2018年河北省唐山市丰润区中考数学一模试卷(含答案)

合集下载

2018届中考数学一模试题(含解析)

2018届中考数学一模试题(含解析)

山东省济南市平阴县2018届中考数学一模试题一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下面四个数中比﹣2小的数是()A.1 B.0 C.﹣1 D.﹣32.如图,l1∥l2,∠1=120°,∠2=100°,则∠3=()A.20° B.40° C.50° D.60°3.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001244.下列事件:①打开电视机,它正在播广告;②从只装有红球的口袋中,任意摸出一个球,恰好是白球;③两次抛掷正方体骰子,掷得的数字之和小于13;④抛掷硬币1000次,第1000次正面向上.其中为随机事件的是()A.①③ B.①④ C.②③ D.②④5.下列运算正确的是()A.(3xy2)2=6x2y4B.2x﹣2=C.(﹣x)7÷(﹣x)2=﹣x5D.(6x2)2÷3xy=2xy36.如图是正方体的展开图,原正方体相对两个面上的数字和最小是()A.4 B.6 C.7 D.87.下列二次三项式是完全平方式的是()A.x2﹣8x﹣16 B.x2+8x+16 C.x2﹣4x﹣16 D.x2+4x+168.数据1,2,x,﹣1,﹣2的平均数是0,则这组数据的方差是()A.1 B.2 C.3 D.49.如图,小正方形的边长均为1,则∠1的正切值为()A.B.C.D.10.A(x1,y1)、B(x2,y2)是一次函数y=kx+2(k>0)图象上不同的两点,若t=(x1﹣x2)(y1﹣y2),则()A.t<0 B.t=0 C.t>0 D.t≤011.如图,等边三角形OAB的一边OA在x轴上,双曲线y=在第一象限内的图象经过OB 边的中点C,则点B的坐标是()A.(1,)B.(,1)C.(2,)D.(,2)12.如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A.B.C.D.13.定义:a是不为1的有理数,我们把称为a的差倒数,如2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是 a3的差倒数,…,以此类推,则a2018为()A. B.C.3 D.114.如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是()A.(,1)B.(1,﹣) C.(2,﹣2)D.(2,﹣2)15.如图,已知抛物线y=ax2+bx+c与轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论:①b>0;②a﹣b+c<0;③阴影部分的面积为4;④若c=﹣1,则b2=4a.正确的是()A.①③ B.②③ C.②④ D.③④二、填空题(本大题共6个小题.每小题3分,共18分.)16.分解因式:x3﹣2x2y+xy2= .17.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的一个根是0,则m的值是.18.不等式组的解集为.19.如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为.20.如图,是一个半圆和抛物线的一部分围成的“芒果”,已知点A、B、C、D分别是“芒果”与坐标轴的交点,AB是半圆的直径,抛物线的解析式为y=x2﹣,则图中CD的长为.21.如图,四边形ABCD与四边形AECF都是菱形,点E、F在BD上.已知∠BAD=120°,∠EAF=30°,则= .三、解答题(本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤.)22.(1)化简:(a+b)(a﹣b)+2b2(2)解方程:.23.(1)已知:如图,点M在正方形ABCD的对角线BD上.求证:AM=CM.(2)如图,在⊙O中,过直径AB延长线上的点C作⊙O的一条切线,切点为D,若AC=7,AB=4.求:cosC的值.24.某小学在6月1日组织师生共110人到趵突泉公园游览,趵突泉公园规定:成人票价每位40元,学生票价每位20元.该学校购票共花费2400元,在这次游览活动中,教师和学生各有多少人?25.在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y.(1)计算由x、y确定的点(x,y)在函数y=﹣x+5的图象上的概率.(2)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6则小明胜,若x、y满足xy<6则小红胜,这个游戏公平吗?说明理由.若不公平,请写出公平的游戏规则.26.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A (1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.27.(1)如图1,△ABC中,AB=AC,P为BC上任一点,PE⊥AB于E,PF⊥AC于F,BM⊥AC 于M.求证:PE+PF=BM.(2)应用:如图2所示,已知菱形ABCD的对角线的交点为O,AC=2,∠BAD=60°,BD边上有2018个不同的点P1,P2,P3,…P2018,过点P i(i=1,2,3,…2018)作P i E i⊥AB于E i,P i F i⊥AC于F i.计算P1E1+P1F1+P2E2+P2F2+…+P2018E2018+P2018F2018的值.28.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C (0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.2018年山东省济南市平阴县中考数学一模试卷参考答案与试题解析一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下面四个数中比﹣2小的数是()A.1 B.0 C.﹣1 D.﹣3【考点】有理数大小比较.【分析】根据有理数大小比较的法则直接求得结果,再判定正确选项.【解答】解:∵正数和0大于负数,∴排除A与B,即只需和C、D比较即可求得正确结果.∵|﹣2|=2,|﹣1|=1,|﹣3|=3,∴3>2>1,即|﹣3|>|﹣2|>|﹣1|,∴﹣3<﹣2<﹣1.故选D.【点评】考查了有理数大小比较法则.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.2.如图,l1∥l2,∠1=120°,∠2=100°,则∠3=()A.20° B.40° C.50° D.60°【考点】三角形的外角性质;平行线的性质.【专题】计算题.【分析】先延长∠1和∠2的公共边交l1于一点,利用两直线平行,同旁内角互补求出∠4的度数,再利用外角性质求解.【解答】解:如图,延长∠1和∠2的公共边交l1于一点,∵l1∥l2,∠1=120°,∴∠4=180°﹣∠1=180°﹣120°=60°,∴∠3=∠2﹣∠4=100°﹣60°=40°.故选B.【点评】本题主要考查作辅助线构造三角形,然后再利用平行线的性质和外角性质求解.3.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】科学记数法—原数.【专题】应用题.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.【点评】本题考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n 位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.4.下列事件:①打开电视机,它正在播广告;②从只装有红球的口袋中,任意摸出一个球,恰好是白球;③两次抛掷正方体骰子,掷得的数字之和小于13;④抛掷硬币1000次,第1000次正面向上.其中为随机事件的是()A.①③ B.①④ C.②③ D.②④【考点】随机事件.【分析】找到可能发生,也可能不发生的事件即可.【解答】解:①④可能发生,也可能不发生为随机事件;②一定不会发生,是不可能事件③一定会发生,是必然事件.故选B.【点评】用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.下列运算正确的是()A.(3xy2)2=6x2y4B.2x﹣2=C.(﹣x)7÷(﹣x)2=﹣x5D.(6x2)2÷3xy=2xy3【考点】整式的除法;幂的乘方与积的乘方;负整数指数幂.【专题】计算题.【分析】A、原式利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断;B、原式利用负指数幂法则计算得到结果,即可做出判断;C、原式利用同底数幂的除法,以及乘方的意义计算得到结果,即可做出判断;D、原式先计算乘方运算,再计算除法运算得到结果,即可做出判断.【解答】解:A、原式=9x2y4,故选项错误;B、原式=,故选项错误;C、原式=(﹣x)5=﹣x5,故选项正确;D、原式=36x2÷3xy=,故选项错误.故选C.【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.6.如图是正方体的展开图,原正方体相对两个面上的数字和最小是()A.4 B.6 C.7 D.8【考点】专题:正方体相对两个面上的文字.【分析】根据相对的面相隔一个面得到相对的2个数,相加后比较即可.【解答】解:易得2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,所以原正方体相对两个面上的数字和最小的是6.故选B.【点评】考查了正方体相对两个面上,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.7.下列二次三项式是完全平方式的是()A.x2﹣8x﹣16 B.x2+8x+16 C.x2﹣4x﹣16 D.x2+4x+16【考点】完全平方式.【分析】根据完全平方公式:(a±b)2=a2±2ab+b2,对各选项分析判断后利用排除法求解.【解答】解:A、应为x2﹣8x+16,故A错误;B、x2+8x+16,正确;C、应为x2﹣4x+4,故C错误;D、应为x2+4x+4,故D错误.故选B.【点评】本题主要考查完全平方公式的结构特点,需要熟练掌握并灵活运用.8.数据1,2,x,﹣1,﹣2的平均数是0,则这组数据的方差是()A.1 B.2 C.3 D.4【考点】方差;算术平均数.【分析】先由平均数的公式计算出x的值,再根据方差的公式计算.【解答】解:1+2+x﹣1﹣2=0,解得x=0,方差S2= [(1﹣0)2+(2﹣0)2+(0﹣0)2+(﹣1﹣0)2+(﹣2﹣0)2]=2.故选B.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.9.如图,小正方形的边长均为1,则∠1的正切值为()A.B.C.D.【考点】圆周角定理;锐角三角函数的定义.【分析】首先由圆周角证得∠1=∠2,然后由三角函数的定义,求得答案.【解答】解:如图,∵∠1=∠2,∴tan∠1=tan∠2=.故选D.【点评】此题考查了圆周角定理以及三角函数的定义.注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等是关键.10.A(x1,y1)、B(x2,y2)是一次函数y=kx+2(k>0)图象上不同的两点,若t=(x1﹣x2)(y1﹣y2),则()A.t<0 B.t=0 C.t>0 D.t≤0【考点】一次函数图象上点的坐标特征.【专题】压轴题;整体思想.【分析】将A(x1,y1)、B(x2,y2)代入一次函数y=kx+2(k>0)的解析式,根据非负数的性质和k的值大于0解答.【解答】解:∵A(x1,y1)、B(x2,y2)是一次函数y=kx+2(k>0)图象上不同的两点,∴x1﹣x2≠0,∴y1=kx1+2,y2=kx2+2则t=(x1﹣x2)(y1﹣y2)=(x1﹣x2)(kx1+2﹣kx2﹣2)=(x1﹣x2)k(x1﹣x2)=k(x1﹣x2)2,∵x1﹣x2≠0,k>0,∴k(x1﹣x2)2>0,∴t>0,故选C.【点评】本题考查一定经过某点的函数应适合这个点的横纵坐标.代入解析式后,根据式子特点,利用非负数的性质解答.11.如图,等边三角形OAB的一边OA在x轴上,双曲线y=在第一象限内的图象经过OB 边的中点C,则点B的坐标是()A.(1,)B.(,1)C.(2,)D.(,2)【考点】反比例函数图象上点的坐标特征;等边三角形的性质.【专题】计算题.【分析】根据反比例函数图象上点的坐标特征可设C点坐标为(t,),由于C点为OB 的中点,则B点坐标为(2t,),再根据等边三角形的性质得∠BOD=60°,利用正切的定义得到tan60°==,即=•2t,然后解方程求出t即可得到B点坐标.【解答】解:设C点坐标为(t,),作BD⊥OA,如图,∵双曲线y=在第一象限内的图象经过OB边的中点C∴B点坐标为(2t,),∵△OAB为等边三角形,∴∠BOD=60°,∴tan60°==,∴=•2t,解得t=1(t=﹣舍去),∴B点坐标为(2,2).故选C.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等边三角形的性质.12.如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A.B.C.D.【考点】动点问题的函数图象.【专题】数形结合.【分析】分三段来考虑点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP 的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小,据此选择即可.【解答】解:点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小.故选:A.【点评】本题主要考查了动点问题的函数图象.注意分段考虑.13.定义:a是不为1的有理数,我们把称为a的差倒数,如2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是 a3的差倒数,…,以此类推,则a2018为()A. B.C.3 D.1【考点】规律型:数字的变化类;倒数.【分析】据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2018除以3,根据余数的情况确定出与a2018相同的数即可得解.【解答】解:∵a1=﹣,∴a2==,a3==3,a4==﹣,…2018÷3=672.∴a2018与a3相同,为3.故选:C.【点评】本题是对数字变化规律的考查,理解差倒数的定义并求出每3个数为一个循环组依次循环是解题的关键.14.如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是()A.(,1)B.(1,﹣) C.(2,﹣2)D.(2,﹣2)【考点】坐标与图形变化-旋转.【专题】计算题.【分析】根据题意画出△AOB绕着O点顺时针旋转120°得到的△COD,连接OP,OQ,过Q 作QM⊥y轴,由旋转的性质得到∠POQ=120°,根据AP=BP=OP=2,得到∠AOP度数,进而求出∠MOQ度数为30°,在直角三角形OMQ中求出OM与MQ的长,即可确定出Q的坐标.