根据图象回答问题
北师大数学七年级下册 第三章3.3 用图像表示的变量间关系 《板块专题20道—期中真题-能力培养》

用图像表示的变量间关系1.(2019春•罗湖区期中)小芳离开家不久,发现把作业忘在家里,于是返回家里找到了作业本再去学校;在如图所示的三个图象中,能近似地刻画小芳离开家的距离与时间的关系的图象是()A.①B.②C.③D.三个图象都不对2.(2019春•罗湖区期中)小明和小华是同班同学,也是邻居,某日早晨,小明7:00先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和小明所用时间t(分钟)的关系图.则下列说法中正确的个数是()①小明吃早餐用时5分钟;②小华到学校的平均速度是240米/分;③小明跑步的平均速度是100米/分;④小华到学校的时间是7:05.A.1B.2C.3D.43.(2019春•定安县期中)张老师从甲镇去乙村,一开始沿公路乘车,后来沿小路步行到达乙村,下列图中,横轴表示从甲镇出发后的时间,纵轴表示张老师与甲镇的距离,则较符合题意的图形是()A.B.C.D.4.(2019春•成都期中)下列各图象所反映的是两个变量之间的关系,表示匀速运动的是()A.①②B.②C.①③D.无法确定5.(2019春•建宁县期中)如图,正方形ABCD的边长为4,P为正方形边上一动点,它沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是()A.B.C.D.6.(2019春•灵石县期中)小明看到了一首诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还”,读完后,他想用图象描述这首诗的内容,如果用纵轴表示父亲与儿子行进中离家的距离,横轴表示父亲离家的时间,那么下列图象中大致符合这首诗含义的是()A.B.C.D.7.(2019春•中山市校级期中)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是()A.小亮骑自行车的平均速度是12 km/hB.妈妈比小亮提前0.5 h到达姥姥家C.妈妈在距家12 km处追上小亮D.9:30妈妈追上小亮8.(2019春•叙州区期中)周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离家的距离s(千米)与时间t(时)之间的函数关系可以用图中的折线表示.现有如下信息:(1)小李到达离家最远的地方是14时;(2)小李第一次休息时间是10时;(3)11时到12时,小李骑了5千米;(4)返回时,小李的平均车速是10千米/时.其中,正确的信息有()A.1个B.2个C.3个D.4个9.(2019秋•岑溪市期中)一辆客车从霍山开往合肥,设客车出发t(h)后与合肥的距离为S(km),则下列图象中能大致反映S与t之间的函数关系是()A.B.C.D.10.(2019春•璧山区期中)小红骑自行车到离家为2千米书店买书,行驶了5分钟后,遇到一个同学因说话停留10分钟,继续骑了5分钟到书店.下图中的哪一个图象能大致描述她去书店过程中离书店的距离s(千米)与所用时间t(分)之间的关系()A.B.C.D.11.(2019春•郫都区期中)小王周末骑电动车从家出发去商场买东西,当他骑了一段路时,想起要买一本书,于是原路返回到刚经过的新华书店,买到书后继续前往商场,如图是他离家的距离与时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小王在新华书店停留了多长时间?(2)买到书后,小王从新华书店到商场的骑车速度是多少?12.(2019春•靖远县期中)张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1)在这个变化过程中,自变量、因变量分别是、.(2)体育场离张阳家千米.(3)体育场离文具店千米.(4)张阳在文具店逗留了时间.(5)张阳从文具店到家的速度是.13.(2019春•槐荫区期中)已知动点P以2cm/s的速度沿图1所示的边框从B﹣C﹣D﹣E ﹣F﹣A的路径运动,记△ABP的面积为S(cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC=cm,CD=cm,DE=cm(2)求出图1中边框所围成图形的面积;(3)求图2中m、n的值;(4)分别求出当点P在线段BC和DE上运动时S与t的关系式,并写出t的取值范围.14.(2019秋•高州市期中)某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图所示是小明从家到学校这一过程中所走的路程s(米)与时间t(分)之间的关系.(1)小明从家到学校的路程共米,从家出发到学校,小明共用了分钟;(2)小明修车用了多长时间?(3)小明修车以前和修车后的平均速度分别是多少?15.(2019春•长春期中)“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?16.(2019春•济南期中)小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米,小明在书店停留了分钟;(2)本次上学途中,小明一共行驶了米,一共用了分钟;(3)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分;(4)小明出发多长时间离家1200米?17.(2019春•锦江区校级期中)如图①,在长方形ABCD中,AB=10 cm,BC=8 cm,点P从A出发,沿A、B、C、D路线运动,到D停止,点P的速度为每秒1 cm,a秒时点P的速度变为每秒bcm,图②是点P出发x秒后,△APD的面积S1(cm2)与y(秒)的函数关系图象:(1)根据图②中提供的信息,a=,b=,c=.(2)点P出发后几秒,△APD的面积S1是长方形ABCD面积的四分之一?18.(2019春•邛崃市期中)如图反映的是小华从家里跑步去体育馆,在那里锻炼了一阵后又走到文具店去买笔,然后走回家,其中x表示时间,y表示小华离家的距离.根据图象回答下列问题:(1)小华在体育场锻炼了分钟;(2)体育场离文具店千米;(3)小华从家跑步到体育场、从文具店散步回家的速度分别是多少千米/分钟?19.(2019春•城关区校级期中)如图描述了一辆汽车在某一直路上的行驶过程,汽车离出发地的距离s(km)和行驶时间t(h)之间的关系,请根据图象回答下列问题:(1)汽车共行驶的路程是多少?(2)汽车在行驶途中停留了多长时间?(3)汽车在每个行驶过程中的速度分别是多少?(4)汽车到达离出发地最远的地方后返回,则返回用了多长时间?20.(2019春•雨城区校级期中)A、B两地相距50km,甲于某日骑自行车从A地出发驶往B 地,乙也于同日下午骑摩托车从A地出发驶往B地,在这个变化过程中,甲和乙所行驶的路程用变量s(km)表示,甲所用的时间用变量t(时)表示,图中折线OPQ和线段MN分别表示甲和乙所行驶的路程s与t的变化关系,请根据图象回答:(1)直接写出:甲出发后小时,乙才开始出发;(2)求乙行驶几小时后追上甲,此时两人距B地还有多少千米?(3)请分别求出甲、乙的行驶速度?。
初中数学一次函数的图像专项练习30题(有标准答案)ok

