数值分析 第7章74页PPT

合集下载

数值分析学习课件

数值分析学习课件

数值分析学习课件目录1. 内容概要 (2)1.1 数值分析的重要性 (2)1.2 课件内容概述 (3)2. 基础知识准备 (4)2.1 数学知识要点 (6)2.2 计算机基础 (7)2.3 编程基础 (8)3. 数值计算的基本原理 (10)3.1 误差理论 (11)3.2 近似计算 (13)3.3 算法稳定性与收敛性 (15)4. 数值计算方法与技巧 (16)4.1 插值与逼近 (17)4.2 微分与积分计算 (19)4.3 线性代数方程求解 (19)4.4 优化计算方法 (21)5. 数值分析的应用实例 (22)5.1 数据拟合与预测分析 (23)5.2 微分方程数值解法应用 (24)5.3 线性规划优化问题应用 (26)5.4 其他领域的应用实例 (27)6. 实践操作指导 (28)6.1 编程实践环境搭建 (30)6.2 数值计算软件使用介绍 (31)6.3 编程实践案例分析 (32)7. 课程总结与展望 (33)7.1 课程重点内容回顾 (34)7.2 数值分析发展趋势 (35)7.3 学习建议与展望 (37)1. 内容概要数值分析是一个研究数值算法的学科,旨在寻找有效的方法来求解大量的数学问题,特别是那些无法得到精确解或者求解起来过于繁杂的问题。

它在物理学、工程学、经济学、生物技术以及许多其他科学领域中都是至关重要的。

本课程将涵盖数值分析的核心概念和方法,重点是数值线性代数、数值积分、数值微分方程以及数值优化等经典主题。

学生将理解这些问题的数学背景,掌握相关的数值算法,并能够运用编程实现这些算法。

学生还将学习误差分析、收敛性理论以及如何选择和实现适合特定问题的数值方法。

在整个课程中,学生将通过实际问题的解决,如物理模型、金融模型、生物数据的分析和处理等,来应用所学的数值分析知识和技能。

通过本课程的学习,学生不仅能够加深对数值方法的理解,还能增强解决实际问题的能力。

1.1 数值分析的重要性数值分析是利用计算机解决数学问题的重要工具,在许多领域,例如物理、工程、金融、生物等,现实世界的问题常常难以用精确的解析解表达出来。

数值分析学习课件

数值分析学习课件

对任意 u ≠ 0 ∈ R n +1 ,必有 Φ u ≠ 0 。 则 u T B u = u T Φ T Φ u =|| Φ u || 2 > 0 2 若不然, 若不然,则 存在唯一解 ⇒ B为正定阵,则非奇异,所以法方程组存在唯一解。 为正定阵,则非奇异,所以法方程组存在唯一 n +1 存在一个 u ≠ 0 ∈ R 使得 Φ u = 0 … 即
则 (ϕ i , ϕ j ) =

1 0
x i x j dx =
1 i + j+1
Hilbert阵! 阵
若能取函数族Φ={ ϕ0(x), ϕ1(x), … , ϕn(x), … }, , 两两( 使得任意一对ϕi(x)和ϕj(x)两两(带权)正交, 和 两两 带权)正交, 改进: 改进: 对角阵! 就化为对角阵 则 B 就化为对角阵! (ϕ k , y ) 这时直接可算出a 这时直接可算出 k = (ϕ k , ϕ k ) 正交多项式的构造: 正交多项式的构造: 多项式的构造 取为k 多项式,为简单起见, 将正交函数族中的ϕk 取为 阶多项式,为简单起见,可取 ϕk 的首项系数为 1 。

总体上尽可能小 尽可能小。 这时没必要取 P(xi) = yi , 而要使 P(xi) − yi 总体上尽可能小。 常见做法: 常见做法:
m
不可导, 不可导,求解困难
太复杂
使 max | P ( x i ) − y i | 最小 /* minimax problem */ 1≤ i ≤ m 使 ∑ | P ( x i ) − y i | 最小 使 ∑ | P ( x ) − y | 最小 /* Least-Squares method */ 定义 最佳平方逼近:即连续型 逼近,在 || f ||2 = 最佳平方逼近:即连续型L-S逼近 平方逼近 逼近,

