科学计算的基本方法、数学建模方法已成为科技人才必需的技能。因此,科学计算与数学建模的基本知识和方法是工程技术人才必备的数学素质。 1.2 数学建模及其重要意义 数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关。用数学方法解决工程实际和科学技术中的具体问题时,首先必须将具体问题抽象为数学问题,即建立起能描述并等价代替该实际问题的数学模型,然后将建立起的数学模型,利用数学理论和计算技术进行推演、论证和计算,得到欲求解问题的解析解或数值解,最后用求得的解析解和数值解来解决实际问题。本章主要介绍数学建模基本过程和求解数学问题数值方法的误差传播分析。 1.2.1 数学建模的过程 数学建模过程就是从现实对象到数学模型,再从数学模型回到现实对象的循环,一般通过表述、求解、解释、验证几个阶段完成。数学建模过程如图1.2.1所示,数学模型求解方法可分为解析法和数值方法,如图1.2.2所示。 表述是将现实问题“翻译”成抽象的数学问题,属于归纳。数学模型的求解方法则属于演绎。归纳是依据个别现象推出一般规律;演绎是按照普遍原理考察特定对象,导出结论。演绎利用严格的逻辑推理,对解释现象做出科学预见,具有重要意义,但是它要以归纳的结论作为公理化形式的前提,只有在这个前提下

数学模型与数学建模-2

2.1MATLAB MATLAB Matrix Laboratory , MathWorks 20 80 , , MATLAB Simulink .MATLAB 1) , ; 2) , ; 3) , ; 4) ( ), . 2.1.1MATLAB MATLAB , , . , MATLAB , 2.1.1 . MATLAB “>>” , MATLAB . , Enter ,MATLAB .

·8· 2 ? ? 2.1.1MATLAB 1.help , help . poly?t . help polyfit POLYFIT Fit polynomial to data..P=POLYFIT(X,Y,N)finds the coeffici-ents of a polynomial P(X)of degree N that fits the data Y best in a least-squares sense.P is a row vector of length N+1containing the polynomial coefficients in descending powers,P(1)*X^N+P(2)*X^(N-1) +···+P(N)*X+P(N+1). , MATLAB Help . Help Product Help , ( 2.1.2) 2.1.2Help

2.1MATLAB ·9· Seach , . 2.clear clear . “a=1”, >>a=1. 1 a. a , clear . >>clear a???Undefined function or variable a . 3.format MATLAB format . format short , 5 ; format rational ; format long g 15 ; >>format short>>pi ans=3.1416;>>format rational >>pi ans=355/113; >>format long g>>pi ans=3.14159265358979 2.1.2MATLAB 1. 2.1.1 MATLAB . MATLAB 1 , .MATLAB , B b . 2.1.1MATLAB pi i,j inf . n/0 inf, n 0 ans , . ,MATLAB ans NaN , . 0/0 inf/inf 2. MATLAB , . . MATLAB , , , . A=[1?256?49] A=[1,?2,5,6,?4,9] 6 A.

关于数学建模总结

关于数学建模总结 关于数学建模总结一经过这段时间的学习,了解了更多的关于这门学科的知识,可以说是见识了很多很多,作为一个数学系的学生,一直都有一个疑问,数学的应用在那里。对了,就在这里,在这里,我看到了很多,也学到了很多,关于各个学科,各个领域,都少不了数学,都是用建模的思想,来解决实际问题,很神奇。 数学建模给了我很多的感触:它所教给我们的不单是一些数学方面的知识,更多的其实是综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好的锻炼和提高。它还让我了解了多种数学软件,以及运用数学软件对模型进行求解。 数学模型主要是将现实对象的信息加以翻译,归纳的产物。通过对数学模型的假设、求解、验证,得到数学上的解答,再经过翻译回到现实对象,给出分析、决策的结果。其实,数学建模对我们来说并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念。例如,我们平时出远门,会考虑一下出行的路线,以达到既快速又经济的目的;一些厂长经理为了获得更大的利润,往往会策划出一个合理安排生产和销售的最优方案这些问题和建模都有着很大的联系。而在学习数学建模训练以前,我们面对这些问题时,解决它