【解答】解:根据题意画出△AOB绕着O点顺时针旋转120°得到的△COD,连接OP,OQ,过Q作QM⊥y轴,∴∠POQ=120°,∵AP=OP,∴∠BAO=∠POA=30°,∴∠MOQ=30°,在Rt△OMQ中,OQ=OP=2,∴MQ=1,OM=,则P的对应点Q的坐标为(1,﹣),故选B【点评】此题考查了坐标与图形变化﹣旋转,熟练掌握旋转的性质是解本题的关键.15.如图,已知抛物线y=ax2+bx+c与轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论:①b>0;②a﹣b+c<0;③阴影部分的面积为4;④若c=﹣1,则b2=4a.正确的是()A.①③ B.②③ C.②④ D.③④【考点】二次函数图象与几何变换.【分析】①首先根据抛物线开口向上,可得a>0;然后根据对称轴为x=﹣>0,可得b <0,据此判断即可.②根据抛物线y=ax2+bx+c的图象,可得x=﹣1时,y>0,即a﹣b+c>0,据此判断即可.③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底×高,求出阴影部分的面积是多少即可.④根据函数的最小值是,判断出c=﹣1时,a、b的关系即可.【解答】解:∵抛物线开口向上,∴a>0,又∵对称轴为x=﹣>0,∴b<0,∴结论①不正确;∵x=﹣1时,y>0,∴a﹣b+c>0,∴结论②不正确;∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=ax2+bx+c的最小值是y=﹣2,∴平行四边形的高是2,∴阴影部分的面积是:2×2=4,∴结论③正确;∵=﹣2,c=﹣1,∴b2=4a,∴结论④正确.综上,结论正确的是:③④.故选D.【点评】此题主要考查了二次函数的图象与几何变换,二次函数的图象与系数的关系,熟练掌握平移的规律和二次函数的性质,解答此类问题的关键.二、填空题(本大题共6个小题.每小题3分,共18分.)16.分解因式:x3﹣2x2y+xy2= x(x﹣y)2.【考点】提公因式法与公式法的综合运用.【专题】常规题型.【分析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故答案为:x(x﹣y)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的一个根是0,则m的值是 2 .【考点】一元二次方程的解.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.把x=0代入方程,即可得到一个关于m的方程,从而求得m的值,还要注意一元二次方程的系数不能等于0.【解答】解:把x=0代入(m﹣1)x2+5x+m2﹣3m+2=0中得:m2﹣3m+2=0,解得:m=1或m=2,∵m﹣1≠0,∴m≠1,∴m=2,故答案为:2.【点评】此题主要考查的是一元二次方程的根即方程的解的定义,解题过程中要注意一元二次方程的系数不能等于0.18.不等式组的解集为﹣2≤x<2 .【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x≥﹣2,解②得:x<2.则不等式组的解集是:﹣2≤x<2.故答案是:﹣2≤x<2.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.19.如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为cm .【考点】相似三角形的判定与性质;正方形的性质.【分析】根据三角形的中位线定理可得出BC=4,由AB=AC,可证明BG=CF=1,由勾股定理求出CE,即可得出AC的长.【解答】解:∵点D、E分别是边AB、AC的中点,∴DE=BC,∵DE=2cm,∴BC=4cm,∵AB=AC,四边形DEFG是正方形.∴△BDG≌△CEF,∴BG=CF=1,∴EC=,∴AC=2cm.故答案为:2cm.【点评】本题考查了相似三角形的判定、勾股定理、等腰三角形的性质以及正方形的性质,是基础题,比较简单.20.如图,是一个半圆和抛物线的一部分围成的“芒果”,已知点A、B、C、D分别是“芒果”与坐标轴的交点,AB是半圆的直径,抛物线的解析式为y=x2﹣,则图中CD的长为.【考点】抛物线与x轴的交点.【专题】新定义.【分析】首先令y=x2﹣=0,即可求出AB的长,进而得到OC的长,令x=0,求出y的值,进而得到OD的长,由CD=OC+DO即可求出答案.【解答】解:令y=x2﹣=0,解得x=1或﹣1,即AB=2,故CO=1,令x=0,解得y=﹣,即OD=,所以CD=CO+OD=1+=,故答案为.【点评】本题主要考查了抛物线与坐标轴的交点问题,理解“果圆”的定义是解题的关键,此题难度不大.21.如图,四边形ABCD与四边形AECF都是菱形,点E、F在BD上.已知∠BAD=120°,∠EAF=30°,则= .【考点】菱形的性质.【分析】利用菱形的性质对角线平分对角,结合勾股定理以及锐角三角函数关系表示出AB,AE的长,进而求出即可.【解答】解:连接AC,过点E作EN⊥AB于点N,∵四边形ABCD与四边形AECF都是菱形,点E、F在BD上,∠BAD=120°,∠EAF=30°,∴∠ABD=30°,∠EAC=15°,则∠BAE=45°,∴设AN=x,则NE=x,AE=x,BN==x,∴==.故答案为:.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,表示出AB,AE的长是解题关键.三、解答题(本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤.)22.(1)化简:(a+b)(a﹣b)+2b2(2)解方程:.【考点】整式的混合运算;解分式方程.【分析】(1)首先利用平方差公式计算,进一步合并得出答案即可;(2)利用解分式方程的方法与步骤求得方程的解即可.【解答】解:(1)原式=a2﹣b2+2b2=a2+b2;(2)方程两边同乘(x﹣1)得x﹣2=2(x﹣1)解得:x=0经检验x=0是原方程的根.【点评】此题考查整式的混合运算与解分式方程,掌握计算的方法u步骤是解决问题的关键.23.(1)已知:如图,点M在正方形ABCD的对角线BD上.求证:AM=CM.(2)如图,在⊙O中,过直径AB延长线上的点C作⊙O的一条切线,切点为D,若AC=7,AB=4.求:cosC的值.【考点】切线的性质;全等三角形的判定与性质;正方形的性质.【分析】(1)首先根据四边形ABCD是正方形,可得AD=CD,∠ADM=∠CDM=45°,然后根据全等三角形判定的方法,判断出△ADM≌△CDM,即可判断出AM=CM;(2)连接OD,根据切线的性质可得∠ODC=90°,可得cosC的值.【解答】(1)证明:∵四边形是ABCD正方形,∴AD=DC,∠ADB=∠CDB=45°,在△ADM和△CDM中,∴△ADM≌△CDM(SAS)∴AM=CM;(2)解:连接OD,∵CD为圆O的切线,∴∠ODC=90°,∵AB=4,∴OA=OD=2,∵AC=7∴OC=5,在Rt△COD中,根据勾股定理得 CD=,∴cosC=.【点评】(1)此题考查了正方形的性质和应用,要熟练掌握,解答此题的关键是要明确:①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.(2)本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.24.某小学在6月1日组织师生共110人到趵突泉公园游览,趵突泉公园规定:成人票价每位40元,学生票价每位20元.该学校购票共花费2400元,在这次游览活动中,教师和学生各有多少人?【考点】二元一次方程组的应用.【分析】用二元一次方程组解决问题的关键是找到2个合适的等量关系.①教师人数+学生人数=110人,②教师的总票钱+学生的总票钱2400元.根据题意列出方程组,解得答案.【解答】解:设在这次游览活动中,教师有x人,学生有y人,由题意得:,解得:,答:在这次游览活动中,教师有10人,学生各有100人.【点评】此题主要考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组.25.在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y.(1)计算由x、y确定的点(x,y)在函数y=﹣x+5的图象上的概率.(2)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6则小明胜,若x、y满足xy<6则小红胜,这个游戏公平吗?说明理由.若不公平,请写出公平的游戏规则.【考点】游戏公平性;一次函数图象上点的坐标特征;列表法与树状图法.【专题】压轴题.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(x,y)在函数y=﹣x+5的图象上的情况,利用概率公式即可求得答案;(2)根据(1)求得小明胜与小红胜的概率,比较概率大小,即可确定游戏是否公平,只要概率等则公平,否则不公平.【解答】解:(1)画树状图得:∵共有12种等可能的结果,在函数y=﹣x+5的图象上的有:(1,4),(2,3),(3,2),(4,1),∴点(x,y)在函数y=﹣x+5的图象上的概率为: =;(2)∵x、y满足xy>6有:(2,4),(3,4),(4,2),(4,3)共4种情况,x、y 满足xy<6有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)共6种情况,∴P(小明胜)==,P(小红胜)==,∴P(小明胜)≠P(小红胜),∴不公平;公平的游戏规则为:若x、y满足xy≥6则小明胜,若x、y满足xy<6则小红胜.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.26.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A (1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.【考点】反比例函数与一次函数的交点问题;轴对称-最短路线问题.【分析】(1)把点A(1,a)代入一次函数y=﹣x+4,即可得出a,再把点A坐标代入反比例函数y=,即可得出k,两个函数解析式联立求得点B坐标;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB 的值最小,求出直线AD的解析式,令y=0,即可得出点P坐标.【解答】解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=,得k=3,∴反比例函数的表达式y=,两个函数解析式联立列方程组得,解得x1=1,x2=3,∴点B坐标(3,1);(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB 的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,,解得m=﹣2,n=5,∴直线AD的解析式为y=﹣2x+5,令y=0,得x=,∴点P坐标(,0),S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=.【点评】本题考查了一次函数和反比例函数相交的有关问题;通常先求得反比例函数解析式;较复杂三角形的面积可被x轴或y轴分割为2个三角形的面积和.27.(1)如图1,△ABC中,AB=AC,P为BC上任一点,PE⊥AB于E,PF⊥AC于F,BM⊥AC 于M.求证:PE+PF=BM.(2)应用:如图2所示,已知菱形ABCD的对角线的交点为O,AC=2,∠BAD=60°,BD边上有2018个不同的点P1,P2,P3,…P2018,过点P i(i=1,2,3,…2018)作P i E i⊥AB于E i,P i F i⊥AC于F i.计算P1E1+P1F1+P2E2+P2F2+…+P2018E2018+P2018F2018的值.【考点】菱形的性质;等腰三角形的性质.【分析】(1)连接AP,可分别表示出△ABC、△ABP、△ACP的面积,根据面积相等可证得结论;(2)连接AP1,根据菱形性质得出AB=AD,AO=OC=AC=1,AC⊥BD,得出等边三角形ABD,推出AD=AB=BD,根据三角形面积公式求出P1E1+P1F1=P2E2+P2F2=P3E3+P3F3=P4E4+P4F4=…=AO=1,求出即可.【解答】(1)证明:连结AP,∵PE⊥AB PF⊥AC BM⊥AC∴S△ABP=AB×PE,S△ACP=AC×PFS△ABC=AC×BM,∵S△ABP+S△ACP=S△ABC∴AB×PE+AC×PF=AC×BM,∵AB=AC∴PE+PF=BM;(2)解:连接P1A,设AC与BD相交于点O,∵四边形ABCD是菱形,∴AB=AD,AO=OC=AC=×2=1,AC⊥BD,∵AB=AD,∠BAD=60°,∴△ABD是等边三角形,∴AB=BD=AD,∵S△ABD=S△ABP1+S△ADP1,∴×BD×AO=AB×P1E1+×AD×P1F1,∴P1E1+P1F1=AO=1,同理P2E2+P2F2=P3E3+P3F3=P4E4+P4F4=…=AO=1,∴P1E1+P1F1+P2E2+P2F2+…P2018E2018+P2018F2018的值为2018×1=2018.【点评】(1)本题主要考查等边三角形的性质及等积法,利用等积法得到AB•PE+AC•PF=AC•BM 是解题的关键.(2)本题考查了菱形的性质,等边三角形的性质和判定,三角形的面积的应用,关键是求出P1E1+P1F1=P2E2+P2F2=P3E3+P3F3=P4E4+P4F4=…=AO=1.28.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C (0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.【考点】二次函数综合题.【专题】压轴题.【分析】(1)由抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,则代入求得a,b,c,进而得解析式与顶点D.(2)由P在AD上,则可求AD解析式表示P点.由S△APE=•PE•y P,所以S可表示,进而由函数最值性质易得S最值.(3)由最值时,P为(﹣,3),则E与C重合.画示意图,P'过作P'M⊥y轴,设边长通过解直角三角形可求各边长度,进而得P'坐标.判断P′是否在该抛物线上,将x P'坐标代入解析式,判断是否为y P'即可.【解答】解:(1)∵抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,∴,解得,∴解析式为y=﹣x2﹣2x+3∵﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线顶点坐标D为(﹣1,4).(2)∵A(﹣3,0),D(﹣1,4),∴设AD为解析式为y=kx+b,有,解得,∴AD解析式:y=2x+6,∵P在AD上,∴P(x,2x+6),∴S△APE=•PE•y P=•(﹣x)•(2x+6)=﹣x2﹣3x(﹣3<x<﹣1),当x=﹣=﹣时,S取最大值.(3)如图1,设P′F与y轴交于点N,过P′作P′M⊥y轴于点M,。