数值分析课件

数值分析课件

n=20 需要运算 多少次?
➢ 存贮量 ➢ 逻辑结构
n=100?
§2 误差来源与误差分析的重要性
一、误差的来源与分类
➢ 从实际问题中抽象出数学模型—— 模型误差
例:质量为m的物体,在重力作用下,自由下落, 其下落距离s 与时间t 的关系是:
m
d 2s dt2
mg
其中 g 为重力加速度。
➢ 通过测量得到模型中参数的值—— 观测误差
S2 计算 D a11a22 a21a12
S3 如果 D 0
则输出原方程无解或有无穷多组解的信息;
否则 D 0
x1
a22b1 a12b2 D
S4 输出计算的结果
x1, x2
x2
a11b2 a21b1 D
开始
输入
a11, a12 , a21, a22 , b1 , b2
D=a11a22-a12a21
(1)如果 D 0,则令计算机计算
x1 b1a22 b2a12 D , x2 b2a11 b1a21 D
输出计算的结果x1,x2。
(2)如果D= 0,则或是无解,或有无穷多组解。
令 D a11a22 a21a12
通过求解过程,可以总结出算法步骤如下:
S1 输入 a11, a12, a21, a22,b1,b2
➢ 求近似解 —— 方法误差 (截断误差)
例如,当函数 f 用 xTaylor多项式
Pn x
f
0
f 0
x 1!
f 0 x2
2!
f (n) 0 xn
n!
近似代替时,数值方法的截断误差是
( 在 与x0之间)。
Rn x
f
x Pn x

数值分析课件_Chapter_6线性方程组的迭代解法共74页

数值分析课件_Chapter_6线性方程组的迭代解法共74页

16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
数值分析课件_Chapter_6线性方程组 的迭代解法
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——

数值分析(浙江大学)全套课件

数值分析(浙江大学)全套课件
➢ Numerical Analysis (Seventh Edition)
数值分析 (第七版 影印版)
Richard L. Burden & J. Douglas Faires (高等教育出版社)
ห้องสมุดไป่ตู้ 学习方法
1.注意掌握各种方法的基本原理 2.注意各种方法的构造手法 3.重视各种方法的误差分析 4.做一定量的习题 5.注意与实际问题相联系
教材 (Text Book) 数值计算方法 郑慧娆等 编著 (武汉大学出版社)
参考书目 (Reference)
➢ Numerical Analysis:Mathematics of Scientific Computing (Third Edition)
数值分析 (英文版 第3版 )
David Kincaid & Ward Cheney(机械工业出版社)
10
n
0
1
102
0
10 1 101 0
2。与计算机不能分离:上机实习(掌握一 门语言:C语言,会用Matlab)
1.2 误差 ( Error )
§1 误差的背景介绍 ( Introduction ) 1. 来源与分类 ( Source & Classification ) 模型误差 ( Modeling Error ): 从实际问题中抽象出数 学模型
1 e x2 dx 0
(第七章的内容:数值积分)
数值分析的特点
1。近似: 由此产生“误差”
在计算数学和应用数学中一个有趣的问题: 什么是零?
1 10 1 10
原点附近
1
在纯数学中,认为此矩阵为满秩矩阵
10 1
但在计算数学中,它却是降秩矩阵 ?

研究生数值分析微分方程数值解法.pptx

研究生数值分析微分方程数值解法.pptx

y y解( x的) 稳定性 解的混沌性
……
第5页/共48页
所谓数值解法:
求函数 y(x) 在一系列节点 a = x0< x1<…< xn= b 处的近似值
yi y(xi ) (i 1, ... , n)
的方法称为微分方程的数值解法。
y1, , yn 称为微分方程的数值解。
称节点间距 hi xi1 xi (i 0, ... , n 1)为步长, 通常采用等距节点,即取 hi = h (常数)。
y2 y1 x2 x1
f ( x1, y1)
·····
Euler格式
yn1 yn xn1 xn
f ( xn , yn )
yn1 yn hf ( xn , yn )
x0 x1 xk xn xn1
第12页/共48页
18世纪最杰出的数学家之一,13岁 时入读巴塞尔大学,15岁大学毕业, 16岁获得硕士学位。 1727年-1741年(20岁-34岁)在 彼得堡科学院从事研究工作,在分析 学、数论、力学方面均有出色成就, 并应俄国政府要求,解决了不少地图 学、造船业等实际问题。 24岁晋升物理学教授。 1735年(28岁)右眼失明。
如果找不到解函数
(1)将连续变量 x [a离,b散] 为 数学界还关注:
a x0 x1 xk xn解 的b 存在性
(2)用代数的方法求出解函数 y 解y(在的x)唯点一的x性k近似值
yk y( xk )工k程师1,关2,注, n
解yk的光滑性
解*的振动y( x性k )
解的周期性
数学界关注
例2: 用改进Euler公式求解例1中的初值问题,
取步yy长0h21xy0。2.1 (0 x 1.2)