一次函数(图像题)专项练习一1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A.B.C.D.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y1,其中正确的个数是()A.0B.1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.5.如图所示,如果k?b<0,且k<0,那么函数y=kx+b的图象大致是()A.B.C.D.6.如图,直线l1:y=x+1与直线l2:y=﹣x﹣把平面直角坐标系分成四个部分,则点(,)在()A.第一部分B.第二部分C.第三部分D.第四部分7.已知正比例函数y=﹣kx和一次函数y=kx﹣2(x为自变量),它们在同一坐标系内的图象大致是()A.B.C.D.8.函数y=2x+3的图象是()A.过点(0,3),(0,﹣)的直线B.过点(1,5),(0,﹣)的直线C.过点(﹣1,﹣1),(﹣,0)的直线D.过点(0,3),(﹣,0)的直线9.下列图象中,与关系式y=﹣x﹣1表示的是同一个一次函数的图象是()A.B.C.D.10.函数kx﹣y=2中,y随x的增大而减小,则它的图象是下图中的()A.B.C.D.11.已知直线y1=k1x+b1,y2=k2x+b2,满足b1<b2,且k1k2<0,两直线的图象是()A.B.C.D.12.如图所示,表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象是()A.B.C.D.13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若该水库的蓄水量V(万米3)与降雨的时间t(天)的关系如图所示,则下列说法正确的是()A.降雨后,蓄水量每天减少5万米3B.降雨后,蓄水量每天增加5万米3C.降雨开始时,蓄水量为20万米3D.降雨第6天,蓄水量增加40万米314.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是()A.B.C.D.15.已知正比例函数y=kx的图象经过第一、三象限,则y=kx﹣k的大致图象可能是下图的()A.B.C.D.16.一次函数y=kx+b的图象如图所示,当x_________时,y>2.17.一次函数的图象如图所示,根据图象可知,当x_________时,有y<0.18.如图,直线l是一次函数y=kx+b的图象,当x_________时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,正确的判断是_________.20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x_________时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是_________.22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并根据图象回答下列问题.(1)当﹣2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,利用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在同一个平面直角坐标系中画出这两个函数的图象;(2)根据图象,写出它们的交点坐标;(3)根据图象,试说明当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并根据图象回答下列问题:(1)y的值随x的增大而_________;(2)图象与x轴的交点坐标是_________;与y轴的交点坐标是_________;(3)当x_________时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是多少?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值范围﹣4≤y≤2,求x的取值范围.29.已知一次函数的图象经过点A(﹣3,0),B(﹣1,1)两点.(1)画出图象;(2)x为何值时,y>0,y=0,y<0?30.已知一次函数y=﹣2x+2,(1)在所给的平面直角坐标系中画出它的图象;(2)根据图象回答问题:①图象与x轴的交点坐标是_________,与y轴的交点坐标是_________;②当x_________时,y>0.参考答案:1.分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,无选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选C2.由一次函数y1=kx+b与y2=x+a的图象可知k<0,a<0,当x>2时,y2>y1,①③正确.故选 C3.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经过第二、三、四象限.故选 C4.根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k?b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经过第一、二、四象限,故选 D6.由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.7.分两种情况:(1)当k>0时,正比例函数y=﹣kx的图象过原点、第一、三象限,一次函数y=kx﹣2的图象经过第一、三、四象限,选项A符合;(2)当k<0时,正比例函数y=﹣kx的图象过原点、第二、四象限,一次函数y=kx﹣2的图象经过第二、三、四象限,无选项符合.故选A.8.A、把x=0代入函数关系式得2×0+3=3,故函数图象过点(0,3),不过(0,﹣),故错误;B、由A知函数图象不过点(0,﹣),故错误;C、把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D、分别令x=0,y=0,此函数成立,故正确.故选 D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选 D10.整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.k1k2<0,则k1与k2异号,因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b1<b2,则y1与y轴的交点在y2与y轴的交点的下边,因而B、C都是错误的.故选D.12.①当ab>0,正比例函数y=abx过第一、三象限;a与b同号,同正时y=ax+b过第一、二、三象限,故D错误;同负时过第二、三、四象限,故B错误;②当ab<0时,正比例函数y=abx过第二、四象限;a与b异号,a>0,b<0时y=ax+b过第一、三、四象限,故C错误;a<0,b>0时过第一、二、四象限.故选A13.A、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误;B、本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是(40﹣10)÷6=5;故本选项正确;C、根据图示知,降雨开始时,蓄水量为10万米3,故本选项错误;D、根据图示知,降雨第6天,蓄水量增加了40万米3﹣30万米3=10万米3,故本选项错误;故选B14.