2018年河北省石家庄市中考数学一模试卷(解析版)

2018年河北省石家庄市中考数学一模试卷(解析版)

2018年河北省石家庄市中考数学一模试卷一、选择题(本大题共16小题,共42.0分)1.计算:(−3)×(−5)=()A. −8B. 8C. −15D. 15【答案】D【解析】解:(−3)×(−5)=+(3×5)=15,故选:D.根据有理数的乘法法则计算可得.本题主要考查有理数的乘法,解题的关键是掌握有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.2.2016年上半年,天津市生产总值8500.91亿元,按可比价格计算,同步增长9.2%,将“8500.91”用科学记数法可表示为()A. 8.50091×103B. 8.50091×1011C. 8.50091×105D. 8.50091×1013【答案】A【解析】解:将8500.91用科学记数法表示为:8.50091×103.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是由相同的正方体木块粘在一起的几何体,它的主视图是()A.B.C.D.第1页,共18页【答案】B【解析】解:该几何体的主视图为:故选:B.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.使二次根式√x−1有意义的x的取值范围是()A. x≠1B. x>1C. x≤1D. x≥1【答案】D【解析】解:由题意得,x−1≥0,解得x≥1,故选:D.根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.5.一副三角板按如图所示的位置摆放,则图中与∠1相等的角有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】解:∠1=90∘−60∘=30∘,即与∠1相等的角有∠E,共1个,故选:A.先求出∠1的度数,即可得出选项.本题考查了余角与补角,能求出各个角的度数是解此题的关键.6.若()÷b2a =ba,则()中的式子是()A. bB. 1b C. baD. b3a2【答案】D【解析】解:由题意可知:ba ×b2a=b3a2故选:D.根据分式的运算法则即可求出答案.本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.7.已知关于x的方程x2−2x+k=0有实数根,则k的取值范围是()A. k<1B. k≤1C. k≤−1D. k≥1【答案】B【解析】解:△=b2−4ac=(−2)2−4k=4−4k≥0,∴k≤1.故选:B.根据方程有实根得出△≥0,求出不等式的解集即可.本题主要考查对根的判别式,解一元一次不等式等知识点的理解和掌握,理解方程x2−2x+k=0有实数根的含义是解此题的关键.8.把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是()A. 6→3B. 7→16C. 7→8D. 6→15【答案】D【解析】解:阴影部分的小正方形6→15,能使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形.故选:D.直接利用轴对称图形以及中心对称图形的性质分别分析得出答案.此题主要考查了中心对称图形以及轴对称图形,正确把握相关定义是解题关键.9.如图,△DEF与△ABC是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC的中点,则△DEF与△ABC的面积比是()A. 1:6B. 1:5C. 1:4D. 1:2【答案】C第3页,共18页【解析】解:∵△DEF与△ABC是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC的中点,∴两图形的位似之比为1:2,则△DEF与△ABC的面积比是1:4.故选:C.根据两三角形为位似图形,且点O是位似中心,D、E、F分别是OA、OB、OC的中点,求出两三角形的位似比,根据面积之比等于位似比的平方即可求出面积之比.此题考查了位似变换,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.10.在调查收集数据时,下列做法正确的是()A. 抽样调查选取样本时,所选样本可按自己的喜好选取B. 在医院里调查老年人的健康状况C. 电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人D. 检测某城市的空气质量,采用抽样调查的方式【答案】D【解析】解:A、抽样调查选取样本时,所选样本可按自己的喜好选取,错误;B、在医院里调查老年人的健康状况,错误;C、电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人,错误;D、检测某城市的空气质量,采用抽样调查的方式,正确.故选:D.直接利用全面调查与抽样调查的意义分别分析得出答案.此题主要考查了全面调查与抽样调查,正确理解抽样调查的意义是解题关键.11.如图,已知直线l及直线外一点P,观察图中的尺规作图痕迹,则下列结论不一定成立的是()A. PQ为直线l的垂线B. CA=CBC. PO=QOD. ∠APO=∠BPO【答案】C【解析】解:由作图方法可得出PQ是线段AB的垂直平分线,则PQ为直线l的垂线,故选项A正确,不合题意;CA=CB(垂直平分线上的点到线段两端点距离相等),故选项B正确,不合题意;无法得出PO=QO,故选项C错误,符合题意;可得PA=PB,PQ⊥AB,则∠APO=∠BPO,故选项D正确,不合题意;故选:C.直接利用线段垂直平分线的性质以及其基本作图,进而分析得出答案.此题主要考查了基本作图,正确掌握线段垂直平分线的性质是解题关键.12.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A. 180x −180(1+50%)x=1 B. 180(1+50%)x−180x=1C. 180x −180(1−50%)x=1 D. 180(1−50%)x−180x=1【答案】A【解析】解:设原来的平均车速为xkm/h,则根据题意可列方程为:180 x −180(1+50%)x=1.故选:A.直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.此题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题关键.13.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为()A. √3B. 2√3C. 3√32D. 2√33【答案】C【解析】解:如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6×12×1×1×sin60∘=3√32.故选:C.根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.14.如图,码头A在码头B的正西方向,甲,乙两船分别从A,B两个码头同时出发,且甲的速度是乙的速度的2倍,乙的航向是正北方向,为了使甲乙两船能够相遇,则甲的航向应该是()第5页,共18页A. 北偏东30∘B. 北偏东60∘C. 北偏东45∘D. 北偏西60∘【答案】B【解析】解:作AD//BC,如图,由题意,得∠CAB=30∘,∴∠DAC=60∘,甲的航向应该是北偏东60∘,故选:B.根据直角三角形的性质,可得∠BAC,根据余角的定义,可得∠DAC,根据方向角的表示方法,可得答案.本题考查了方向角,利用直角三角形的性质是解题关键,又利用了方向角.15.二次函数y=ax2+bx+c的图象如图所示,则直线y=ax+c不经过的象限是()bA. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:由图象可知抛物线开口向下,∴a<0,∵对称轴在y轴右侧,∴对称轴x=−b>0,2a∴b>0;∵抛物线与y轴的交点为在y轴的正半轴上,∴c>0;∵b>0,c>0,∴c>0,b∴一次函数y=ax+cb的图象不经过第三象限.故选:C.先由二次函数的图象确定a 、b、c字母系数的正负,再求出一次函数的图象所过的象限即可.本题考查了二次函数的图象与系数的关系,一次函数的性质,根据二次函数的图象确定二次函数的字母系数的取值范围是解题的关键.16.如图,已知点A(0,6),B(4,6),且点B在双曲线y=kx(k>0)上,在AB的延长线上取一点C,过点C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是()A. .6≤CE<8B. 8≤CE≤10C. .6≤CE<10D. .6≤CE<2√73【答案】D【解析】解:过D作DF⊥OA于F,∵点A(0,6),B(4,6),∴AB⊥y轴,AB=4,OA=6,∵CD=DE,∴AF=OF=3,∵点B在双曲线y=kx(k>0)上,∴k=4×6=24,∴反比例函数的解析式为:y=24x,∵过点C的直线交双曲线于点D,∴D点的纵坐标为3,代入y=24x得,3=24x,解得x=8,∴D(8,3),当O与E重合时,如图2,∵DF=8,∴AC=16,∵OA=6,∴CE=√AC2+OA2=2√73,当CE⊥x轴时,CE=OA=6,∴6≤CE≤2√73,第7页,共18页故选:D.过D作DF⊥OA于F,得到DF是梯形的中位线,根据反比例函数图形上点的坐标特征求出D的坐标,当O与E重合时,如图2,由DF=8,根据三角形的中位线的性质得到AC,根据勾股定理求得CE,当CE⊥x轴时,CE=OA=6,于是求得结果.本题考查了在平面直角坐标系中确定点的坐标,梯形和三角形的中位线的性质,正确的作出辅助线是解题的关键.二、填空题(本大题共3小题,共10.0分)17.计算:2−1−(2018)0=______.【答案】−12【解析】解:原式=12−1=−12.故答案为:−12.直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.如图,在边长为6的菱形ABCD中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是______.(结果保留π)【答案】6π【解析】解:由题意可得:所有的弧的半径为3,所有圆心角的和为:菱形的内角和,故图中阴影部分的周长是:360π×3180=6π.故答案为:6π.直接利用已知得出所有的弧的半径为3,所有圆心角的和为:菱形的内角和,即可得出答案.此题主要考查了弧长的计算以及菱形的性质,正确得出圆心角是解题关键.19.在平面直角坐标系xOy中,若干个半径为1个单位长度,圆心角是60∘的扇形按图中的方式摆放,动点K从原点O出发,沿着“半径OA→AB⏜→BC⏜→半径CD→半径DE…”的曲线运动,若点K在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒π3个单位长度,设第n秒运动到点K,(n为自然数),则K3的坐标是______,K2018的坐标是______【答案】(32,−√32)(1009,0)【解析】解:设第n秒运动到K n(n为自然数)点,观察,发现规律:K1(12,√32),K2(1,0),K3(32,−√32),K4(2,0),K5(52,√32),…,∴K4n+1(4n+12,√32),K4n+2(n+1,0),K4n+3(4n+32,−√32),K4n+4(2n+2,0).∵2018=4×504+2,∴K2018为(1009,0).故答案为:(32,−√32)(1009,0).设第n秒运动到K n(n为自然数)点,根据点K的运动规律找出部分K n点的坐标,根据坐标的变化找出变化规律“K4n+1(4n+12,√32),K4n+2(2n+1,0),K4n+3(4n+32,−√32),K4n+4(2n+2,0)”,依此规律即可得出结论.本题考查了规律型中的点的坐标,解题的关键是找出变化规律,本题属于中档题,难度不大,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键.三、计算题(本大题共1小题,共8.0分)20.已知:a+b=4(1)求代数式(a+1)(b+1)−ab值;(2)若代数式a2−2ab+b2+2a+2b的值等于17,求a−b的值.【答案】解:(1)原式=ab+a+b+1−ab=a+b+1,当a+b=4时,原式=4+1=5;(2)∵a2−2ab+b2+2a+2b=(a−b)2+2(a+b),∴(a−b)2+2×4=17,∴(a−b)2=9,则a−b=3或−3.【解析】(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;(2)由原式=(a−b)2+2(a+b)可得(a−b)2+2×4=17,据此进一步计算可得.本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的运算法则、因式分解的能力及整体思想的运用.四、解答题(本大题共6小题,共60.0分)21.为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵第9页,共18页爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:“祖冲之奖”的学生成绩统计表:分数/分80859095人数/人42104根据图表中的信息,解答下列问题:(1)这次获得“刘徽奖”的人数是______,并将条形统计图补充完整;(2)获得“祖冲之奖”的学生成绩的中位数是______分,众数是______分;(3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“−2”,“−1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y).用列表法或树状图法求这个点在第二象限的概率.【答案】40 90 90【解析】解:(1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%=48人,杨辉奖的人数为200×46%=92人,则刘徽奖的人数为200−(20+48+92)=40,补全统计图如下:故答案为:40;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分,故答案为:90、90;(3)列表法:−2−12−2(−2,−2)(−1,−2)(2,−2)−1(−2,−1)(−1,−1)(2,−1)2(−2,2)(−1,2)(2,2)∵第二象限的点有(−2,2)和(−1,2)∴P(点在第二象限)=29.(1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;(2)根据中位数和众数的定义求解可得;(3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.22.如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=3m.小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD 的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A′处时,有.(1)求A′到BD的距离;(2)求A′到地面的距离.第11页,共18页【答案】解:(1)如图2,作,垂足为F .∵AC ⊥BD ,;在中,∠1+∠3=90∘;图2 又,∴∠1+∠2=90∘, ∴∠2=∠3; 在△ACB 和中,{∠ACB =∠A′FB ∠2=∠3AB =A′B∴△ACB≌;∵AC//DE 且CD ⊥AC ,AE ⊥DE , ∴CD =AE =1.8;∴BC =BD −CD =3−1.8=1.2,,即到BD 的距离是1.2m .(2)由(1)知:△ACB≌∴BF =AC =2m , 作,垂足为H . , ,,即到地面的距离是1m .【解析】(1)作,垂足为F ,根据全等三角形的判定和性质解答即可;(2)根据全等三角形的性质解答即可.本题考查全等三角形的应用,解题的关键是正确寻找全等三角形全等的条件,灵活运用所学知识解决问题,属于中考常考题型.23. 如图,正方形ABCD 的边长为2,BC 边在x 轴上,BC 的中点与原点O 重合,过定点M(−2,0)与动点P(0,t)的直线MP 记做l .(1)若1的解析式为y =2x +4,判断此时点A 是否在直线l 上,并说明理由;(2)当直线1与AD 边有公共点时,求t 的取值范围.第13页,共18页【答案】解:(1)此时点A 在直线l 上; ∵BC =AB =2,点O 为BC 中点, ∴点B(−1,0),A(−1,2),把点A 的横坐标x =−1代入解析式y =2x +4,得 y =2×(−1)+4=2,等于点A 的纵坐标2, ∴此时点A 在直线l 上.(2)由题意可得,点D(1,2),及点M(−2,0),当直线l 经过点D 时,设l 的解析式为y =kx +t(k ≠0), ∴{k +t =2−2k+t=0,解得{k =23t =43∴当直线l 与AD 边有公共点时,t ≤4, 所以t 的取值范围是43≤t ≤4.【解析】(1)把点A 代入解析式,进而解答即可; (2)把点D(1,2),及点M(−2,0)代入解析式解答即可.本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.24. 已知:如图,在矩形纸片ABCD 中,AB =4,BC =3,翻折矩形纸片,使点A 落在对角线DB 上的点F 处,折痕为DE ,打开矩形纸片,并连接EF . (1)BD 的长为______; (2)求AE 的长;(3)在BE 上是否存在点P ,使得PF +PC 的值最小?若存在,请你画出点P 的位置,并求出这个最小值;若不存在,请说明理由. 【答案】5【解析】解:(1)∵矩形ABCD , ∴∠DAB =90∘,AD =BC =3,在Rt △ADB 中,DB =√AD 2+AB 2=√32+42=5, 故答案为:5;(2)设AE =x ,∵AB =4,∴BE =4−x , 在矩形ABCD 中,根据折叠的性质知: Rt △FDE≌Rt △ADE ,∴FE =AE =x ,FD =AD =BC =3, ∴BF =BD −FD =5−3=2,在Rt △BEF 中,根据勾股定理,得FE 2+BF 2=BE 2, 即x 2+4=(4−x)2,解得:x =32, ∴AE 的长为32; (3)存在,如图3,延长CB 到点G ,使BG =BC ,连接FG ,交BE 于点P ,连接PC , 则点P 即为所求, 此时有:PC =PG , ∴PF +PC =GF .过点F 作FH ⊥BC ,交BC 于点H ,则有FH//DC , ∴△BFH∽△BDC , ∴FHDC =BFBD =BH BC,即FH 4=25=BH 3,∴FH =85,BH =65, ∴GH =BG +BH =3+65=215,在Rt △GFH 中,根据勾股定理,得 ∴GF =√GH 2+FH 2=√(215)2+(85)2=√5055, 即PF +PC 的最小值为 √5055.(1)根据勾股定理解答即可;(2)设AE =x ,根据全等三角形的性质和勾股定理解答即可;(3)延长CB 到点G ,使BG =BC ,连接FG ,交BE 于点P ,连接PC ,利用相似三角形第15页,共18页的判定和性质解答即可.本题考查了四边形的综合题,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质等知识,知识点较多,难度较大,解答本题的关键是掌握设未知数列方程的思想.25. 某食品厂生产一种半成品食材,产量p(百千克)与销售价格x(元/千克)满足函数关系式p =12x +8,从市场反馈的信息发现,该半成品食材的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,如下表:已知按物价部门规定销售价格x 不低于2元/千克且不高于10元/千克 (1)求q 与x 的函数关系式;(2)当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x 的取值范围;(3)当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.若该半成品食材的成本是2元/千克. ①求厂家获得的利润y(百元)与销售价格x 的函数关系式;②当厂家获得的利润y(百元)随销售价格x 的上涨而增加时,直接写出x 的取值范围.(利润=售价−成本)【答案】解:(1)设q =kx +b(k,b 为常数且k ≠0), 当x =2时,q =12,当x =4时,q =10,代入解析式得, {4k +b =102k+b=12, 解得:{b =14k=−1,∴q 与x 的函数关系式为:q =−x +14;(2)当产量小于或等于市场需求量时,有p ≤q , ∴12x +8≤−x +14,解得:x ≤4, 又2≤x ≤10, ∴2≤x ≤4;(3)①当产量大于市场需求量时,可得4<x ≤10, 由题意得,厂家获得的利润是:y =qx −2p =−x 2+13x −16=−(x −132)2+1054;②∵当x ≤132时,y 随x 的增加而增加,又∵产量大于市场需求量时,有4<x ≤10, ∴当4<x ≤132时,厂家获得的利润y 随销售价格x 的上涨而增加.【解析】(1)直接利用待定系数法求出一次函数解析式进而得出答案; (2)由题意可得:p ≤q ,进而得出x 的取值范围; (3)①利用顶点式求出函数最值得出答案; ②利用二次函数的增减性得出答案即可.此题主要考查了待定系数法求一次函数解析式以及二次函数最值求法等知识,正确得出二次函数解析式是解题关键.26. 已知:如图,在Rt △ABO 中,∠B =90∘,∠OAB =30∘,OA =3.以点O 为原点,斜边OA 所在直线为x 轴,建立平面直角坐标系,以点P(4,0)为圆心,PA 长为半径画圆,⊙P 与x 轴的另一交点为N ,点M 在⊙P 上,且满足∠MPN =60∘.⊙P 以每秒1个单位长度的速度沿x 轴向左运动,设运动时间为ts ,解答下列问题 【发现】(1)MN⏜的长度为______; (2)当t =2s 时,求扇形MPN(阴影部分)与Rt △ABO 重叠部分的面积. 【探究】当⊙P 和△ABO 的边所在的直线相切时,求点P 的坐标.【拓展】当MN⏜与Rt △ABO 的边有两个交点时,请你直接写出t 的取值范围.【答案】π3【解析】解:【发现】 (1)∵P(4,0), ∴OP =4, ∵OA =3, ∴AP =1, ∴MN ⏜的长度为60π×1180=π3,故答案为π3;(2)设⊙P 半径为r ,则有r =4−3=1, 当t =2时,如图1,点N 与点A 重合, ∴PA =r =1,设MP与AB相交于点Q,在Rt△ABO中,∵∠OAB=30∘,∠MPN=60∘,∵∠PQA=90∘.∴PQ=12PA=12,∴AQ=AP×cos30∘=√32∴S重叠部分=S△APQ=12PQ×AQ=√38即重叠部分的面积为√38;【探究】:①如图2,当⊙P与直线AB相切于点C时,连接PC,则有PC⊥AB,PC=r=1,∵∠OAB=30∘,∴AP=2,∴OP=OA−AP=3−2=1;∴点P的坐标为(1,0);②如图3,当⊙P与直线OB相切于点D时,连接PD,则有PD⊥OB,PD=r=1,∴PD//AB,∴∠OPD=∠OAB=30∘,∴cos∠OPD=PDOP,∴OP=1cos30∘=2√33,∴点P的坐标为(2√33,0);③如图4,当⊙P与直线OB相切于点E时,连接PE,则有PE⊥OB,同②可得:OP=2√33;∴点P的坐标为(−2√33,0),【拓展】t的取值范围是2<t≤3,4≤t<5,理由:如图5,当点N运动到与点A重合时,MN⏜与Rt△ABO 的边有一个公共点,此时t=2;第17页,共18页当t>2,直到⊙P运动到与AB相切时,由探究①得,OP=1,∴t=4−11=3,MN⏜与Rt△ABO的边有两个公共点,∴2<t≤3.如图6,当⊙P运动到PM与OB重合时,MN⏜与Rt△ABO的边有两个公共点,此时t=4;直到⊙P运动到点N与点O重合时,MN⏜与Rt△ABO的边有一个公共点,此时t=5;∴4≤t<5,即:t的取值范围是2<t≤3,4≤t<5,发现:(1)先确定出扇形半径,进而用弧长公式即可得出结论;(2)先求出PA=1,进而求出PQ,即可用面积公式得出结论;探究:分圆和直线AB和直线OB相切,利用三角函数即可得出结论;拓展:先找出MN⏜和直角三角形的两边有两个交点时的分界点,即可得出结论.此题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解本题的关键.。