的方法往往是一种习惯性的思维方式,只知道该这样做,却不很清楚为什么会这样做,现在,我们这种陈旧的思考方式己经在被数学建模训练中培养出的多角度、层次分明、从本质上区分问题的新颖多维的思考方式所替代。这种凝聚了许多优秀方法为一体的思考方式一旦被你把握,它就转化成了你自身的素质,不仅在你以后的学习工作中继续发挥作用,也为你的成长道路印下了闪亮的一页。 数学建模所要解决的问题决不是单一学科问题,它除了要求我们有扎实的数学知识外,还需要我们不停地去学习和查阅资料,除了我们要学习许多数学分支问题外,还要了解工厂生产、经济投资、保险事业等方面的知识,这些知识决不是任何专业中都能涉猎得到的。它能极大地拓宽和丰富我们的内涵,让我们感到了知识的重要性,也领悟到了“学习是不断发现真理的过程”这句话的真谛所在,这些知识必将为我们将来的学习工作打下坚实的基础。从现在我们的学习来看,我们都是直接受益者。就拿数学建模比赛写的论文来说。原本以为这是一件很简单的事,但做起来才发觉事情并没有想象中的简单。因为要解决问题,凭我们现有的知识根本不够。于是,自己必须要充分利用图书馆和网络的作用,查阅各种有关资料,以尽量获得比较全面的知识和信息。在这过程中,对自己眼界的开阔,知识的扩展无疑大有好处,各学科的交叉渗透更有利于自己提高解决复杂问题的能力。

(完整版)数学建模之层次分析法

层次分析法 层次分析法是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。 缺点: (1)层次分析法的主观性太强,模型的搭建,判断矩阵的输入都是决策者的主观判断,往往会因为决策者的考虑不周、顾此失彼而造成失误。 (2)层次分析法模型的内部结构太过理想化,完全分离、彼此独立的层次结构在实践中很难做到。 (5)层次分析法只能从给定的决策方案中去选择,而不能给出新的、更优的策略。 1.模型的应用 用于解决多目标的复杂问题的定性与定量相结合的决策分析。 (1)公司选拔人员, (2)旅游地点的选取, (3)产品的购买等, (4)船舶投资决策问题(下载文档), (5)煤矿安全研究, (6)城市灾害应急能力, (7)油库安全性评价, (8)交通安全评价等。 2.步骤 ①建立层次结构模型 首先明确决策目标,再将各个因素按不同的属性从上至下搭建出一个有层次的结构模型,模型如下图所示。

目标层 准则层 方案层 目标层:表示解决问题的目的,即层次分析要达到的总目标。通常只有一个总目标。 准则层:表示采取某种措施、政策、方案等实现预定总目标所涉及的中间环节。 方案层:表示将选用的解决问题的各种措施、政策、方案等。通常有几个方案可选。 注意: (1)任一元素属于且仅属于一个层次;任一元素仅受相邻的上层元素的支配,并不是任一元素与下层元素都有联系; (2)虽然对准则层中每层元素数目没有明确限制,但通常情况下每层元素数最好不要超过 9 个。这是因为,心理学研究表明,只有一组事物在 9 个以内,普通人对其属性进行判别时才较为清楚。当同一层次元素数多于 9 个时,决策者对两两重要性判断可能会出现逻辑错误的概率加大,此时可以通过增加层数,来减少同一层的元素数。 ②构造判断(成对比较)矩阵 以任意一个上一层的元素为准则,对其支配的下层各因素之间进行两两比 a重要程度的衡量用Santy的1—9较。得到判断矩阵,再求出各元素的权重。 ij 标度方法给出。即