根据题意列出关系式为:y=40﹣5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D15.∵正比例函数y=kx的图象经过第一、三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经过一、三、四象限,故选:B.16.由图形可知,该函数过点(0,2),(3,0),故斜率k==,所以解析式为y=,令y>2,即>2,解之得:x<017.根据题意,要求y<0时,x的范围,即:x+3<0,解可得:x<﹣2,故答案为x<﹣218.根据题意,观察图象,可得直线l过点(2,0),且y随x的增大而增大,分析可得,当x>2时,有y>0 19.根据图示及数据可知:①一次函数y1=kx+b的图象经过第二、四象限,则k<0正确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数y1=kx+b与y2=x+a的图象交点的横坐标是3,所以当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④20.根据图示可知点P的坐标是(﹣4,2),所以y1>y2即直线1在直线2的上方,则x<﹣4.21.根据图象和数据可知,当y<0即图象在x轴下侧,x<1.故答案为x<122.函数与坐标轴的交点的坐标为(0,3),(6,0).(1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N(﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;(2)x<2时,y<0;x=2时,y=0;x>2时,y>0.24.(1)由图象可看出当y=2.5时,x=5,因此x的取值范围应该是0<x≤5(y轴上的点是空心圆,因此x≠0);(2)由图象可看出,当x=5时,函数的值最小,是y=2.525.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y1>y2.26.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.(4)∵OA=1,OB=3,∴函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是S△AOB=×1×3=.27.(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)(,0),描点即可,如图所示;(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发现﹣ 2.5×2﹣1=﹣6≠﹣4,因此A点不在函数y=2x﹣1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,因此x≤.28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)观察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0);(0,2)②<1。
期末难点特训 和函数的图像信息有关的期中考题-【微专题】七年级数学下册常考点微专题提分精练

七下期末难点特训(三)和函数的图像信息有关的期中考题1. 甲、乙两地之间是一条直路,在全民健身活动中,小明跑步从甲地前往乙地,一段时间后,小亮骑自行车从乙地前往甲地,两人都保持匀速.小亮先到达目的地,两人之间的距离y(km)与小明运动的时间t(h)的函数关系大致如图所示,则下列说法不正确的是()A. 小明比小亮先出发36分钟B. 小明的速度为10km/hC. 小亮的速度为20km/hD. 小亮出发1h后与小明相遇2. 小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店买到书后继续去学校.以下是他本次上学所用的时间与离家距离的关系示意图,根据图中提供的信息回答下列问题:(1)小明家到学校的路程是______米.(2)小明在书店停留了______分钟.(3)本次上学途中,小明一共行驶了______米,一共用了______分钟.(4)在整个上学的途中在______(时间段)小明骑车速度最快,最快的速度是多少米分?3. 小张和小王是同一单位在A、B两市的同事,已知A、B两市相距400km,周六上午小王从B市出发,开车匀速前往A市的公司开会,1小时后小张从A市的公司出发,沿同一路线开车匀速前往B市,小张行驶了一段路程后,得知小王要到A市的公司开会,便立即加速返回公司(折返的时间忽略不计).已知小张返回时的速度比去时的速度每小时快20km.两人距B市的距离y(km)与小张行驶时间x (h)间的关系如图所示,请结合图象解答下列问题:(1)小王的速度为______km/h,a的值为______;(2)小张加速前的速度为______km/h,b的值为______;(3)在小张从出发到回到A市的公司过程中,当x为______时,两人相距20km?4. 某地植物园从正门到侧门有一条小路,甲徒步从正门出发匀速走向侧门,出发一段时间开始休息,休息了0.6小时后仍按原速继续行走,乙与甲同时出发,骑自行车从侧门匀速前往正门,到达正门后休息0.2小时,然后按原路原速匀速返回侧门.图中折线分别表示甲、乙到侧门的距离y(km)与出发时间x(h)之间的关系图象.根据图象信息解答下列问题:(1)甲在休息前,y与x之间的关系式;(2)求甲、乙第一次相遇的时间;(3)在乙休息前,求甲乙相距5km的时间;(4)直接写出乙回到侧门时,甲到侧门的距离.5. 在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地:乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离:(2)求出点M对应的x、y的值,并解释其所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.6. 周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时后达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往滨海公园.如图是他们离家路程s(km)与小明离家时间t(h)的关系图,请根据图回答下列问题:(1)图中自变量是_________,因变量是_________;(2)小明家到滨海公园的路程为_________km,爸爸比小明早到________h;(3)图中A点表示____________________________;(4)小明出发________小时后爸爸驾车出发;爸爸驾车经过_________追上小明.7. 一艘货船在甲、乙两港之间承接往返运输任务.某日货船从甲港顺流出发,途经丙港并不做停留,抵达乙港停留一段时间后逆流返航(始终保持同一航线).货船在行驶过程中保持自身船速(即船在静水中的速度)不变,已知水流速度为8千米/时,如图记录了当日这艘货船出发后与乙港的距离y(千米)随时间t(小时)的变化的图象.