河北省唐山市丰南区中考数学一模试卷(含解析)

河北省唐山市丰南区中考数学一模试卷(含解析)

2017年河北省唐山市丰南区中考数学一模试卷一、选择题(本大题共16小题,共42分)1.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.ab>0 B.a+b<0 C.|a|<|b| D.a﹣b>02.已知关于x的方程x2﹣mx+3=0的解为﹣1,则m的值为()A.﹣4 B.4 C.﹣2 D.23.要使式子有意义,则x的取值范围是()A.x≠2 B.x>﹣2 C.x<﹣2 D.x≠﹣24.如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,∠1=35°,则∠2的度数为()A.35° B.15° C.10° D.5°5.下列计算正确的是()A.x4•x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a6.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1个B.2个C.3个D.4个7.如图,正方形ABOC的边长为2,反比例函数的图象过点A,则k的值是()A.2 B.﹣2 C.4 D.﹣48.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2 B.4 C.6 D.89.如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是()A.2海里B.2sin55°海里 C.2co s55°海里 D.2tan55°海里10.如图是一个几何体的三视图,则这个几何体的展开图可以是()A.B.C.D.11.如果点P(x﹣4,2x+6)在平面直角坐标系的第二象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.12.现定义运算“★”,对于任意实数a,b,都有a★b=a2﹣a×b+b,如:3★5=32﹣3×5+5,若x★2=10,则实数x的值为()A.﹣4或﹣l B.4或﹣l C.4或﹣2 D.﹣4或213.二次函数y=x2﹣(12﹣k)x+12,当x>1时,y随着x的增大而增大,当x<1时,y 随着x的增大而减小,则k的值应取()A.12 B.11 C.10 D.914.如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则的长是()A.B.C.D.15.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:216.求1+2+22+23+…+22014的值,可令S=1+2+22+23+…+22014,则2S=2+22+23+24+…+22015,因此2S﹣S=22015﹣1,S=22015﹣1,我们把这种求和的方法叫错位相加减,仿照上述的思路方法,计算出1+5+52+53+…+52014的值为()A.52014﹣1 B.52015﹣1 C.D.二、填空题(本大题共3小题,每小题3分,共9分)17.的立方根是.18.已知a2+b2=5,ab=﹣1,则a+b= .19.如图,将顶点为P(1,﹣2),且过原点的抛物线y的一部分沿x轴翻折并向右平移2个单位长度,得到抛物线y1,其顶点为P1,然后将抛物线y1沿x轴翻折并向右平移2个单位长度,得到抛物线y2,其顶点为P2;…,如此进行下去,直至得到抛物线y2016,则点P2016坐标为.三、解答题(本大题共7小题,共69分)20.(1)计算(﹣π)0﹣6tan30°+()﹣2+|1﹣|(2)先化简,再求值.+(其中m是绝对值最小的实数)21.已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.22.理解:(1)若直线l上有四个点A、B、C、D,则共有线段条;(2)若直线l上有五个点A、B、C、D、E,则共有线段条;(3)若直线l上有n个点A、B、C…,则红柚线段条.应用:(4)在一次有10人的聚会上,每两个人握一次手,共握手次.(5)从A 火车站到B 火车站,中途有5站,若各车厢收费标准一样,则票价共有 种.(6)某n 边形共有54条对角线,求n .23.某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.训练后篮球定时定点投篮测试进球数统计表请你根据图表中的信息回答下列问题:(1)选择长跑训练的人数占全班人数的百分比为 ,该班学生的总人数为 ;(2)训练后篮球定时定点投篮人均进球数为 ;(3)若将选择篮球的同学的进球数写在外观、大小一样的枝条上,放在不透明的盒子中,搅拌均匀后,从中抽取一张,则抽到4的概率是多少?24.如图所示,在平面直角坐标系中,过点A (﹣,0)的两条直线分别交y 轴于B 、C两点,∠ABO=30°,OB=3OC .(1)试说明直线AC 与直线AB 垂直; (2)若点D 在直线AC 上,且DB=DC ,求点D 的坐标;(3)在(2)的条件下,直线BD 上是否存在点P ,使以A 、B 、P 三点为顶点的三角形是等腰三角形?若存在,请直接写出P 点的坐标;若不存在,请说明理由.25.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE= 度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.26.如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称(1)填空:点B的坐标是;(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.2017年河北省唐山市丰南区中考数学一模试卷参考答案与试题解析一、选择题(本大题共16小题,共42分)1.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.ab>0 B.a+b<0 C.|a|<|b| D.a﹣b>0【考点】29:实数与数轴.【分析】根据数轴上点的位置关系,可得a,b的大小,根据有理数的运算,可得答案.【解答】解:b<0<a,|b|<|a|.A、ab<0,故A不符合题意;B、a+b>0,故B不符合题意;C、|b|<|a|,故C不符合题意;D、a﹣b>0,故D符合题意;故选:D.2.已知关于x的方程x2﹣mx+3=0的解为﹣1,则m的值为()A.﹣4 B.4 C.﹣2 D.2【考点】A3:一元二次方程的解.【分析】把x=﹣1代入方程计算即可求出m的值.【解答】解:把x=﹣1代入方程得:1+m+3=0,解得:m=﹣4,故选A3.要使式子有意义,则x的取值范围是()A.x≠2 B.x>﹣2 C.x<﹣2 D.x≠﹣2【考点】72:二次根式有意义的条件.【分析】二次根式的被开方数是非负数,且分式的分母不等于零.【解答】解:依题意得:x+2>0,解得x>﹣2.故选:B.4.如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,∠1=35°,则∠2的度数为()A.35° B.15° C.10° D.5°【考点】JA:平行线的性质.【分析】由等腰直角三角形的性质和平行线的性质求出∠ACD=55°,即可得出∠2的度数.【解答】解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=35°+90°=125°,∵a∥b,∴∠ACD=180°﹣125°=55°,∴∠2=∠ACD﹣∠ACB=55°﹣45°=10°;故选:C.5.下列计算正确的是()A.x4•x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据同底数幂相乘,底数不变指数相加,幂的乘方,底数不变指数相乘,积的乘方,先把积的每一个因式分别乘方,再把所得到幂相乘,合并同类项,即把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.对各小题计算后利用排除法求解.【解答】解;A、x4•x4=x8,故A错误;B、(a3)2=a6,故B错误;C、(ab2)3=a2b6,故C错误;D、a+2a=3a,故D正确.故选:D.6.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1个B.2个C.3个D.4个【考点】KD:全等三角形的判定与性质.【分析】根据全等三角形的判定定理,可以推出①②③为条件,④为结论,依据是“SAS”;①②④为条件,③为结论,依据是“SSS”.【解答】解:当①②③为条件,④为结论时:∵∠A′CA=∠B′CB,∴∠A′CB′=∠ACB,∵BC=B′C,AC=A′C,∴△A′CB′≌△ACB,∴AB=A′B′,当①②④为条件,③为结论时:∵BC=B′C,AC=A′C,AB=A′B′∴△A′CB′≌△ACB,∴∠A′CB′=∠ACB,∴∠A′CA=∠B′CB.故选B.7.如图,正方形ABOC的边长为2,反比例函数的图象过点A,则k的值是()A.2 B.﹣2 C.4 D.﹣4【考点】G5:反比例函数系数k的几何意义.【分析】根据反比例函数图象上的点的横纵坐标之积是定值k,同时|k|也是该点到两坐标轴的垂线段与两坐标轴围成的矩形面积即可解答.【解答】解:因为图象在第二象限,所以k<0,根据反比例函数系数k的几何意义可知|k|=2×2=4,所以k=﹣4.故选D.8.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2 B.4 C.6 D.8【考点】S4:平行线分线段成比例;LA:菱形的判定与性质;N2:作图—基本作图.【分析】根据已知得出MN是线段AD的垂直平分线,推出AE=DE,AF=DF,求出DE∥AC,DF ∥AE,得出四边形AEDF是菱形,根据菱形的性质得出AE=DE=DF=AF,根据平行线分线段成比例定理得出=,代入求出即可.【解答】解:∵根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是菱形,∴AE=DE=DF=AF,∵AF=4,∴AE=DE=DF=AF=4,∵DE∥AC,∴=,∵BD=6,AE=4,CD=3,∴=,∴BE=8,故选D.9.如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是()A.2海里B.2sin55°海里 C.2cos55°海里 D.2tan55°海里【考点】TB:解直角三角形的应用﹣方向角问题.【分析】首先由方向角的定义及已知条件得出∠NPA=55°,AP=2海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=55°.然后解Rt△ABP,得出AB=AP•cos∠A=2cos55°海里.【解答】解:如图,由题意可知∠NPA=55°,AP=2海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=55°.在Rt△ABP中,∵∠ABP=90°,∠A=55°,AP=2海里,∴AB=AP•cos∠A=2cos55°海里.故选C.10.如图是一个几何体的三视图,则这个几何体的展开图可以是()A.B.C.D.【考点】U3:由三视图判断几何体;I6:几何体的展开图.【分析】由三视图的特征,可得这个几何体应该是圆柱;【解答】解:根据题意,这个几何体是圆柱;其展开图为:故选A.11.如果点P(x﹣4,2x+6)在平面直角坐标系的第二象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集;D1:点的坐标.【分析】根据第二象限内点的坐标特点列出关于x的不等式组,解之可得.【解答】解:∵点P(x﹣4,2x+6)在平面直角坐标系的第二象限内,∴,解得:﹣3<x<4,故选:C12.现定义运算“★”,对于任意实数a,b,都有a★b=a2﹣a×b+b,如:3★5=32﹣3×5+5,若x★2=10,则实数x的值为()A.﹣4或﹣l B.4或﹣l C.4或﹣2 D.﹣4或2【考点】2C:实数的运算.【分析】已知等式利用已知的新定义化简,计算即可求出x的值.【解答】解:根据题中的新定义化简x★2=10得:x2﹣2x+2=10,整理得:x2﹣2x﹣8=0,即(x﹣4)(x+2)=0,解得:x=4或x=﹣2,故选C13.二次函数y=x2﹣(12﹣k)x+12,当x>1时,y随着x的增大而增大,当x<1时,y 随着x的增大而减小,则k的值应取()A.12 B.11 C.10 D.9【考点】H3:二次函数的性质.【分析】据题意可知此函数的对称轴为x=1,把x=1代入对称轴公式x=,得=1,解方程可求k.【解答】解:∵当x>1时,y随着x的增大而增大,当x<1时,y随着x的增大而减小,∴函数的对称轴为x=1,根据对称轴公式x=,即=1,解得k=10.故选C.14.如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则的长是()A.B.C.D.【考点】M2:垂径定理;KQ:勾股定理;KS:勾股定理的逆定理;MN:弧长的计算.【分析】连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.【解答】解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故选:B.15.