数值分析PPT


A为待定系数,利用导数条件 P3'(x1) m1 ,求出A, 但求出的 P3(x)通常为3次多项式,
一般情况下 P3(x) 也有可能为二次多项式,
原来方法更加准确。
(2)求余项: R(x)=f(x)-P3(x)
易知: x0, x2是R(x)的一重零点,x1 为R(x)的二重零点,
∴ R(x)可写为
多项式,则对任何 x a,b 有:
Rn (x)
f (n1) ( ) (n 1)!
Wn
1
(
x)
n
其中 Wn1(x) (x xi ), (a,b) ,且与x有关。 i0
证明:考虑插值节点上有 Rn (xi ) 0 (i 0,1,,n)
∴ 这些节点是 Rn (x) 的零点,
可设 Rn (x) k(x) Wn1(x)
∴ K(x) 1 f 4 ( )
4!
∴插值余项为R(x) =
1 4!
f
4 (
)(x
x0
)(x
x1 )2
(x
x2
)
在插值区间内与x有关.
4.5 埃尔米特插值(Hermite 法国数学家)
有时插值函数不仅要求在节点上与原函数相同,还要求 其导数的值与原函数的值相同,即要求
H2n+1(xi)=f (xi), H’2n+1(xi)=f ’(xi) i=0、1、…、n
1 i k lk (xi ) 0 i k
n
则插值多项式为: Ln (x) yi li (x) i0
lk (x) 构造过程:
上式表明:n 个点 x0 , x1, xk1, xk1, xn 都是 lk (x) 的零点。
lk (x) Ak (x x0 )(x x1) (x xk1)(x xk1) (x xn )

数值分析教材

第一章绪论与误差第一节数值分析研究对象及特点一、数值分析课的地位:数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支。

它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。

用计算机解决科学技术和工程问题的步骤:实际问题→建立数学模型→研究计算方法→程序设计→上机计算→求出结果。

例如:⑴ 某一地区的地形图,用空中航测方法,空中连续拍照。

⑵ 为形成三维地形图,建立了一个大型超定线性方程组。

⑶ 采用最小二乘方法求解该方程组的最小二乘解, 然后再整体平滑。

⑷ 编程序,形成一个大型程序,上机进行计算。

二、数值分析课的主要内容:计算机只能进行加减乘除四则运算和一些简单的函数计算(即使是函数也是通过数值分析方法处理,转化为四则运算而形成了的一个小型软件包)。

1.数值代数:求解线性和非线性方程的解法, 分直接方法和间接方法。

2.插值和数值逼近。

3.数值微分和数值积分。

4.常微分方程和偏微分方程数值解法。

三、数值分析具有的特点1. 面向计算机,要根据计算机的特点提供切实可行的有效算法,即算法只能包含加、减、乘、除和逻辑运算,这些运算是计算机能直接处理的运算。

2. 有可靠的理论分析,能任意逼近并达到精度要求,对近似算法要保证收敛性和数值稳定性,还要对误差进行分析。

3. 要有好的计算复杂性。

时间复杂性好是指节省时间,空间复杂性好是指节省存储量,这也是建立算法要研究的问题,它关系到算法能否在计算机上实现。

4. 要有数值试验,即任何一个算法除了从理论上要满足上述三点外还要通过数值试验证明是行之有效的。

四、对算法所要考虑的问题:1. 计算速度1 例如:求解一个20阶线性方程组,用加减消元法需3000次乘法运算,而用克莱姆法则要进行次运算,如用每秒1亿次乘法运算的计算机要30万年。