图象上的点A表示货船当日顺流航行到达丙港.(顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度)(1)根据图象回答下列问题:甲乙两港之间的距离为______千米;货船在乙港停留的时间为______小时;(2)m=______,n=______;(3)当t为何值时这艘货船在往返途中距甲港80千米?8. 甲乙两地的距离为45千米,下图中的折线表示某骑车人离甲地的距离y(千米)与时间x(时)之间的函数关系.有一辆客车9点从乙地出发,以45千米/小时的速度匀速行驶,并往返于甲乙两地之间(乘客上下车的停留时间忽略不计).(1)从折线图可以看出,骑车人一共休息_______次,共休息了_________小时;(2)请在图中画出9点至15点之间客车与甲地的距离y(千米)随时间x(时)变化的函数图象;(3)由图象可以看出,在_______时,骑车人与客车同时位于________地(填“甲”或“乙”),除此之外的行进过程中,有_____次是骑车人与客车迎面相遇,有________次是客车从背后追上骑车人.9. 小南一家到某度假村度假.小南和妈妈坐公交车先出发,爸爸自驾车沿着相同的道路后出发.爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村(取东西的时间忽略不计).如下图是他们离家的距离s(km)与小南离家的时间t(h)的关系图.请根据图回答下列问题:(1)图中的自变量是_________,因变量是_________,小南家到该度假村的距离是_____km.(2)小南出发___________小时后爸爸驾车出发,爸爸驾车的平均速度为___________km/h,图中点A表示.(3)小南从家到度假村的路途中,当他与爸爸相遇时,离家的距离约是___________km.10. 如图1,正方形ABCD中,AB=5,点E为BC边上一动点,连接AE,以AE 为边,在线段AE右侧作正方形AEFG,连接CF、DF.设BE=x(当点E与点B 重合时,x的值为0),DF=y1,CF=y2.小明根据学习函数的经验,对函数y1、y2随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程.(1)通过取点、画图、测量、观察、计算,得到了x与y1、y2的几组对应值,请补全表格:x012345y1 5.00 4.12 3.61 4.12 5.00y20 1.41 2.83 4.24 5.657.07(2)根据表中各组数值,在同一平面直角坐标系xOy中,画出函数y1的图象.(3)结合图2 ,解决问题:当△CDF为等腰三角形时,请直接写出BE长度.(精确到0.1)11. 如图1,这是成都到重庆的渝蓉高速的示意图.甲从成都出发驾车驶往重庆,同时乙从简阳出发驾车驶向重庆.在行驶过程中,甲由于汽车故障,在某服务站维修好后继续驾车前行,并与乙同时到达重庆同一地点.甲维修汽车用了0.5小时,其它时间忽略不计,甲维修前后车速不变.图2中折线段OABD和线段CD分别表示甲,乙两人与成都的距离s(千米)与行驶时间t(小时)的变化关系,点A在CD上.(1)求乙的驾车速度;(2)求甲的驾车速度,并求出a的值;时,甲,乙相距多少千米.(3)当t b12. 青城山景区的三个主要景点导游草图如图1,图中所标数据为相邻两点间的路程(米).甲游客考虑到自己体力有限,决定不游览C景点,他匀速沿线路A→B→E→D→A游览,且在每个景点逗留的时间相同.当他回到大门时,共耗时3小时5分钟,其中从大门游览到E处的路程s(米)与游览时间!(分钟)之间的图象如图2.(1)求甲在每个景点逗留的时间;(2)求从E 到D 的路程;(3)乙游客以3千米/小时的平均速度游览完三个景点(途中线路不重复,在每个景点逗留的时间相同),若乙和甲同时从大门出发,并同时回到大门处,求乙游客在每个景点逗留的时间.13. 甲、乙两人同时开始共同组装一批零件,工作两小时后,甲因事离开,停止工作.一段时间后,甲重新回到岗位并提高了工作效率,最后30分钟,乙休息,由甲独自完成剩余零件的组装.乙在工作过程中工作效率保持不变,甲在每个工作阶段的工作效率保不变.甲、乙两人组装零件的总数y (个)与时间x (小时)之间的图像如图所示:(1)这批零件一共有多少个?(2)在整个组装过程中,当甲、乙各自组装的零件总数相差60个时,求x 的值.14. 如图,在等腰直角三角形ABC 中,8BC ,点D 从点B 出发,沿BC 边运动到C ,连接AD ,设BD 的长为x ,AD 的长为y .请你根据学习的变量间关系的知识进行探究活动.(1)通过取点,作图,测量等到了几组x,y的对应值,如下表所示:x012345678y 5.75 4.5 4.14 4.1m5 5.7表格中m=__________;(2)如图,在平面直角坐标系中,已描出了部分图像,请你根据补全后的上表中各组对应值,画出剩下的图像;(3)当x=__________时,y取得最小值;当x的取值范围是__________时,y<.515. 如图1,将南北向的天府大道与东西向的海洋路看成两条相互垂直的直线,十字路口记作点A.小明从海洋路上的点B出发,骑车向西匀速直行;与此同时,小颍从点A出发,沿天府大道步行向北匀速直行、小明到达A点处遇到红灯,等待1分钟后,他提速25%继续骑行.设出发x分钟时,小明、小颍两人与点A的距离分别为1y米2y米.已知1y,2y与x之间的图像如图2所示.(1)小明提速后骑车的速度为________米/分,小颖步行的速度为________米/分;(2)当610x ≤≤时,分别写出1y ,2y 与x 的关系式;(3)出发多少分钟后,小明、小颖离A 点的距离相等?16. 充满未来感、时代感、速度感的2022年北京冬奥会吉祥物“冰墩墩”火遍全球,为了满足广大需求,某冰墩墩生产厂家引进新设备,让新旧设备同时生产,提高冰墩墩的产量.如图所示,甲表示新设备的产量y (万个)与时间x (天)的关系,乙表示旧设备的产量y (万个)与时间x (天)的关系.(1)由图象可知,新设备因故停止生产了______天;(2)在正常生产的情况下,分别求新、旧设备每天生产冰墩墩的个数;(3)试问:第几天新、旧设备所生产的冰墩墩的数量相同?17. 乐乐准备和弟弟一起在一条笔直的跑道上锻炼身体,到达起点后乐乐做了一会准备活动,弟弟先跑.当乐乐出发时,弟弟已经距起点100米了,他们距起点的距离s (米)与乐乐出发的时间t (秒)之间的关系如图所示(不完整).根据图中所给的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______.(2)乐乐在第一次追上弟弟前,弟弟的速度为______米/秒,乐乐的速度为______米/秒.(3)写出乐乐与弟弟都在跑步过程中相距60米时,乐乐离出发点的距离.18. 小红和小玉是同班同学,也是邻居,某天早晨,小红7:10先出发去学校,走了一段后,在途中停下吃早餐,后来发现上学时间快到了,就跑步到学校;小玉骑自行车沿相同路线到学校,如图是她们从家到学校已走的路程s(米)和所用的时间t(分钟)的关系图.请根据图象回答下列问题:(1)小红家到学校的路程是______米,小红吃早餐用了上______分钟;(2)小玉骑自行车速度为______米/分钟;(3)小红从家到学校的平均速度为______米/分钟;(4)小玉骑自行车什么时间追上小红?19. 