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:2【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出 DE:AB的值,由AB=CD即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选B.16.求1+2+22+23+…+22014的值,可令S=1+2+22+23+…+22014,则2S=2+22+23+24+…+22015,因此2S﹣S=22015﹣1,S=22015﹣1,我们把这种求和的方法叫错位相加减,仿照上述的思路方法,计算出1+5+52+53+…+52014的值为()A.52014﹣1 B.52015﹣1 C.D.【考点】4I:整式的混合运算.【分析】根据题目信息,设S=1+5+52+53+…+52014,表示出5S=5+52+53+…+52015,然后相减求出S即可..【解答】解:设S=1+5+52+53+ (52014)则5S=5+52+53+ (52015)5S﹣S=(5+52+53+…+52015)﹣(1+5+52+53+…+52014)=52015﹣1,所以,S=.故选:C.二、填空题(本大题共3小题,每小题3分,共9分)17.的立方根是 2 .【考点】24:立方根.【分析】根据算术平方根的定义先求出,再根据立方根的定义即可得出答案.【解答】解:∵=8,∴的立方根是2;故答案为:2.18.已知a2+b2=5,ab=﹣1,则a+b= .【考点】4C:完全平方公式.【分析】根据完全平方公式得到(a+b)2=a2+2ab+b2,再把ab=﹣1,a2+b2=5整体代入即可.【解答】解:∵(a+b)2=a2+2ab+b2,∴a+b=,故答案为19.如图,将顶点为P(1,﹣2),且过原点的抛物线y的一部分沿x轴翻折并向右平移2个单位长度,得到抛物线y1,其顶点为P1,然后将抛物线y1沿x轴翻折并向右平移2个单位长度,得到抛物线y2,其顶点为P2;…,如此进行下去,直至得到抛物线y2016,则点P2016坐标为.【考点】H6:二次函数图象与几何变换.【分析】根据图形的变换,可得规律:第n 次平移变换点的横坐标是2n+1,偶数次变换平移点的纵坐标是﹣2,奇数次变换平移点的坐标是2,可得答案.【解答】解:第一次变换平移点的坐标是(3,2),第二次变换平移点的坐标是(5,﹣2),第三次变换平移点的坐标是(7,2,)第n 次平移变换点的横坐标是2n+1,偶数次变换平移点的纵坐标是﹣2,奇数次变换平移点的坐标是2,点P 2016坐标为,故答案为:.三、解答题(本大题共7小题,共69分)20.(1)计算(﹣π)0﹣6tan30°+()﹣2+|1﹣|(2)先化简,再求值.+(其中m 是绝对值最小的实数)【考点】6D :分式的化简求值;2C :实数的运算;6E :零指数幂;T5:特殊角的三角函数值.【分析】(1)原式利用零指数幂法则,特殊角的三角函数值,负整数指数幂法则,以及绝对值的代数意义化简,计算即可得到结果;(2)原式通分并利用同分母分式的减法法则计算,得到最简结果,求出m 的值代入计算即可求出值.【解答】解:(1)原式=1﹣2+4+﹣1=4﹣;(2)原式=﹣==﹣,由题意得到m=0,则原式=﹣.21.已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.【考点】L9:菱形的判定;KC:直角三角形全等的判定;L5:平行四边形的性质;Q2:平移的性质.【分析】(1)根据平移的性质,可得:BE=FC,再证明Rt△ABE≌Rt△CDG可得:BE=DG;(2)要使四边形ABFG是菱形,须使AB=BF;根据条件找到满足AB=BF的AB与BC满足的数量关系即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD.∵AE是BC边上的高,且CG是由AE沿BC方向平移而成.∴CG⊥AD.∴∠AEB=∠CGD=90°.∵AE=CG,∴Rt△ABE≌Rt△CDG(HL).∴BE=DG;(2)解:当BC=AB时,四边形ABFG是菱形.证明:∵AB∥GF,AG∥BF,∴四边形ABFG是平行四边形.∵Rt△ABE中,∠B=60°,∴∠BAE=30°,∵BC=AB∴BE=CF∴EF=AB∴AB=BF∴四边形ABFG是菱形,22.理解:(1)若直线l上有四个点A、B、C、D,则共有线段 6 条;(2)若直线l上有五个点A、B、C、D、E,则共有线段10 条;(3)若直线l上有n个点A、B、C…,则红柚线段条.应用:(4)在一次有10人的聚会上,每两个人握一次手,共握手45 次.(5)从A火车站到B火车站,中途有5站,若各车厢收费标准一样,则票价共有21 种.(6)某n边形共有54条对角线,求n.【考点】AD:一元二次方程的应用;L2:多边形的对角线.【分析】理解:直接利用线段的定义分别列举得出即可.应用:根据“理解”的(3)题得到的结论进行解答.【解答】解:理解:(1)直线l上有A、B、C、D四点,线段总条数是:3+2+1=6,故答案是:6;(2)若直线l上有五个点A、B、C、D、E,线段总条数是:4+3+2+1=10,故答案是:10;(3)若直线上有n个点时,线段总条数(n﹣1)+…+3+2+1=.应用:(4)在一次有10人的聚会上,每两个人握一次手,共握手的次数是: =45(次).故答案是:45;(5)从A火车站到B火车站,中途有5站,若各车厢收费标准一样,则票价共有: =21(种).故答案是:21;(6)依题意得: =54,解得:n 1=12,n 2=﹣9(舍去).所以n=12.23.某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.训练后篮球定时定点投篮测试进球数统计表请你根据图表中的信息回答下列问题:(1)选择长跑训练的人数占全班人数的百分比为 10% ,该班学生的总人数为 40 ;(2)训练后篮球定时定点投篮人均进球数为5 ;(3)若将选择篮球的同学的进球数写在外观、大小一样的枝条上,放在不透明的盒子中,搅拌均匀后,从中抽取一张,则抽到4的概率是多少?【考点】X4:概率公式;VA :统计表;VB :扇形统计图;W2:加权平均数.【分析】(1)根据选择长跑训练的人数占全班人数的百分比=1﹣60%﹣10%﹣20%=10%,进而得出训练篮球的人数和全班人数;(2)利用进球总数除以总人数即可得出平均数;(3)根据进球数为4的人数为8,运用公式进行计算,即可得到抽到4的概率.【解答】解:(1)选择长跑训练的人数占全班人数的百分比=1﹣60%﹣10%﹣20%=10%; 训练篮球的人数=2+1+4+7+8+2=24人,∴全班人数=24÷60%=40;故答案为:10%,40;(2)人均进球数==5;故答案为:5;(3)P(抽到4)==.24.如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C 两点,∠ABO=30°,OB=3OC.(1)试说明直线AC与直线AB垂直;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.【考点】FI:一次函数综合题.【分析】(1)根据三角函数求出OB,即可求得OC,再由三角函数求得∠ACO,即可解决问题;(2)如图1中,过D作DE⊥x轴于E.由△ADE≌△ACO,推出DE=OC=1,AE=OA=,求出点D坐标;(3)A、B、P三点为顶点的三角形是等腰三角形,可分为以下三种情况:①AB=AP;②AB=BP;③AP=BP;然后分别求出P的坐标即可.【解答】解:(1)结论:AC⊥AB.理由如下:∵A(,0),∴OA=,∵∠ABO=30°,tan∠ABO==,∴BO=3,∵OB=3OC,∴OC=1,∴tan∠ACO==,∠ACO=60°,∴∠BAC=90°,∴AC⊥AB;(2)如图1中,过D作DE⊥x轴于E,∴∠DEA=∠AOC=90°,∵tan∠ACO==,∵∠DCB=60°∵DB=DC,∴△DBC是等边三角形,∵BA⊥DC,∴DA=AC,∵∠DAE=∠OAC,在△ADE和△ACO中,,∴△ADE≌△ACO,∴DE=OC=1,AE=OA=∴OE=2,∴D的坐标为(﹣2,1);(3)设直线BD的解析式为:y=mx+n,直线BD与x轴交于点E,把B(0,3)和D(﹣2,1)代入y=mx+n,∴,解得,∴直线BD的解析式为:y=x+3,令y=0代入y=x+3,∴x=﹣3,∴E(﹣3,0),∴OE=3,∴tan∠BEC===,∴∠BEO=30°,同理可求得:∠ABO=30°,∴∠ABE=30°,当PA=AB时,如图2,此时,∠BEA=∠ABE=30°,∴EA=AB,∴P与E重合,∴P的坐标为(﹣3,0),当PA=PB时,如图3,此时,∠PAB=∠PBA=30°,∵∠ABE=∠ABO=30°,∴∠PAB=∠ABO,∴PA∥BC,∴∠PAO=90°,∴点P的横坐标为﹣,令x=﹣代入y=x+3,∴y=2,∴P(﹣,2),当PB=AB时,如图4,∴由勾股定理可求得:AB=2,EB=6,若点P在y轴左侧时,记此时点P为P1,过点P1作P1F⊥x轴于点F,∴P1B=AB=2,∴EP1=6﹣2,∴sin∠BEO=,∴FP1=3﹣,令y=3﹣代入y=x+3,∴x=﹣3,∴P1(﹣3,3﹣),若点P在y轴的右侧时,记此时点P为P2,过点P2作P2G⊥x轴于点G,∴P2B=AB=2,∴EP2=6+2,∴sin∠BEO=,∴GP2=3+,令y=3+代入y=x+3,∴x=3,∴P2(3,3+),综上所述,当A、B、P三点为顶点的三角形是等腰三角形时,点P的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+).25.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE= 90 度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.【考点】KB:全等三角形的判定;KH:等腰三角形的性质.【分析】(1)问要求∠BCE的度数,可将它转化成与已知角有关的联系,根据已知条件和全等三角形的判定定理,得出△ABD≌△ACE,再根据全等三角形中对应角相等,最后根据直角三角形的性质可得出结论;(2)问在第(1)问的基础上,将α+β转化成三角形的内角和;(3)问是第(1)问和第(2)问的拓展和延伸,要注意分析两种情况.【解答】解:(1)90°.理由:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴∠BCE=∠B+∠ACB,又∵∠BAC=90°∴∠BCE=90°;(2)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAD+∠DAC=∠EAC+∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;②当点D在射线BC上时,α+β=180°;理由:∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵在△ABD和△ACE中∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;当点D在射线BC的反向延长线上时,α=β.理由:∵∠DAE=∠BAC,∴∠DAB=∠EAC,∵在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,∴∠BAC=∠BCE,即α=β.26.如图,在平面直角坐标系xOy 中,抛物线y=x 2+与y 轴相交于点A ,点B 与点O 关于点A 对称(1)填空:点B 的坐标是 (0,) ; (2)过点B 的直线y=kx+b (其中k <0)与x 轴相交于点C ,过点C 作直线l 平行于y 轴,P 是直线l 上一点,且PB=PC ,求线段PB 的长(用含k 的式子表示),并判断点P 是否在抛物线上,说明理由;(3)在(2)的条件下,若点C 关于直线BP 的对称点C′恰好落在该抛物线的对称轴上,求此时点P 的坐标.【考点】HF :二次函数综合题.【分析】(1)由抛物线解析式可求得A 点坐标,再利用对称可求得B 点坐标;(2)可先用k 表示出C 点坐标,过B 作BD ⊥l 于点D ,条件可知P 点在x 轴上方,设P 点纵坐标为y ,可表示出PD 、PB 的长,在Rt △PBD 中,利用勾股定理可求得y ,则可求出PB 的长,此时可得出P 点坐标,代入抛物线解析式可判断P 点在抛物线上;(3)利用平行线和轴对称的性质可得到∠OBC=∠CBP=∠C′BP=60°,则可求得OC 的长,代入抛物线解析式可求得P 点坐标.【解答】解:(1)∵抛物线y=x 2+与y 轴相交于点A ,∴A (0,),∵点B 与点O 关于点A 对称,∴BA=OA=,∴OB=,即B 点坐标为(0,),故答案为:(0,);(2)∵B 点坐标为(0,),∴直线解析式为y=kx+,令y=0可得kx+=0,解得x=﹣,∴OC=﹣,∵PB=PC,∴点P只能在x轴上方,如图1,过B作BD⊥l于点D,设PB=PC=m,则BD=OC=﹣,CD=OB=,∴PD=PC﹣CD=m﹣,在Rt△PBD中,由勾股定理可得PB2=PD2+BD2,即m2=(m﹣)2+(﹣)2,解得m=+,∴PC=+,∴P点坐标为(﹣, +),当x=﹣时,代入抛物线解析式可得y=+,∴点P在抛物线上;(3)如图2,连接CC′,∵l∥y轴,∴∠OBC=∠PCB,又PB=PC,∴∠PCB=∠PBC,∴∠PBC=∠OBC,又C、C′关于BP对称,且C′在抛物线的对称轴上,即在y轴上,∴∠PBC=∠PBC′,∴∠OBC=∠CBP=∠C′BP=60°,在Rt△OBC中,OB=,则BC=1∴OC=,即P点的横坐标为,代入抛物线解析式可得y=()2+=1,∴P点坐标为(,1).。