2. 存储量。

大型问题有必要考虑。

3. 数值稳定性。

在大量计算中,舍入误差是积累还是能控制,这与数值稳定性算法有关。

例一元二次方程其精确解为如用求根公式:以及字长为8位的计算器求解有:则:,那么: 的值与精确解有天壤之别。

数值分析第7章答案教材

第七章非线性方程求根一、重点内容提要 (一)问题简介 求单变量函数方程()0f x = (7.1)的根是指求*x (实数或复数),使得(*)0f x =.称*x 为方程(7.1)的根,也称*x 为函数()f x 的零点.若()f x 可以分解为()(*)()mf x x xg x =- 其中m 为正整数,()g x 满足()0g x ≠,则*x 是方程(7.1)的根.当m=1时,称*x 为单根;当m>1时,称*x 为m 重根.若()g x 充分光滑,*x 是方程(7.1)的m 重根,则有(1)()(*)'(*)...(*)0,(*)m m f x f x f x f x -====≠ 若()f x 在[a,b]上连续且()()0f a f b <,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法设()f x 在[a,b]上连续,()()0f a f b <,则()0f x =在(a,b)内有根*x .再设()0f x =在(a,b)内仅有一个根.令00,a a b b ==,计算0001()2x a b =+和0()f x .若0()0f x =则*x x =,结束计算;若00()()0f a f x >,则令10,1a x b b ==,得新的有根区间11[,]a b ;若00()()0f a f x <,则令10,a a bx ==,得新的有根区间11[,]a b .0011[,][,]a b a b ⊂,11001()2b a b a -=-.再令1111()2x a b =+计算1()f x ,同上法得出新的有根区间22[,]a b ,如此反复进行,可得一有根区间套1100...[,][,]...[,]n n n n a b a b a b --⊂⊂⊂⊂且110011*,0,1,2,...,()...()22n n n n n n a x b n b a b a b a --<<=-=-==-.故1l i m ()0,l i m l i m ()*2n n n n n n n nb a x a b x →∞→∞→∞-==+=因此,1()2n n n x a b =+可作为()0f x =的近似根,且有误差估计11|*|()2n n x x b a +-≤- (7.2)2.迭代法将方程式(7.1)等价变形为 ()x x ϕ= (7.3)若要求*x 满足(*)0f x =则*(*)x x ϕ=;反之亦然.称*x 为函数()x ϕ的一个不动点.求方程(7.1)的根等价于求()x ϕ的不动点由式(7.3)产生的不动点迭代关系式(也称简单迭代法)为1(),0,1,2...k k x x k ϕ+== (7.4)函数()x ϕ称为迭代函数.如果对任意1(),0,1,2...k k x x k ϕ+==,由式(7.4)产生的序列{}k x 有极限 l i m *k k x x →∞=则称不动点迭代法(7.4)收敛.定理7.1(不动点存在性定理)设()[,]x C a b ϕ∈满足以下两个条件: 1.对任意[,]x a b ∈有();a x b ϕ≤≤2.存在正常数1L <,使对任意,[,]x y a b ∈,都有|()()|||x y x y ϕϕ-≤- (7.5) 则()x ϕ在[,]a b 上存在惟一的不动点*x .定理7.2(不动点迭代法的全局收敛性定理)设()[,]x C a b ϕ∈满足定理7.1中的两个条件,则对任意0[,]x a b ∈,由(7.4)式得到的迭代序列{}k x 收敛.到()x ϕ的不动点,并有误差估计式1|*|||1k k k Lx x x x L --≤-- (7.6) 和 1|*|||1kk k k L x x x x L --≤-- (7.7)定理7.3(不动点迭代法的局部收敛性定理)设*x 为()x ϕ的不动点,'()x ϕ在*x 的某个邻域连续,且|'()|1x ϕ<,则迭代法(7.4)局部收敛.收敛阶的概念 设迭代过程(7.4)收敛于方程()x x ϕ=的根*x ,如果迭代误差*k k e x x =-当k →∞时成产下列渐近关系式1(0)k k e C C e +→≠常数 (7.8) 则称该迭代过程是p 阶收敛的.特别地,p=1时称线性收敛,p>1时称超线性收敛,p=2时称平方收敛.定理7.4(收敛阶定理)对于迭代过程(7.4),如果()()K x ϕ在所求根*x 的邻近连续,并且(1)()'(*)''(*)...(*)0(*)0p p x x x x ϕϕϕϕ-====≠ (7.9)则该迭代过程在点*x 的邻近是收敛的,并有()11lim(*)!p k p k ke x e p ϕ+→∞= (7.10)斯蒂芬森(Steffensen)迭代法 当不动点迭代法(7.4)只有线性收敛阶,甚至于不收敛时,可用斯蒂芬森迭代法进行加速.具体公式为21(),()()20,1,2,...k k k k k k k k k k ky x z y y x x x z y x k ϕϕ+==-=--+= (7.11)此法也可写成如下不动点迭代式12(),0,1,2,...(())()(())2()k k x x k x x x x x x x ψϕψϕϕϕ+==-=--+ (7.12)定理7.5(斯蒂芬森迭代收敛定理) 设*x 为式(7.12)中()x ψ的不动点,则*x 是()x ϕ的不动点;设''()x ϕ存在,'(*)1x ϕ≠,则*x 是()x ψ的不动点,则斯蒂芬森迭代法(7.11)是2阶收敛的. 3.牛顿迭代法牛顿迭代法是一种特殊的不动点迭代法,其计算公式为其迭代函数为1(),0,1,2,...'()k k k k f x x x k f x +=-= (7.13)()()'()f x x x f x ϕ=-牛顿迭代法的收敛速度 当(*)0,'(*)0,''(*)0f x f x f x =≠≠时,容易证明,'(*)0f x ≠,''(*)''(*)0'(*)f x x f x ϕ=≠,由定理7.4知,牛顿迭代法是平方收敛的,且12''(*)l i m 2'(*)k k k e f x e f x +→∞= (7.14) 重根情形的牛顿迭代法 当*x 是()0f x =的m 重根(2)m ≥时,迭代函数()()'()f x x x f x ϕ=-在*x 处的导数1'(*)10x m ϕ=-≠,且|'(*)|1x ϕ<.