某单位组织员工去郊区团建,安排班车去送,大多数员工选择在单位乘车,为了方便还安排了第二个站点接员工,在第二个站点停车的时间为5分钟.李华选择从单位出发开私家车去目的地.如图是班车和私家车离开单位的路程y(千米)随时间x(分钟)的变化图象.分析图中的信息,回答下列问题:(1)李华晚出发___________分钟.(2)______________先到目的地.(填班车或私家车)(3)班车第二次开动后的速度是_________km/h.(4)李华私家车出发后的速度是_________km/h.(5)李华私家车出发后在距离目的地_________km和班车相遇.20. 为迎接体质监测,小明和小军进行了1000米跑练习.如图是两人的路程s (米)与时间t(分钟)之间关系的图象,根据图象解答下列问题:(1)2分钟时,谁跑在前面?(2)谁先跑到终点?(3)小军的平均速度是多少?(4)起跑后两人第一次相遇时距离终点多少米?21. 甲、乙两人在笔直的公路AB上从起点A地以不同的速度匀速跑向终点B地,先到B地的人原地休息,已知A、B两地相距1500米,且甲比乙早出发,甲、乙两人之间的距离(米)与甲出发的时间(秒)的关系如图所示.(1)甲早出发______秒,乙出发时两人距离_______米;(2)甲的速度是________米/秒,甲从A地跑到B地共需________秒;(3)乙出发________秒时追上了甲;(4)甲出发________秒时,两人相距120米.22. A,B两地相距60km,甲乙两人沿同一条路从A地前往B地,甲先出发.图中l1,l2表示甲乙两人离A地的距离y(km)与乙所用时间x(h)之间的关系,请结合图象回答下列问题:(1)图中表示甲离A地的距离y(km)与乙所用时间x(h)之间关系的是 (填l1或l2);(2)当其中一人到达B地时,另一人距B地 km;(3)乙出发多长时间时,甲乙两人刚好相距10km?23. 一艘货船在甲、乙两港之间承接往返运输任务.某日货船从甲港顺流出发,途经丙港并不做停留,抵达乙港停留一段时间后逆流返航.货船在行驶过程中保持自身船速(即船在静水中的速度)不变,已知水流速度为8千米/时,如图记录了当日这艘货船出发后与乙港的距离y(千米)随时间t(小时)的变化的图象.图象上的点A表示货船当日顺流航行到达丙港.(1)根据图象回答下列问题:货船在乙港停留的时间为 小时,货船在静水中的速度为 千米/时;(2)m= ,n= ;(3)货船当日顺流航行至丙港时,船上一救生圈不慎落入水中随水漂流,该货船能否在返航的途中找到救生圈?若能,请求出救生圈在水中漂流的时间;若不能,请说明理由.24. 小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟.在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离1y(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是___________米/分钟,妈妈在家装载货物所用时间是__________分钟,点M的坐标是___________;(2)直接写出妈妈和商店的距离2y(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.七下期末难点特训(三)和函数的图像信息有关的期中考题【1题答案】【答案】D【解析】【分析】由图像可得小亮骑自行车从乙地前往甲地是0.6h=36分钟;可判断A;由小明跑步从甲地前往乙地,行程是30km,所用时间是3小时,利用速度公式计算可判断B;由小亮骑自行车从乙地前往甲地,行程是30km,所用时间是1.5h,利用速度公式计算可判断C;设小亮出发t小时与小明相遇,利用方程20t+(t+0.6)×10=30,解方程可判断D.【详解】解:A. ∵由图像可得小亮骑自行车从乙地前往甲地是0.6h=0.6×60分钟=36分钟;∴小明比小亮先出发36分钟正确,故选项A不符合题意;B.∵小明跑步从甲地前往乙地,行程是30km,所用时间是3小时,∴小明的速度为30=310km/h正确,故选项B不符合题意;C. ∵小亮骑自行车从乙地前往甲地,行程是30km,所用时间是2.1-0.6=1.5h,∴小亮的速度为=30=1.520km/h正确,故选项C不符合题意;D. 设小亮出发t小时与小明相遇,根据题意20t+(t+0.6)×10=30,解得t=0.8h,∴小亮出发0.8h后与小明相遇,所以D选项不正确,故选项D符合题意.故选择D.【点睛】本题考查两人之间路程与时间的一次函数图像应用,仔细观察图像,掌握图像中横纵坐标的意义与拐点的意义,以及速度、路程与时间关系是解题关键.【2题答案】【答案】(1)1500;(2)4;(3)2700,14;(4)12分钟至14分钟,450米/分钟,【解析】【分析】(1)根据函数图象中的数据可以得到小明家到学校的路程;(2)根据函数图象可以得到小明在书店停留的时间;(3)根据函数图象中的数据可以得到本次上学途中,小明一共行驶的路程和时间;(4)根据题意和函数图象可以得到各段内对应的速度,从而可以解答本题.【小问1详解】由图象可得,小明家到学校的路程是1500米,故答案为:1500;【小问2详解】由图象可得,小明在书店停留了:12-8=4(分钟),故答案为:4;【小问3详解】本次上学途中,小明一共行驶了:1500+(1200-600)×2=2700(米),一共用了14(分钟),故答案为:2700,14;【小问4详解】由图象可知,在整个上学的途中,12分钟至14分钟小明骑车速度最快,最快的速度为:(1500-600)÷(14-12)=450米/分钟,故答案为:12分钟至14分钟,【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.【3题答案】【答案】(1)80,4(2)100,160(3)53或179或12730【解析】【分析】(1)根据函数图象中的数据,可以计算出小王的速度和a的值;(2)根据题意和(1)中的结果,可以计算出小张加速前的速度和b 的值;(3)根据函数图象中的数据和题意,利用分类讨论的方法可以求得x 的值.【小问1详解】解:由图象可得,小王的速度为:()80180km /h ÷=,4008014a =÷-=,故答案为:80,4;【小问2详解】设小张加速前的速度为km /h x ,由题意得:()()2.420 4.4 2.4x x =+⨯-,解得,100x =,400 2.4100160b =-⨯=,即小张加速前的速度为100km/h ,b 的值是160,故答案为:100,160;【小问3详解】由题意可得,相遇前:()10080140020x x ++=- 解得,53x =,相遇后到小张返回前:()10080140020x x ++=+ 解得,179x =,小张返回后到小王到达A 市前:()()()()801400100 2.410020 2.420x x ⨯+=-⨯++⨯-+,解得, 4.7(x =舍去),小王到达A 市到小张返回到A 市前,()()()400100 2.410020 2.420400x -⨯++⨯-+=,解得,12730x =,由上可得,在小张从出发到回到A市的公司过程中,当x为53或179或12730时,两人相距20km.故答案为:53或179或12730.【点睛】本题主要考查了从函数图象获取信息,解答本题的关键是明确题意,利用数形结合的思想解答.