〖中考突击〗河北省保定市2018年中考一模数学试卷(含答案)

〖中考突击〗河北省保定市2018年中考一模数学试卷(含答案)

河北省保定市2018年中考一模数学试卷一、选择题(本大题共16个小题,共42分.1~10小题各3分,11~16各2分.) 1.4的平方根是【 】A.-2B.2C.±2D.162.下列算式中,结果等于a 6的是【 】A. a 2•a 3B.a 2+ a 2+ a 2C. a 4+ a 2D. a 2• a 2• a 2 3.将9250000用科学计数法表示为【 】A.0.925×107B.9.25×107C.9.25×106D.92.5×105 4.下列图形中,既是轴対称图形又是中心对称图形的是【 】5.下列列图形中,能肯定∠2<∠1的是【 】6.如图是用八块相同的小正方体搭建的几何体,它的左视图是【 】7.下列各因式分解正确的是【 】A.(x-1)2=x 2+2x+1B.x 2+2x-1=(x-1)2C.x 3-9x=x(x+3)(x-3)D.-x 2+(-2)2=(x-2)(x+2) 8,反比例函数y=kx的图象如图所示,点A 是该函数图象上一点,AB 垂直于X 轴 垂足是点B,如果 S △AOB=1,则k 的值为【 】 A. 1 B. -1 C,2 D.-29.直角三角板和直尺如图放置,若∠1=40°,则∠2的度数为【 】A.30°B.20°C.40°D.50°10.如图,从边长为m 的大正方形中剪掉一个边长为n 的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形,根据图形的变化过程写出的一个正确的等式是【 】A (m-n)2=m 2-2mn+n 2 B.m 2-n 2=(m+n)(m-n)C.(m-n)2= m 2-n 2 D.m(m-n)= m 2-mn11.如图,△A ’B ’C ’是△ABC 在以点O 为位似中心经过位似变换得到的,若 △ABC 的面积与△A ’B ’C ’的面积比是6:9,则OA:OA ’为【 】 A.4:3 B.3:4 C.9:16 D.16;912.如图,在□ABD 中,AB=8,BC=5,以点A 为圆心,以任意长为半径作弧, 分别交AD 、AB 于点P 、Q ,再分别别以P 、Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠DAB 内交于点M,连接AM 并延长交CD 于点E,则则CE 的长为【 】 A.3 B .5 C.2 D.6.513.已知m ≠0,函数y=-mx 2十n 与y=mnx在同一直角坐标系中的大致图像可能【 】14.某品牌钢笔进价8元,按10元1支出售时每天能卖出20支,市场调査发现如果每支每涨价1元,每天就少卖出2支,为了每天获得最大利润,其售价应定为【 】 A.11元B.12元C.13元D.14元15.如图,矩形ABCD 中,AB=8,BC=6,点E 、F 、G 、H 分别在矩形ABCD 各边上,且AE=CG,BF=DH,则四边形EFCH 周长的最小值为【 】 A,10C.2016.二次函数y=ax 2+bx+c(a ≠0)的部分图象如图,图象过点(-2,0),对称轴为直线x=1, 下列结论:①abc<0;②2a-b=0③b 2-4ac>0:;④无论m 为何值时,总有am 2+bm ≤a+b: ⑤9a+c>3b 。