所以牛顿迭代法求重根只是线性收敛.若*x 的重数m 知道,则迭代式1(),0,1,2,...'()k k k k f x x x mk f x +==-= (7.15)求重根二阶收敛.当m 未知时,*x 一定是函数()()'()f x x f x μ=的单重零点,此时迭代式1()()'()'()['()]()''()0,1,2,...k k kk k k k kk k x f x f x x x x x f x f x f x k μμ+=-=--= (7.16)也是二阶收敛的.简化牛顿法 如下迭代法10(),0,1,2,...'()k k k f x x x k f x +=-=称为简化牛顿法或平行弦法.牛顿下山法 为防止迭代不收敛,可采用牛顿下山法.具体方法见教材. 4.弦截法将牛顿迭代法(7.13)中的'()k f x 用()f x 在1k x -,k x 处的一阶差商来代替,即可得弦截法111()()()()k k k k k k k f x x x x x f x f x ++-=--- (7.17)定理7.6假设()f x 在其零点*x 的邻域:|*|x x δ∆-≤内具有二阶连续导数,且对任意x ∈∆有'()0f x ≠,又初值01,x x ∈∆,,则当邻域∆充分小时,弦截法(7.17)将按阶151.6182p +=≈收敛到*x .这里p 是方程210λλ--=的正根.5.抛物线法弦截法可以理解为用过11(,()),(())k k k k x f x x f x ---两点的直线方程的根近似替()0f x =的根.若已知()0f x =的三个近似根k x ,1k x -,2k x -用过1122(,()),(,()),(,())k k k k kk x f x x f x x f x ----的抛物线方程的根近似代替()0f x =的根,所得的迭代法称为抛物线法,也称密勒(Muller)法.当()f x 在*x 的邻近有三阶连续导数,'(*)0f x ≠,则抛物线法局部收敛,且收敛阶为 1.839 1.84p =≈.二、知识结构图10[1,2]1x x --=≤≤--∈3-3-6k k 32三、常考题型及典型题精解例7-1 证明方程x 在上有一个实根x*,并用二分法求这个根,要求|x -x*|10.若要求|x -x*|10,需二分区间[1,2]多少次?解 设f(x)=x ,则f(1)=-1<0,f(2)=5>0,故方程f(x)=0在[1,2]上有根x*.又因f'(x)=3x -1,所以当x [1,2]时,f'(x)>0,即f (x)=0在[1,2]上有惟一实根x*.用二分法计算结果如表7-1所示.表7-1k k ak b k x ()k f x 的符号0 1 2 3 4 5 6 7 81 1 1.25 1.25 1.3125 1.3125 1.3125 1.3204 1.32432 1.5 1.5 1.375 1.375 1.13438 1.3282 1.32821.5 1.25 1.375 1.3125 1.3438 1.3282 1.3204 1.3243 1.3263+ - + - + + - - +9 1.3243 1.3282 1.32631.3253 +610x e -≤≤⨯≤≤≤≤≥∈-3-39910-6k k k+101此时x =1.3253满足|x -x*|0.9771010,可以作为x*的近2似值.1若要求|x -x*|,只需|x -x*|10即可,解得k+119.932,2即只需把[1,2]二分20次就能满足精度要求.例7-2 已知函数方程(x-2)=1,(1)确定有根区间[a,b];(2)构造不动点迭代公式使之对任意初始近似x [a,b],31|10.k x ---<k 迭代方法均收敛;(3)用所构造的公式计算根的近似值,要求|x1lim lim x x x x x e e e e →+∞→-∞∞∞∞∈解 (1)令f(x)=(x-2)-1,由于f(2)=-1<0,f(3)=-1>0,因此区间[2,3]是方程f(x)=0的一个有根区间.又因f'(x)=(x-1),f(x)=+,f(x)=-1,f'(1)=--1<0,当x>1时f(x)单增,x<1时f(x)单减,故f(x)=0在(-,+)内有且仅有一根x*,即x*[2,3].2'k k x x x x x x e e e e e e e ϕϕϕ-----∈∈≤≤≤∀∈k+100k+1(2)将(x-2)=1等价变形为x=2+,x [2,3].则(x)=2+.由于当x [2,3]时2(x)3,|(x)|=|-|<1故不动点迭代法x =2+,k=0,1,2,...,对x [2,3]均收敛.(3)取x =2.5,利用x =2+进行迭代计算,结果如表7-2所示.表7-2k k x 1||k k x x --0 1 2 3 42.5 2.082084999 2.124670004 2.119472387 2.1200949760.417915001 0.042585005 0.0005197617 0.0006225894 2.120094976.73cos 3120cos c k x x x x ϕ≈=--+=∈≤4k+10-30k+1k+1k 此时x 已满足误差要求,即x*例 考虑求解方程2的迭代公式2x =4+,k=0,1,2,...3(1)试证:对任意初始近似x R,该方法收敛;(2)取x =4,求根的近似值x ,要求|x -x |10;(3)所给方法的收敛阶是多少?2解 (1)由迭代公式知,迭代函数(x)=4+3{}os ,(,).|'sin |1(,)x x x ϕϕϕ∈-∞+∞≤<-∞+∞∀∈0k 022由于(x)的值域介于(4-)与(4+)之间,且3322(x)|=|-33故根据定理7.1,7.2知,(x)在内存在惟一的不动点x*,且对x R,迭代公式得到的序列x 收敛于x*.(2) 取x =4,迭代计算结果如表7-3所示.表7-3k k x 1||k k x x --0 1 2 3 4 54 3.564237587 3.391995168 3.354124827 3.348333384 3.3475299030.435762413 0.172242419 0.037870341 0.005791443 0.000803481此时5x 已满足误差要求,即5* 3.347529903x x ≈=(3)由于'(*)0.1363231290x ϕ≈≠,故根据定理7 .4知方法是线性收敛的,并且有1lim'(*)k k k e x e ϕ+→∞=。