【4题答案】【答案】(1)甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式(2)第一次相遇时间为1217h.(3)在乙休息前,当出发时间为1小时时,甲乙相距5km;(4)乙回到侧门时,甲到侧门的路程是4km.【解析】【分析】(1)根据函数图象可知点(0,12)和点(1,7)在甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数图象上,从而可以解答本题;(2)根据函数图象可以求得乙骑自行车从侧门匀速前往正门对应的函数解析式,联立(1)中函数解析式组成方程组即可求得第一次相遇的时间;(3)由(2)得乙休息前的函数解析式为:y=12x,甲的函数解析式为:y=-5x+12,根据题意分两人相遇前与相遇后进行分析即可得出结果;(4)根据函数图象可以得到在最后一段甲对应的函数解析式,乙到侧门时时间为2.2h,从而可以得到乙回到侧门时,甲到侧门的距离.【小问1详解】解:设甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式为:y=kx+b,∵点(0,12)和点(1,7)在此函数的图象上,∴127bk b=⎧⎨=+⎩,解得k=﹣5,b=12.∴y=﹣5x+12.即甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式为:【小问2详解】设乙骑自行车从侧门匀速前往正门对应的函数关系式y =kx ,将(1,12)代入得k =12,∴乙骑自行车从侧门匀速前往正门对应的函数关系式y =12x ,∴51212y x y x =-+⎧⎨=⎩,解得x =1217,即第一次相遇时间为1217h .【小问3详解】在乙休息前,∴0≤x ≤1,由(2)得乙休息前的函数解析式为:y =12x ,甲的函数解析式为:y =-5x +12,甲乙相距5km ,∴两人相遇前:12x -5x +12+5=12,解得:x =57-不符合题意,舍去;两人相遇后:12x -(-5x +12)=5解得:x =1,在乙休息前,当出发时间为1小时时,甲乙相距5km ;【小问4详解】乙回到侧门时,甲到侧门的路程是4km .理由如下:将x =1.2代入y =﹣5x +12解得y =6,∴甲休息后对应的函数图象过点(1.8,6),(3,0),设甲休息了0.6小时后仍按原速继续行走对应的函数解析式为:y =mx +n .将点(1.8,6),(3,0)代入解析式得:1.8630m n m n +=⎧⎨+=⎩,解得m =﹣5,n =15.将x=2.2代入y=﹣5x+15,解得y=4,即乙回到侧门时,甲到侧门的路程是4km.【点睛】本题考查一次函数的应用,解题的关键是能看懂题意,根据数形结合的数学思想,找出所求问题需要的条件.【5题答案】【答案】(1)A、B两地的距离为40千米(2)点M48033⎛⎫⎪⎝⎭,,表示43小时后两车相遇,此时距离B地803千米(3)当3730≤x≤4330或3.7≤x≤4时,甲、乙两人能够用无线对讲机保持联系【解析】【分析】(1)根据函数图象就可以得出A、B两地的距离;(2)根据函数图象反应的时间可以求出甲乙的速度,就可以求出相遇时间,就可以求出乙离B地的距离而得出相遇点M的坐标;(3)分相遇前和相遇后两种情况求出x的值,再求出最后两人都到达B地前两人相距3千米的时间,然后写出两个取值范围即可.【小问1详解】由函数图象,得A、B两地的距离为40千米,答:A、B两地的距离为40千米.【小问2详解】由函数图象,得:甲的速度为:40÷4= 10千米/时,乙的速度为:40÷2= 20千米/时.∴甲乙相遇的时间为:40 ÷ (10 + 20)=43小时.相遇时乙离开B地的距离为:43×20 =803千米,所以,点M的坐标为480 33⎛⎫ ⎪⎝⎭,点M表示43小时后两车相遇,此时距离B地803千米;【小问3详解】设x小时时,甲、乙两人相距3km,若是相遇前,则10x + 20x = 40-3,解得x =37 30;若是相遇后,则10x + 20x= 40+ 3,解得x =43 30;若是到达B地前,则10x-20(x-2)= 3解得x = 3.7;∴当3730≤x≤4330或3.7≤x≤4时,甲、乙两人能够用无线对讲机保持联系.【点睛】本题考查了函数图像,一次函数的解析式的运用,相遇问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次不等式组的运用,解答时认真分析函数图象,弄清函数图象的意义是关键.【6题答案】【答案】(1)时间,路程(2)30,0.5 (3)2.5小时后小明继续坐公交车到滨海公园(4)2.5,2 3【解析】【分析】(1)根据图象进行判断,即可得出自变量与因变量;(2)根据图象中数据,即可得到小明家到滨海公园的路程以及爸爸比小明早到的时间;(3)根据点A的坐标即可得到点A的实际意义;(4)分别求出小明从中心书城到滨海公园的平均速度以及小明爸爸驾车的平均速度,即可得爸爸驾车追上小明的时间.【小问1详解】解:由图可得,自变量是t,因变量是s,故答案为:时间,路程;【小问2详解】由图可得,小明家到滨海公园的路程为30km,爸爸比小明早到:4-3.5=0.5(h),故答案为:30;0.5;【小问3详解】由图可得,A点表示2.5小时后小明继续坐公交车到滨海公园;故答案为:2.5小时后小明继续坐公交车到滨海公园;【小问4详解】由图可得,小明出发2.5小时后爸爸驾车出发;小明从中心书城到滨海公园的平均速度为301212(km/h)4 2.5-=-,小明爸爸驾车的平均速度为3030(km/h)3.5 2.5=-;爸爸驾车经过122(h)30123=-追上小明.故答案为:2.5;23.【点睛】本题考查了函数的图象,以及行程问题的数量关系的运用,解答时理解清楚函数图象的意义是解答此题的关键.【7题答案】【答案】(1)96,1(2)8,10 (3)52或5【解析】【分析】对于(1),根据图象填空即可;对于(2),先求出货船在静水中的速度,根据路程÷速度=时间即可求出m和n的值;对于(3),这艘货船在往返途中距甲港80千米,分两种情况:①货船从甲港到乙港的途中,②货船从乙港返回甲港的途中,分别列方程,求出解即可.【小问1详解】根据图象可知甲乙两港之间的距离是96千米,货船在乙港停留的时间为4-3=1(小时).故答案为:96,1;【小问2详解】根据题意,可知货船在顺水中的航行速度为96÷3=32(千米/小时),∴水流的速度时8千米/时,∴货船在静水中的速度时32-8=24(千米/小时),∴货船的逆水速度为24-8=16(千米/时),∴m=4+64÷16=8,n=4+96÷16=10.故答案为:8,10;【小问3详解】这艘货船在往返途中距甲港80千米,分两种情况:货船从甲港到乙港的途中,根据题意,得32t=80,解得52t=;货船从乙港回甲港的途中,根据题意,得16(t-4)=96-80,解得t=5.综上所述,当52t=或5时,这艘货船距甲港80千米.【点睛】本题主要考查了函数图象的应用,理解图象上各点的含义并根据题意求出货船在静水中的速度是解题的关键.【8题答案】【答案】(1)2,2;(2)见解析;(3)13,乙,3,1.【解析】【分析】(1)直接观察图象,即可求解;(2)根据图象可得,客车从乙地到甲地所用的时间为1时,从而得到9点至15点之间客车在甲乙两地之间往返6次,即可画出图象;(3)由图象可以看出,在13时,骑车人与客车同时位于乙地;二者迎面相遇,是客车从乙地驶往甲地的过程中;客车从背后追上骑车人,是客车从甲地驶往乙地的过程中,从而得到3次相遇是骑车人与客车迎面相遇;1次相遇是客车从背后追上骑车人,即可求解.【详解】解:(1)根据题意得:骑车人一共休息2次,共休息了(11-10)+(13-12)=2时;(2)根据题意得:客车从乙地到甲地所用的时间为45451÷=(时),所以9点至15点之间客车在甲乙两地之间往返159312-=⨯次,则9点至15点之间客车与甲地的距离y(千米)随时间x(时)变化的函数图象,如图所示,。