指导数学建模比赛的一点心得

龙源期刊网 https://www.360docs.net/doc/f27730281.html, 指导数学建模比赛的一点心得 作者:郭强 来源:《读写算》2012年第89期 摘要:数学建模就是用数学语言描述客观系统的过程,数学建模训练的目的是培养学生综合运用数学、计算机、统计学、物理学、经济学、管理学知识,运用所学知识解决实际问题的能力,并能将所学的的知识运用到今后的日常生活和工作中。本文简要介绍了数学建模的含义,并给出了数学建模的授课方法以及具体的实施方法. 关键词:数学建模,论文写作,团队合作 一、概述 数学建模(Mathematical Modeling):数学建模就是应用数学工具,建立模型来解决各种实际问题的方法,它通过把实际问题进行简化、抽象,应用适定的数学工具得到的一个数学结构,寻找系统内部的规律,或者对模型进行求解、解释,并验证所得到的结论。俗地说:数学建模就是用数学知识和方法建立数学模型解决实际问题的过程。数学模型作为数学与实际问题的桥梁,在数学的各个领域成为了广泛应用的媒介,是数学理论知识和应用能力共同提高的最佳结合点。在学生培养和参加竞赛的过程中,数学建模的教学起到了启迪学生的创新意识和创新思维、培养文献查询与阅读、信息收集与分析、数据分析与综合、论文撰写与修改等综合能力,是培养创新型人才的一条重要途径。 数学建模训练的目的是培养学生综合运用数学、计算机、统计学、物理学、经济学、管理学知识,运用所学知识解决实际问题的能力,并能将所学的的知识运用到今后的日常生活和工作中。建立相应的课程在对学生的综合能力进行培养的时候,不能局限于数学知识的理解和运用,而是要注重从信息分析与综合、数据收集与统计、问题抽象与概括、论文写作与表达等不同方面进行培养。具体包括: (1)抽象和概括实际问题的能力,必须学会抓住实际系统的核心问题;(2)不同学科知识的综合集成。数学建模不仅仅需要扎实的数学基础,敏锐的洞察力和想象力,更重要的是对实际问题的浓厚兴趣和广博的知识面,因此必须具备问题相关的各个领域的知识背景。因此,学生应着重培养以下能力:(1)发现、综合问题的能力,并对问题做积极的思考的习惯;(2)熟练应用计算机处理数据的能力;(3)清晰的口头和文字表达能力;(4)团队合作的攻关能力;(5)收集和处理信息、资料的能力;(6)自主学习的能力。因此数学建模对完善学生的知识结构,提高综合素质和核心能力有着极大的促进作用。 二、本人的数学建模开展情况

数学建模——基于投资风险决策的分析

淮阴工学院专业实践周 (2) 班级: 姓名: 学号: 选题: A 组第30 题 教师: 基于投资风险决策的分析 摘要

本文是对开放式基金投资项目问题的研究,开放式基金投资项目问题在现实生活中有着广泛的应用前景。 本文主要采用运筹学的知识,同时采用了MATLAB的知识,采用整数线性规划建立模型,并进行优化,将实际问题数学化。对于本题,我们层层递进,考虑到了各项目之间的相互影响、风险等这些因素,综合考虑现实市场因素和股票的影响因素,对资金的投入和最终的利润进行比较,然后对各种方法得到的投资方案进行对比,优选出更合理的方案,最后采用数学软件(如:LinGo、MATLAB)进行模型求解。 关键词:整数线性规划LinGo MATLAB 风险率利润

一、问题重述 某开放式基金现有总额为15亿元的资金可用于投资,目前共有8个项目可供投资者选择,每个项目可重复投资。根据专家经验,对每个项目投资总额不能太高,应有上限。这些项目所需要的投资额已知,一般情况下投资一年后各项目所得利润也可估算出来,如表1所示。 表1 项目投资额及其利润单位:万元 请帮该公司解决以下问题: (1)就表1提供的数据,应该投资哪些项目,使得第一年所得利润最高? (2)在具体投资这些项目时,实际还会出现项目之间互相影响的情况。公司咨询有关专家后,得到以下可靠信息:同时投资项目A1,A3,它们的年利润分别是1005万元,1018.5万元;同时投资项目A4,A5,它们的年利润分别是1045万元,1276万元;同时投资项目A2,A6,A7,A8,它们的年利润分别是1353万元,840万元,1610万元,1350万元,该基金应如何投资? (3)如果考虑投资风险,则应如何投资,使收益尽可能大,而风险尽可能小。投资项目总体风险可用投资项目中最大的一个风险来衡量。专家预测出各项目的风险率,如表2所示。 表2

数学建模基础(入门必备)