数值分析课件 数值分析复习

n
1!
n
1
x
其中 a,b 且依赖于 x , n1 x x x0 x x1 x xn 。
Rn
x
M n1
n 1!
n1
x
17
Newton 插值
为什么 Newton 插值
Lagrange 插值简单易用,但若要增加一个节点时,全部基
函数 lk(x) 都需重新计算,很不方便 !
解决办法
n k0
n
yk
i0,ik
x xi xk xi
Ln(x) 就称为 f(x) 的 Lagrange 插值多项式
16
插值余项
插值余项的估计
定理 设 f n x 在 a,b 上连续, f n1 x 在 a,b 内存在,那
么,对任何 x a,b ,插值余项 Rn x f x Ln x
f n1
6
误差估计
误差估计:估计误差限或相对误差限
简单算术运算的误差估计
记 (x*) 为 x* 的误差限,则有
x1x2 x2 x1 x1 x2
x1 x2
|
x2
|
x1 | x1 |
| x2 |2
x2
7
误差估计
一元可微函数 f (x) 的误差估计
设一元函数 f (x) 可微,x*为 x 的近似值,则有
er* =
x* - x x
为近似值 x* 的 相对误差。
由于精确值难以求出,通常也采用下面的定义
er* =
x* - x x*
若存在正数 Rr*,使|er*| <= Rr*,则称 Rr*为 相对误差限
5
有效数字
定义:若近似值 x* 的误差限是某一位的半个单位,且该位到 x* 的第一位非零数字共有 n 位,则称 x* 有 n 位有效数字。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档