夯实基础-2023年九年级中考数学考点专题集训系列 一次函数图像信息问题

夯实基础-2023年中考数学考点专题集训系列(一次函数图像信息问题)1.在一条笔直的公路上有A,B两地,甲、乙二人同时出发,甲从A地步行匀速前往B地,到达B地后,立刻以原速度沿原路返回A地.乙从B地步行匀速前往A地(甲、乙二人到达A地后均停止运动),甲、乙二人之间的距离y(米)与出发时间x(分钟)之间的函数关系如图所示,请结合图象解答下列问题:(1)A,B两地之间的距离是________米,乙的步行速度是________米/分钟;(2)图中a=________,b=________,c=________;(3)求线段MN的函数表达式;(4)在乙运动的过程中,何时两人相距80米?(直接写出答案即可)2.A、B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD-DE-EF所示,其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是多少.3.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为多少米.4.“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?5.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚多少分钟到达B地.6.某农科所为定点帮扶村免费提供一种优质瓜苗及大鹏栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后,继续生长大约多少天,开始开花结果?7.某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为_____件,图中d值为_____.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?8.A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地,两辆货车离开各自出发....地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B 地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?9.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示.(1)求1k 和b 的值,并说明它们的实际意义;(2)求打折前的每次健身费用和2k 的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.x kg之间10.某商店代理销售一种水果,六月份的销售利润y(元)与销售量()函数关系的图像如图中折线所示.请你根据图像及这种水果的相关销售记录提供的信息,解答下列问题:日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg(除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg.6月10、11日这两天以成本价促销,之后售价恢复到10元/kg.6月12日补充进货200kg,成本价8.5元/kg.6月30日800kg水果全部售完,一共获利1200元.(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图像中线段BC所在直线对应的函数表达式.11.某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a=.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?12.如图1,在平面直角坐标系中,▱ABCD在第一象限,且BC∥x轴.直线y=x 从原点0出发沿x轴正方向平移.在平移过程中,直线被▱ABCD截得的线段长度n与直线在x轴上平移的距离m的函数图象如图2所示,那么▱ABCD的面积为多少。
高一数学函数图像试题答案及解析

高一数学函数图像试题答案及解析1.一电子广告,背景是由固定的一系列顶点相接的正三角形组成,这一列正三角形的底边在同一直线上,正三角形的内切圆由第一个正三角形底边中点点沿三角形列的底边匀速向前滚动(如图),设滚动中的圆与系列正三角形的重叠部分(如图中的阴影)的面积关于时间的函数为,则下列图中与函数图像最近似的是()【答案】B【解析】滚动中的圆与系列正三角形的重叠部分(如图中的阴影)的面积S关于时间t的关系呈周期性变化,且两者之间是非线性变化,故排除答案D;圆滚动到两三角形的连接点时,阴影部分的面积取最小值,但仍不为0,故排除答案C又由当t=0时,阴影部分的面积取最大值,可排除答案A,故选B.考点:函数图像2.在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y=f(x)(实线表示),另一种是平均价格曲线y=g(x)(虚线表示)(如f(2)=3是指开始买卖后两个小时的即时价格为3元g(2)=3表示2个小时内的平均价格为3元),下图给出四个图象:其中可能正确的图象序号是 .A.①②③④B.①③④C.①③D.③【答案】D【解析】①错,因为即时价格是下降的,所以从开始后,平均价格应在即时价格的上面,不会有交点;②错,因为,如果平均价格不变,那么即时价格也应不变;③正确,因为开始即时价格是上升的,所以一段时间的平均价格应该在他的下面,后即时价格下降了,那么经过一段时间,会出现平均价格在即时价格的上面;④错,即时价格为折线,平均价格应为曲线.故选D.【考点】函数的图像3.已知函数若函数有三个零点,则实数的取值范围是 .【答案】【解析】有3个零点,即有三个实根,即与有三个不同交点,画出的图像,当有三个交点时,先确定了,解得:.【考点】1.函数零点;2.函数图像.4.函数的图象大致是()【答案】C【解析】,即,所以不是偶函数,图像不关于y轴对称,故D不正确;时,所以,所以,所以,故B不正确。
当时,所以,所以,故A不正确。
专题03用图像表示的变量间关系(解析版)-2020-2021学年七年级数学下册常考题专练(北师大版)

专题03用图像表示的变量间关系知识点解析本节的教学重点是使学生能够理解变量与常量,并能与实际结合举出相应的变量关系的例子。
在充分理解常量与变量的意义的基础上再去学习变量之间关系的三种表示方法,能将三种表示方法进行转换,并能进行简单的计算。
学生学习本节时可能会在以下三个方面感到困难:1.变量与常量的意义;2.两个变量之间的关系;3.两个变量之间的三种表示方法。