一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果

数学建模心得体会3篇_心得体会

数学建模心得体会3篇_心得体会 数学建模学习心得(2): 数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给学生再现了一种“微型科研”的过程。数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。 为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 1. 只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。 教师不应只是“讲演者”,而应不时扮演下列角色:参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者——评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。 2. 数学建模对教师、对学生都有一个逐步的学习和适应的过程。教师在设计数学建模活动时,特别应考虑学生的实际能力和水平,起始点要低,形式应有利于更多的学生能参与。在开始的教学中,在讲解知识的同时有意识地介绍知识的应用背景,在数学模型的应用环节进行比较多的训练;然后逐步扩展到让学生用已有的数学知识解释一些实际结果,描述一些实际现象,模仿地解决一些比较确定的应用问题;再到独立地解决教师提供的数学应用问题和建模问题;最后发展成能独立地发现、提出一些实际问题,并能用数学建模的方法解决它。 3.由于知识产生和发展过程本身就蕴含着丰富的数学建模思想,因此老师既要重视实际问题背景的分析、参数的简化、假设的约定,还要重视分析数学模型建立的原理、过程,数学知识、方法的转化、应用,不能仅仅讲授数学建模结果,忽略数学建模的建立过程。 4.数学应用与数学建模的目的并不是仅仅为了给学生扩充大量的数学课外知识,也不是仅仅为了解决一些具体问题,而是要培养学生的应用意识,提高学生数学能力和数学素质。因此我们不应该沿用老师讲题、学生模仿练习的套路,而应该重过程、重参与,从小培养学数学已经成为当代高科技的一个重要组成部分和思想库,培养学生应用数学的意识和能力也已经成为数学教学的一个重要方面。而应用数学去解决各类实际问题就必须建立数学模型。小学数学教学的过程其实就是教师引导学生不断建模和用模的过程。因此,用建模思想指导小学数学教学显得愈发重要。 数学建模心得体会 一年一度的全国数学建模大赛在今年的9 月21 日上午8 点拉开战幕,各队将在3 天72 小时内对一个现实中的实际问题进行模型建立,求解和分析,确定题目后,我们队三人分头行动,一人去图书馆查阅资料,一人在网上搜索相关信息,一人建立模型,通过三人的

数学建模案例分析

案例分析1: 自行车外胎的使用寿命 问题: 目前,自行车在我国是一种可缺少的交通工具。它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换? 分析: 分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断。若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。 产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。如换成自行车的路程寿命来比较,就好得多。产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。 弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。 自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。当然我们由于是站在用户角度上来考虑的,相对地就可忽略一些次要的影响因素。 这样的数学模型面对着两个主要问题。一、自行车使用寿命与外胎厚度的关系,二、外胎能够抵御小石子破坏作用的最小厚度。后者可处理得相对简略些(如只考虑一块具有一般特征的小石子对外胎的破坏作用),而重点(也是难点)是第一个问题。车重、人重、轮胎性质(力学的、热学的、甚至化学的)和自行车使用频率等都左右着它们的关系。这么多相关因素,不必一一都加以考虑(用户是不会在意这么多的),有些因素,可以先不考虑,在模型的改进部分再作修改,采取逐步深入的方法,如:摩擦损耗有滑动摩擦和滚动摩擦损耗两种,由于滚动摩擦占用的时间(或路程)显然占绝对优势,因此可重点考虑。但滑动摩擦造成的一次损坏又比滚动摩擦大,在刹车使用过频的情况下,就不能不考虑了。 最后,需对得出的结果用简单清晰的文字进行说明,以供用户参考。 案例分析2:城市商业中心最优位置分析 问题: 城市商业中心是城市的基本构成要素之一。它的形成是一个复杂的定位过程。商业中心的选址涉及到各种因素制约,但其中交通条件是很重要的因素之一。即商业中心应位于城市“中心”,如果太偏离这一位置,极有可能在城市“中心”地带又形成一个商业区,造成重复建设。 某市对老商业中心进行改建规划,使居民到商业中心最方便。如果你是规划的策划者,如何建立一个数学模型来解决这个问题。