2018年河北省邯郸市中考一模数学试卷--有答案

2018年河北省邯郸市中考一模数学试卷--有答案

2018年邯郸市初三升学模拟考试(一)数学试卷一、选择题(本大题共16小题,共42分。

1-10题小题各3分;11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、 下列各数中,比-1小的数是( )A. 0B. 0.5C. -0.5D. -2 2、 如图,“中国天眼”即500米口径球面射电望远镜(FAST ),是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜,由4600个反射单元组成一个球面,把4600表示成na 10⨯(其中,1≤a <10,n 为整数)的形式,则n 为( ) A. -1 B. 2 C. 3 D. 43、 如图,若∠1=50°,则∠2的度数为( )A. 30°B. 40°C. 50°D. 90° 4、 下列运算中,正确的是( )A. ()933a a =B. 2222a a a =⋅C.aa a -=-2 D. ()22ab ab =5、 如图,在R t △ABC 中,∠ACB =90°,AC =6,BC =8,则R t△ABC 的中线CD 的长为( ) A. 5 B.6 C. 8 D. 106、 已知面积为8的正方形边长是x ,则关于x 的结论中,正确的是( )A. x 是有理数B. x 不能在数轴上表示C. x 是方程4x =8的解D. x 是8的算术平方根7、 如图,△ABC 中,∠BCD =∠A ,DE ∥BC ,与△ABC 相似的三角形(△ABC 自身除外)的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个 8、 用配方法解一元二次方程12422=--x x 的过程中,变形正确的是( )A. ()1122=-xB. ()5222=-xC.()2512=-xD. ()2522=-x 9、 已知□ABCD ,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是( )A. ∠DAE =∠BAEB. ∠DEA =21∠DAB C. DE =BE D. BC =DE10、 某工厂计划生产1500个零件,但是在实际生产时,……,求实际每天生产零件的个数,在这个题目中,若设实际每天生产零件x 个,可得方程10150051500=--xx ,则题目中用“……”表示的条件应是( )A. 每天比原计划多生产5个,结果延期10天完成B. 每天比原计划多生产5个,结果提前10天完成C. 每天比原计划少生产5个,结果延期10天完成D. 每天比原计划少生产5个,结果提前10天完成11、 由7个大小相同的正方体搭成的几何体如图所示,则以下结论:①主视图既是轴对称图形,又是中心对称图形; ②俯视图是中心对称图形 ③左视图不是中心对称图形 ④俯视图和左视图都不是轴对称图形其中正确结论是( ) A. ①③ B. ①④ C. ②③ D. ②④12、 如图,在半径为4的⊙O 中,弦AB ∥OC ,∠BOC =30°,则AB 的长为( )A. 2B. 32C. 4D. 3413、 在一个不透明的袋子里装有2个红球1个黄球,这3个小球除颜色不同外,其它都相同,贝贝同学摸出一个球后放回口袋再摸一个;莹莹同学一次摸2个球,两人分别记录下小球的颜色,关于两人摸到1个红球1个黄球和2个红球的概率的描述中,正确的是( )A. ()黄红莹莹摸到黄红贝贝摸到1111P P =B.()黄红莹莹摸到黄红贝贝摸到>1111P PC. ()红莹莹摸到红贝贝摸到22P P =D. ()红莹莹摸到红贝贝摸到>22P P14、 如图,在平面直角坐标系中,A (1,2),B (1,-1),C (2,2),抛物线2ax y =(a ≠0)经过△ABC 区域(包括边界),则a的取值范围是( ) A. a ≤-1或a ≥2 B. -1≤a <0或0<a ≤2 C. -1≤a <0或1<a ≤21D.21≤a ≤2 15、 如图,R t △ABC 中,∠ACB =90°,∠BAC =30°,∠BAC 的平分线交BC 于点D ,过点D 作DE ⊥AB ,垂足为E ,连接CE 交AD 于点F ,则以下结论: ①AB =2CE ; ②AC =4CD ;③CE ⊥AD ; ④△DBE 与△ABC 的面积比是:1:(347+) 其中正确结论是( ) A. ①② B. ②③ C. ③④ D. ①④16、 一个数学游戏,正六边形被平均分为6格(其中1格涂有阴影),规则如下:若第一个正六边形下面标的数字为a (a 为正整数),则先绕正六边形的中心顺时针旋转a 格;再沿某条边所在的直线l 翻折,得到第二个图形。

河北省邯郸市2018届中考数学一模试卷(有答案)AUPAwq

河北省邯郸市2018届中考数学一模试卷(有答案)AUPAwq

河北省邯郸市2018届数学中考一模试卷一、单选题1.下列各数中,比-1小的数是()A. 0B. 0.5C. -0.5D. -2【答案】D【考点】有理数大小比较【解析】【解答】正数一定大于负数,排除A,D项;故答案为:D.【分析】根据正数大于0,0大于负数,两个负数比大小,绝对值大的反而小即可得出答案。

2.如图,“中国天眼”即500米口径球面射电望远镜(FAST),是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜,由4600个反射单元组成一个球面,把4600表示成(其中,1≤a<10,n为整数)的形式,则n为()A. -1B. 2C. 3D. 4【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】4600表示成(其中,1≤a<10,n为整数)的形式为:故答案为:C.【分析】科学记数法表示绝对值较大的数,一般表示成a ×10n,的形式,其中1 ≤∣a ∣<10, n是原数的整数位数减一。

3.如图,若∠1=50°,则∠2的度数为()A. 30°B. 40°C. 50°D. 90°【答案】B【考点】对顶角、邻补角【解析】【解答】根据平角的概念可知:故答案为:B.【分析】根据平角的定义即可得出答案。

4.下列运算中,正确的是()A. B. C. D.【答案】A【考点】整式的加减运算,同底数幂的乘法,幂的乘方与积的乘方【解析】【解答】A.符合题意.B. 故不符合题意.C.不是同类项,不能合并.故不符合题意.D. 故不符合题意.故答案为:A.【分析】根据幂的乘方,底数不变,指数相乘;同底数的幂相乘,底数不变,指数相加;整式加减的实质就是合并同类项,只有字母相同,相同字母的指数也相同的项才是同类项;积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;根据法则一一判断即可。

5.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,则Rt△ABC的中线CD的长为()A. 5B. 6C. 8D. 10【答案】A【考点】直角三角形斜边上的中线,勾股定理【解析】【解答】在Rt△ABC中,CD是斜边的中线,故答案为:A.【分析】在Rt△ABC中,根据勾股定理得出AB的长,再根据直角三角形斜边上的中线等于斜边的一半即可得出答案。

2018年河北省保定市中考数学一模试卷含解析(完美打印版)