题型与方法一、选择题1. 如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.【答案】B【解析】解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;故选:B.2.如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为()A.0 B.1 C.2 D.3【答案】C【解析】解:①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,故①与图象不符合;②小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,注水量为:1.2×5=6升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,故②符合函数图象;③如图所示:当点P在AC上运动时,S△ABP的面积一直增加,当点P运动到点C时,S△ABP=6,这段时间为5;当点P在CD上运动时,S△ABP不变,这段时间为4;当点P在DA上运动时,S△ABP减小,这段时间为3,故③符合函数图象;综上可得符合图中所示函数关系的问题情境的个数为2.故选:C.3.如图,是一台自动测温仪记录的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为-3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降【答案】C【解析】试题分析:A.℃由图象可知,在凌晨4点函数图象在最低点﹣3,℃凌晨4时气温最低为﹣3℃,故本选项正确;B.℃由图象可知,在14点函数图象在最高点8,℃14时气温最高为8℃,故本选项正确;C.℃由图象可知,从4时至14时,气温随时间增长而上上升,不是从0点,故本选项错误;D.℃由图象可知,14时至24时,气温随时间增长而下降,故本选项正确.故选C.4.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C.D.【答案】D【详解】开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升,故选D.5.下列各情景分别可以用哪一幅图来近似的刻画?正确的顺序是()①汽车紧急刹车(速度与时间的关系)②人的身高变化(身高与年龄的关系)③跳过运动员跳跃横杆(高度与时间的关系)④一面冉冉上升的红旗(高度与时间的关系)A.abcd B.dabc C.dbca D.cabd【答案】C【解析】解:A、人的身高随着年龄的增加而增大,到一定年龄不变,故与②符合;B、红旗升高随着时间的增加而增大,到一定时间不变,故与④符合;C、运动员跳跃横杆时高度在上升到最大高度然后上升到最大高度之后高度减小,与③符合;D、汽车紧急刹车时速度随时间的增大而减小,与①符合.故选C.二、填空题6.李小勇的爸爸让他去商店买瓶酱油,下图近似地描述了李小勇和家之间的距离与他离家后的时间之间的关系,则(1)李小勇去买瓶酱油共花了___min,其中在路上行走了____min,他走路的平均速度是_____;(2)李小勇在买酱油的过程中有_______次停顿,其中第_____次是因为买酱油付钱而停顿的;(3)李小勇在途中另一处停顿的原因是_____________.(只要写得合理都对)【答案】(1)8,6,150米/分;(2)2,2;(3)略【解析】根据图象分析判断。
变量之间的关系:3 用图象表示变量之间的关系(共3课时)

(4)两个人同时出发,相遇时甲比乙多走( )千米
探究
某通信公司新开发甲、乙两 种手机话费套餐,其每月通 话费用与通话时间的关系如 图所示.根据图中提供的信 息,回答下列问题:
(1)选择乙套餐,如果没有通话,是否也要缴费? 缴多少费用?选择甲套餐呢?
(2)当一个月恰好通话100分钟时,两种套餐的费用分别是多 少?
(1)这是一次
m赛跑;
(2)甲、乙两人中先到达终
点的是
;
(3)甲、乙两人的速度分别 是多少?
/s
2.如果OA,BA分别表 示甲、乙两名学生运 动的路程s和时间t的 关系,根据图象判断 快者的速度比慢者的 速度每秒快_______m。
s(m)
A
64
B
12
t(s)
0
8
说一说,通过本节课 的学习你有哪些收获?
说一说,通过本节课 的学习你有哪些收获?
第三课时
温故知新
我们已经学习了哪几种表 示变量之间关系的方法?
1.表格法 2.表达式法 3.图象法
汽车在行驶的过程中,速度往往是变化的,下面的图象 表示一辆汽车的速度随时间变化而变化的情况。
在图象中 上升线------表示因变量随自变量的增大而增大; 水平线-----表示因变量随自变量的增大而不变; 下降线------表示因变量随自变量的增大而减小。
1.柿子熟了,从树上落下来,下面哪一幅图 可以大致刻画出柿子下落过程中(即落地前)的 速度变化情况?
2.一辆公共汽车从车站开出,加速行驶一段后开始 匀速行驶。过了一段时间,汽车到达下一个车站。乘客 上下车后汽车开始加速,一段时间后又开始匀速行驶。 下面的哪一幅图可以近似地刻画出汽车在这段时间内的 速度变化情况?
一次函数的图象分析

路程/百米时间96363018yx0
一次函数的图象分析1(中考第16题) 1、北京气象中心观测一场沙尘暴从发生到结束的的全过程,开始时风速平均每小时增加2km/h,4小时后,沙尘暴经过开阔荒地,风速变为平均每小时增加4km/h,一段时间后,风速保持不变,当沙尘暴遇到绿色植被时,其风速变为平均每小时减小1km/h,并最终停止,根据风速与时间的图象,沙尘暴从发生到结束共经过________________小时.
2、小明早晨从家骑车到学校,先上坡,后下坡, 行程情况如图,若返回时上、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是________分钟
3、某学生春游时参加了一次登山活动,他先登上山顶后休息了10分钟,后下一段坡到达一楼亭即按原路返回返回时,上,下坡速度
不变,行程情况如图,此学生返回所用时间(中途不休息)为 __
___分钟
4、如图:图中曲线表示小明星期日骑行车外出离家的距离与时间的关系,小明9点离开家,15点回家,则小明距家21千米的时间是_________小时
5、长途汽车客运公司规定旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票y元是行李重量x千克的一次函数,则旅客最多可免费携带行李为_____千克
6、如图:小华骑车上学,先经过一段上坡,后经一段下坡到达学校行程情况如图,那么小华每天上学往返一次所需时间为_____分钟
64
02035X
Y
30252015105
01011
121314
15
X
Y距离(千米)
30题图(小时)
6080610ox(千克)
y(元)
20203035分
y(km/h)x(h)041025 7、某油库有一储油量为40吨的储油罐.在开始的一段时间内只开进油管,不开出油管;在随后的一段时间内既开进油管,又开出油管直至储油罐装满油.若储油罐中的储油量(吨)与时间(分)的函数关系如图所示. 现将装满油的储油罐只开出油管,不开进油管,则放完全部油所需的时间是_____分钟 A.16分钟 B.20分钟 C.24分钟 D.44分钟