数学建模竞赛的心得体会

数学建模竞赛的心得体会 9月16日早7点37分在我们三个人的注视下,滚烫的论文成功发送到了全国 建模组委会邮箱,宣告着三天三夜的数学建模竞赛终于结束,我们终于可以长长的舒一口气了。 第一天,我们拿到题目,A题是嫦娥三号软着陆问题,B题是创意桌子的折叠 问题,考虑到B题涉及较复杂和繁多的编程而我们学校的弱势便是编程,我和队长一致同意选A题,而杨彦云偏向于B题,因为对于专业为数学的我们,物理航天知识很欠缺,分析权衡后最终我们决定选A题。选好题后我们开始仔细读题并查找相关资料,深入读题后才发现涉及的物理航天知识很多,我们的物理知识储备对于这个题来说完全是小学生水平,我们需要大量补充知识,因此,我们去图书馆借了 10本左右的相关书籍。我们把题干简化,分析要解决的问题,并不断翻阅资料, 却发现有用的知识点很少。经过一天大海捞针地找资料,补充知识,我们几乎毫无进展,明显感觉大家都很沮丧,每个人都在暗暗为自己加油打气。因为是第一天,大家没有过多的紧张,而且也没有思路于是我们调好闹钟,凌晨1点左右就休息了。 第二天凌晨6点我们又打起精神继续奋战,把题目转化成数学问题的形式,简化问题要求,建立初等模型,为了避免一个人考虑不全面且思维有限,我们三个人各自发表自己的解题思路,然后进行综合、补充,但到第二天下午时,我们的若干想法被否定后,我们依然处在原地,而培训时老师强调过到建模第二天第二问要基本做完,开始写作,但我们还是一筹莫展,紧张与恐慌是必然的。我们决定改变策略,我和杨彦云共同做第一问,吴珍(队长)做第二问。到晚上2点左右第一小问基本做完,可是第一题的第二小问这个拦路石,任凭我们绞尽脑汁也没有撼动它分毫,我们三个人不得不一起攻克第一问,跌跌撞撞写完第一问,虽然感觉答案并不太令人满意,但由于只剩一天一夜了,我们必须开始做第二问。吴珍一直负责第二问,杨彦云开始思考第三问,而我开始写作。 第三天,我们的几乎没合眼,到了晚上,第一问论文已经写完,但第二问的复杂程度远远超过了第一问,我们又开始共同完成第二问,毫无进展,主心骨吴珍再次发挥了队长风范,最终是她完成了第二问。晚上11点左右指导老师对我们的论 文进行建议和细节的修改,最重要的是摘要把关,摘要是建模论文的核心。老师走后,我们几乎又扑在电脑上,三人合力完成了第二问,此时已是凌晨4点左右,杨彦云开始完善第三问,我主要负责修改前面两问的论文和格式问题,吴珍处理数据,编写程序,到凌晨6点左右我们的论文基本成型,我们三个人开始一起修改论文,到16日早7点37分,我们终于成功交上了论文。经过三天三夜的艰苦奋战,当我们走出教学楼的那一刻,似乎有一种解脱的感觉,我们终于熬过了三天三夜! 数学建模的比赛是艰苦的,三个比赛日,不允许一丝的倦怠,必须全力以赴的投入进去。三天我的睡眠时间不超过8小时,咖啡几乎当饭吃,总是打着十二分的精力坐在电脑前,疲惫不堪时才会在桌上趴一会儿,但我却感谢这痛苦的三天,因

数学建模实践心得

数学建模实践心得 大学以来的第一个暑假,我参加了数学建模培训, 来作为一次暑期社会实践。或许并不像其他社会实践队可以走出校园,接触社会,但我们可以通过这次的培训,更系统化,更具体化地学习数学建模,并进一步理解其所体现的一些思想和精神。 数学建模是接触实际科学问题的第一步,利用所学的知识,利用各种数学和计算机工具,为某一具体问题建立抽象模型,并解决问题、最后撰写论文,给出客观的评价。 在两个星期的数学建模培训的过程中,我学到了很多知识,比如 LINGO软件、MATLAB软件和一些算法,可以说,这是迄今为止任何一门课程都无法比拟的,各种从未接触过的高级数学软件,令人眼花缭乱的编程和神秘的多维图像。 当初参加校级数学建模比赛的时候,起初我和我的队友都激情高昂的,但是随着三天的建模下来,我们的斗志越来越低迷,出于对数学建模的不了解,可以说,无从下手,自然最后只能草草结束。经过那次的接触后,我明白首先我们要加强建模技能和拓展课外知识面;再者,态度也是主导因素之一,态度决定一切,如果抱着试一试的态度,是不会有什么结果的。 其实,数学建模的一些思想和为人处世之道是相通的。在生活中,无论做什么事情,我们都要端正自己的态度,时常给自己一点鼓励,要相信自己的潜力,把自己融入激情之中,不要越做越懈怠。江南春曾说过“最终你相信什么,就能成为什么”。 在数学建模的培训中,我接触到一些参加过国赛的学长和学姐。执着和认真,是我在建模时从他们候身上找到的共同点。认真的人改变自己,执着的人改变命运。的确,在数学建模的过程中,只有驱除浮躁,踏实做事,全神贯注,注重每一个细节,才能把事情做好。

在和他们交流的过程中,曾有一位学姐说道,要想有进步,就要踏踏实实学好理论、弄懂原理、看会例题、做好练习,而不是浮在面上。参加数学建模培训,还要放正心态,急功近利的想法是要不得的。数学建模的思想是在潜移默化中作用于你,而非立竿见影。所以要真正学到有益的知识和思想才是最重要的,而非顾于是否获奖之类的。 数学建模,通过利用数学知识,对一些生活中的实际问题建立模型。所以,它需要的不仅仅是数学的逻辑思维,还需要计算机编程能力,论文写作能力,其实更重要的是团队协作能力。我想,这对以后的工作与生活,有非常大的帮助的,对人生更是如此。 在建模的三天里,初看题目,感觉摸不着头脑,没有相关理论的基础,没有高人 的指点,三个伙伴只能借助唯一的网络,去找寻找问题的入手点。在反复的搜索之后,我们终于有了初步的理解。写论文的过程,我们可以说是“痛并快乐的”。当然,在数学方法上,我们很多地方也感觉困难重重,所以不断地查询资料,理解它们的含义,让比赛的过程成为我们学习的动力。虽然最终没有取得预期的结果, 但是,过程带来的快乐,远远超越了结果。令我感触最深的是,知识的扩充,和 交识了一些新朋友。 与我建模的两位同学,可以说,初次接触,不了解对方。相对于其他建模小组而言,我们还需要在短暂的几天内去了解彼此。不过,还好,我们都是随和的性子,很快就熟悉起来。在建模的过程中,我们仨一同讨论,一同努力,一同交上一份尽心尽力的答卷。可以说,我们合作的过程也可以算是一种锻炼,怎样才能更好的沟通,怎样才能各抒己见,但最终可以把各自的观点融于一体,也算是一种挑战。学会与他人合作,在相互的谦虚中学习彼此的长处,汲取对方的优点,接收别人的建议。或许,三天的交流,并不长,也并不深入,但起码,我们成为了朋友,曾经一起为数学建模奋斗过。我想,这也是数学建模的另一番魅力所在。短短的三天,可以拉近三个性格迥异的人。

数学建模

数学建模 1:[填空题] 9.数学模型按建模目的有()()()()()五种分类。 10. Logistic规律就是用微分方程()描述受环境约束的所谓"阻滞增长”的规律。11.如何用()()描述随机因素的影响,建立比较简单的随机模型叫概率模型。12.模型同时包含()和()的数学规划,称为混合整数规划。 13.从总体抽取样本,一般应满足()()两个条件。 14.TSP近似算法有()和()两种。 15.序列无约束最小化方法有()和()两种基本方法。 参考答案: 9.答案:描述模型、预报模型、优化模型、决策模型、控制模型 10.答案:x(t)=rx(1-x/N) 11.答案:随机变量、概率分布 12.答案:连续变量、整数变量 13.答案:1)随机性;2)独立性 14.答案:1)构造型算法;2)改进型算法 15.答案:1)SUMT外点法;2)SUMT内点法 2:[填空题] 1.模型指为某个特定目的将原形的某一部分信息简缩、提炼而构造的()。 2.数学模型是由数字、字母或其它数字符号组成的,描述现实对象数量规律的()()()。 3.机理分析是根据对()的认识,找出反映内部机理的(),建立的模型常有明显的物理意义或现实意义。 4.理想方法是从观察和经验中通过()和(),把对象简化、纯化,使其升华到理想状态,以其更本质地揭示对象的固有规律。 5.计算机模拟是根据实际系统或过程的特性,按照一定的()用计算机程序语言模拟实际运行情况,并依据大量模拟结果对系统或过程进行()。 6.测试分析是将研究对象看作一个()系统,通过对系统()、()数据的测量和统计分析,按照一定的准则找出与数据拟合得最好的模型。 7.物理模型主要指科技工作者为一定的目的根据()构造的模型,它不仅可以显示原型的外形或某些特征,而且可以用来进行(),间接地研究原型的某些规律。 8.用()和()分析市场经济稳定性的图示法在经济学中称为蛛网模型。 参考答案: 1.答案:原型替代物 2.答案:数学公式、图形、算法 3.答案:客观事物特性、数量规律 4.答案:想象和逻辑思维 5.答案:数学规律、定量分析 6.答案:黑箱、输入、输出 7.答案:相似原理、模拟实验 8.答案:需求曲线、供应曲线

相关文档
最新文档