2018年河北省保定市中考数学一模试卷(含解析)一、选择题:(本大题共16小题,每小题3分,共30分)1.(3分)4的平方根是()A.﹣2B.2C.±2D.162.(3分)下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3D.a2•a2•a23.(3分)将9250000用科学记数法表示为()A.0.925×107B.9.25×107C.9.25×106D.92.5×1064.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(3分)下列图形中,能肯定∠2<∠1的是()A.B.C.D.6.(3分)如图是用八块相同的小正方形体搭建的几何体,它的左视图是()A.B.C.D.7.(3分)下列各因式分解正确的是()A.(x﹣1)2=x2+2x+1B.x2+2x﹣1=(x﹣1)2C.x3﹣9x=x(x+3)(x﹣3)D.﹣x2+(﹣2)2=(x﹣2)(x+2)8.(3分)反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为()A.1B.﹣1C.2D.﹣29.(3分)直角三角板和直尺如图放置,若∠1=40°,则∠2的度数为()A.30°B.20°C.40°D.50°10.(3分)如图,从边长为m的大正方形中剪掉一个边长为n的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(m﹣n)2=m2﹣2mn+n2B.m2﹣n2=(m+n)(m﹣n)C.(m﹣n)2=m2﹣n2D.m(m﹣n)=m2﹣mn11.(2分)如图,△A′B′C′是△ABC在以点O为位似中心经过位似变换得到的,若△ABC的面积与△A′B′C′的面积比是16:9,则OA:OA′为()A.4:3B.3:4C.9:16D.16:912.(2分)如图,在▱ABCD中,AB=8,BC=5,以点A为圆心,以任意长为半径作弧,分别交AD、AB 于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠DAB内交于点M,连接AM并延长交CD于点E,则CE的长为()A.3B.5C.2D.6.513.(2分)已知m≠0,函数y=﹣mx2+n与y=在同一直角坐标系中的大致图象可能()A.B.C.D.14.(2分)某品牌钢笔进价8元,按10元1支出售时每天能卖出20支,市场调查发现如果每支每涨价1元,每天就少卖出2支,为了每天获得最大利润,其售价应定为()A.11元B.12元C.13元D.14元15.(2分)如图,矩形ABCD中,AB=8,BC=6,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A.10B.4C.20D.816.(2分)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣2,0),对称轴为直线x=1,下列结论:①abc<0;②2a﹣b=0;③b2﹣4ac>0;④无论m为何值时,总有am2+bm≤a+b;⑤9a+c >3b,其中正确的结论序号为()A.①②③B.①③④C.①③④⑤D.②③④二、选择题(本大题共3小题,共10分.17-18小题各3分,19小题2个空,每空2分)17.(3分)已知关于x的一元二次方程kx2﹣5x+3=0有两个不相等的实数根,则k的取值范围是.18.(4分)如图,楼房MN与楼房AB相距为30m,在M处测得楼房AB顶部点A的仰角为45°,底部点B的俯角为30°,则楼房AB的高度m.19.(3分)定义:a为不等于1的有理数,令a1=,a2=,a3=…以此类推,已知:a =,则a2=,a2017=.三、解答题:(本大题共7个小题,共68分)20.(8分)(1)计算:|﹣|+2cos45°﹣+(﹣)﹣2﹣(﹣2013)0.(2)先化简,再求值.÷(1﹣),其中x的值为(1)中计算的结果.21.(9分)已知:如图,△ABC和△ACE都是等腰直角三角形,∠BAC=∠DAE=90°,点E在BC边上.(1)求证:△ACD≌△ABE;(2)若∠CDE=60°,求∠AEB的度数.22.(9分)九年级(1)班以“你最喜爱的体育运动”为主题对全班学生进行调整(每名学生分别选一个体育项目),并根据调查结果列车统计表,绘制成扇形统计图.男女生所选项目人数统计表请根据以上信息解决下列问题:(1)a=,b=;(2)扇形统计图中跳绳项目所对成扇形的圆心角度数为;(3)从选乒乓球项目的4名学生中随机选取2名学生参加学习乒乓球比赛,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生,1名女生的概率.23.(9分)下面是售货员与小明的对话:根据对话内容解答下列问题:(1)A、B两种文具的单价各是多少元?(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案.24.(10分)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P为边BC上一个动点(可以包括点C 但不包括点B),以P为圆心,PB为半径作⊙P交AB于点D,过点D作⊙P的切线交边AC于点E.(1)求证:AE=DE;(2)若PB=2,求AE的长;(3)在P点的运动过程中,请直接写出线段AE长度的取值范围.25.(11分)【发现】如图1,将△AOB绕点O顺时针旋转一定角度后得到△MON,当∠AOB=90°,∠B =30°,点M恰好落在边AB上时,连接AN.(1)线段MN与AO的位置关系是.(2)设△MBO的面积为S1,△ANO的面积为S2,试判断S1与S2之间的数量关系,并说明理由.【拓展】如图2,将△AOB绕点O逆时针旋转一定角度后得到△MON,设旋转角为α,∠AOB=β,若AM ∥OB,则α=(用含β的代数式表示).【应用】如图3,将矩形ABCD绕点A逆时针旋转一定角度后得到矩形AEFG,且点F落在CD的延长线上.当BO=,AB=3时,求旋转角α的度数,并求出此时点C所经过的路径长L和边AB所扫过区域的面积S.26.(12分)已知:如图,抛物线y=ax2+bx+c是由抛物线y=﹣x2的图象向左平移1个单位长度,再向上平移个单位长度得到的,抛物线与x轴交于A、B两点,与y轴交于点C.点D在线段OC上且OD =OB.(1)写出此抛物线的解析式(化成一般形式).(2)求线段AD所在直线的解析式.(3)若点P是第二象限内抛物线上一点,其横坐标为t,是否存在一点P,使△P AD的面积最大?若存在,求出点P的坐标及△P AD的面积的最大值,若不存在,请说明理由.(4)若点P仍为第二象限内抛物线上一点,抛物线的对称轴交x轴于点E,连接PE交AD于点F,当△AEF与△AOD相似时,请直接写出点P的坐标.2018年河北省保定市中考数学一模试卷参考答案与试题解析一、选择题:(本大题共16小题,每小题3分,共30分)1.(3分)4的平方根是()A.﹣2B.2C.±2D.16【分析】首先根据平方根的定义求出4的平方根,然后就可以解决问题.【解答】解:∵±2的平方等于4,∴4的平方根是:±2.故选:C.2.(3分)下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3D.a2•a2•a2【分析】A:a4+a2≠a6,据此判断即可.B:根据合并同类项的方法,可得a2+a2+a2=3a2.C:根据同底数幂的乘法法则,可得a2•a3=a5.D:根据同底数幂的乘法法则,可得a2•a2•a2=a6.【解答】解:∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B的结果不等于a6;∵a2•a3=a5,∴选项C的结果不等于a6;∵a2•a2•a2=a6,∴选项D的结果等于a6.故选:D.3.(3分)将9250000用科学记数法表示为()A.0.925×107B.9.25×107C.9.25×106D.92.5×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将9250000用科学记数法表示为:9.25×106.故选:C.4.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解.【解答】解:A、只是中心对称图形,故本选项错误;B、只是中心对称,故本选项错误;C、只是轴对称图形不是中心对称图形,故本选项错误;D、即是轴对称图形也是中心对称图形,故本选项正确;故选:D.5.(3分)下列图形中,能肯定∠2<∠1的是()A.B.C.D.【分析】根据三角形的外角的性质、圆周角定理、对顶角的性质判断即可.【解答】解:A、由圆周角定理得,∠2=∠1;B、由三角形的外角的性质可知,∠2<∠1;C、根据对顶角的性质可知,∠2=∠1;D、∠2与∠1的关系不确定,故选:B.6.(3分)如图是用八块相同的小正方形体搭建的几何体,它的左视图是()A.B.C.D.【分析】根据左视图有2列,从左到右分别是2,1个正方形,进而得出答案.【解答】解:这个几何体的左视图是,故选:B.7.(3分)下列各因式分解正确的是()A.(x﹣1)2=x2+2x+1B.x2+2x﹣1=(x﹣1)2C.x3﹣9x=x(x+3)(x﹣3)D.﹣x2+(﹣2)2=(x﹣2)(x+2)【分析】直接利用完全平方公式以及提取公因式法以及平方差公式分解因式判断即可.【解答】解:A、(x﹣1)2=x2﹣2x+1,故此选项错误;B、x2+2x﹣1无法分解因式,故此选项错误;C、x3﹣9x=x(x+3)(x﹣3),正确;D、﹣x2+(﹣2)2=﹣(x﹣2)(x+2),故此选项错误;故选:C.8.(3分)反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为()A.1B.﹣1C.2D.﹣2【分析】过双曲线上任意一点引x轴、y轴垂线,所得△AOB的面积为矩形面积的一半,即|k|.【解答】解:由于点A在反比例函数y=的图象上,则S△AOB=|k|=1,k=±2;又由于函数的图象在第二象限,故k<0,则k=﹣2.故选:D.9.(3分)直角三角板和直尺如图放置,若∠1=40°,则∠2的度数为()A.30°B.20°C.40°D.50°【分析】过E作EF∥AB,则EF∥CD,依据平行线先的性质,即可得到∠3 的度数,进而得出∠2的度数.【解答】解:过E作EF∥AB,则EF∥CD,∵∠1=40°,∴∠FEG=∠1=40°,∴∠FEH=60°﹣40°=20°,∴∠3=∠FEH=20°,∴∠2=∠3=20°,故选:B.10.(3分)如图,从边长为m的大正方形中剪掉一个边长为n的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(m﹣n)2=m2﹣2mn+n2B.m2﹣n2=(m+n)(m﹣n)C.(m﹣n)2=m2﹣n2D.m(m﹣n)=m2﹣mn【分析】根据图形的面积公式以及等量关系即可求出答案.【解答】解:左边图形的阴影部分可表示为:m2﹣n2右边图形可表示为:(m﹣n)(m+n)由于阴影部分面积相等,故m2﹣n2=(m+n)(m﹣n),故选:B.11.(2分)如图,△A′B′C′是△ABC在以点O为位似中心经过位似变换得到的,若△ABC的面积与△A′B′C′的面积比是16:9,则OA:OA′为()A.4:3B.3:4C.9:16D.16:9【分析】根据位似变换的概念得到△ABC∽△A′B′C′,根据相似三角形的面积比等于相似比的平方解答.【解答】解:∵△A′B′C′是△ABC在以点O为位似中心经过位似变换得到的,∴△ABC∽△A′B′C′,∵△ABC的面积与△A′B′C′的面积比是16:9,∴OA:OA′为4:3,故选:A.12.(2分)如图,在▱ABCD中,AB=8,BC=5,以点A为圆心,以任意长为半径作弧,分别交AD、AB 于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠DAB内交于点M,连接AM并延长交CD于点E,则CE的长为()A.3B.5C.2D.6.5【分析】根据作图过程可得得AE平分∠DAB;再根据角平分线的性质和平行四边形的性质可证明∠DAE =∠DEA,证出AD=DE=5,即可得出CE的长.【解答】解:根据作图的方法得:AE平分∠DAB,∴∠DAE=∠EAB,∵四边形ABCD是平行四边形,∴DC∥AB,AD=BC=5,∴∠DEA=∠EAB,∴∠DAE=∠DEA,∴AD=DE=5,∴CE=DC﹣DE=8﹣5=3;故选:A.13.(2分)已知m≠0,函数y=﹣mx2+n与y=在同一直角坐标系中的大致图象可能()A.B.C.D.【分析】分m>0和m<0两种情况分类讨论即可确定正确的选项.【解答】解:A、该函数图象中,抛物线开口方向向下,则﹣m<0,即m>0.抛物线与y轴交于正半轴,则n>0,所以mn>0,则双曲线y=应该位于第一、三象限,故本选项错误;B、该函数图象中,抛物线开口方向向上,则﹣m>0,即m<0.抛物线与y轴交于负半轴,则n<0,所以mn>0,则双曲线y=位于第一、三象限,故本选项正确;C、该函数图象中,抛物线开口方向向下,则﹣m<0,即m>0.抛物线与y轴交于负半轴,则n<0,所以mn<0,则双曲线y=应该位于第二、四象限,故本选项错误;D、该函数图象中,抛物线开口方向向上,则﹣m>0,即m<0.抛物线与y轴交于负半轴,则n<0,所以mn>0,则双曲线y=应该位于第一、三象限,故本选项错误;故选:B.14.(2分)某品牌钢笔进价8元,按10元1支出售时每天能卖出20支,市场调查发现如果每支每涨价1元,每天就少卖出2支,为了每天获得最大利润,其售价应定为()A.11元B.12元C.13元D.14元【分析】根据总利润w=单件利润×销售量列出函数表达式,运用二次函数性质解答即可.【解答】解:设利润为w,涨价x元,由题意得,每天利润为:w=(2+x)(20﹣2x).=﹣2x2+16x+40,=﹣2(x﹣4)2+72.所以当涨价4元(即售价为14元)时,每天利润最大,最大利润为72元.故选:D.15.(2分)如图,矩形ABCD中,AB=8,BC=6,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A.10B.4C.20D.8【分析】作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,由对称结合矩形的性质可知:E′G′=AB,GG′=AD,利用勾股定理即可求出E′G的长度,进而可得出四边形EFGH周长的最小值.【解答】解:作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,EF=E'F,过点G作GG′⊥AB于点G′,如图所示.∵AE=CG,BE=BE′,∴E′G′=AB=8,∵GG′=AD=6,∴E′G==10,∴C四边形EFGH=2(GF+EF)=2E′G=20.故选:C.16.(2分)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣2,0),对称轴为直线x=1,下列结论:①abc<0;②2a﹣b=0;③b2﹣4ac>0;④无论m为何值时,总有am2+bm≤a+b;⑤9a+c>3b,其中正确的结论序号为()A.①②③B.①③④C.①③④⑤D.②③④【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①由图象可得c>0,∵x=﹣=1,∴ab<0,∴abc<0,故①正确;②∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,即2a+b=0,故②错误;③∵抛物线与x轴有两个不同的交点,∴b2﹣4ac>0,故③正确;④当x=1时,函数有最大值,∴a+b+c≥am2+bm+c,∴am2+bm≤a+b,即无论m为何值时,总有am2+bm≤a+b.故④正确;⑤∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,故⑤错误;故选:B.二、选择题(本大题共3小题,共10分.17-18小题各3分,19小题2个空,每空2分)17.(3分)已知关于x的一元二次方程kx2﹣5x+3=0有两个不相等的实数根,则k的取值范围是k<且k≠0.【分析】根据关于x的一元二次方程kx2﹣5x+3=0有两个不相等的实数根,可得出判别式大于0,再求得k的取值范围.注意:二次项系数不等于零.【解答】解:∵关于x的一元二次方程kx2﹣5x+3=0有两个不相等的实数根,∴△=(﹣5)2+4×3k>0,解得k<,∵k≠0,∴k的取值范围k<且k≠0,故答案是:k<且k≠0.18.(4分)如图,楼房MN与楼房AB相距为30m,在M处测得楼房AB顶部点A的仰角为45°,底部点B的俯角为30°,则楼房AB的高度(30+10)m.【分析】过点M作ME⊥AB于点E,则BN=ME=30m,在直角△BME中利用正切函数求得BE的长,在等腰直角△AME中求得AE的长,那么AB=AE+EB.【解答】解:如图,过点M作ME⊥AB于点E,根据题意,∠AME=45°,∠BME=30°.∵MN⊥NB,AB⊥NB,∴四边形MNBE为矩形.∴BN=ME=30m,∵在Rt△MBE中,tan∠BME=,∴BE=ME•tan∠BME=10.∵在Rt△AME中,∠AME=45°,∴AE=ME=30.∴AB=AE+EB=30+10(m).答:楼房AB的高度是(30+10)m.故答案为(30+10).19.(3分)定义:a为不等于1的有理数,令a1=,a2=,a3=…以此类推,已知:a=,则a2=﹣2,a2017=.【分析】分别计算出a2、a3、a4即可得数列每3个数为一个循环周期,由2017÷3=672…1可得a2017=a1.【解答】解:∵a=,∴a1===,a2===﹣2,a3===,a4===,……∴∴数列每3个数为一个循环周期,∵2017÷3=672…1,∴a2017=a1=,故答案为:﹣2、.三、解答题:(本大题共7个小题,共68分)20.(8分)(1)计算:|﹣|+2cos45°﹣+(﹣)﹣2﹣(﹣2013)0.(2)先化简,再求值.÷(1﹣),其中x的值为(1)中计算的结果.【分析】(1)先计算绝对值、代入三角函数值、化简二次根式、计算负整数指数幂和零指数幂,再计算乘法,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:(1)原式=+2×﹣2+9﹣1=+﹣2+8=8;(2)原式=÷(﹣)=÷=•=,当x=8时,原式=.21.(9分)已知:如图,△ABC和△ACE都是等腰直角三角形,∠BAC=∠DAE=90°,点E在BC边上.(1)求证:△ACD≌△ABE;(2)若∠CDE=60°,求∠AEB的度数.【分析】(1)根据等腰直角三角形的性质和全等三角形的判定证明即可;(2)利用全等三角形的性质解答即可.【解答】证明:(1)∵∠BAC=∠DAE=90°,∴∠BAC﹣∠CAE=∠DAE﹣∠CAE,即∠DAC=∠EAB,在△ACD与△ABE中,∴△ACD≌△ABE(SAS);(2)∵△ACD≌△ABE,∴∠ADC=∠AEB,∴∠AEB=∠ADE+∠CDE=45°+60°=105°.22.(9分)九年级(1)班以“你最喜爱的体育运动”为主题对全班学生进行调整(每名学生分别选一个体育项目),并根据调查结果列车统计表,绘制成扇形统计图.男女生所选项目人数统计表请根据以上信息解决下列问题:(1)a=4,b=2;(2)扇形统计图中跳绳项目所对成扇形的圆心角度数为72°;(3)从选乒乓球项目的4名学生中随机选取2名学生参加学习乒乓球比赛,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生,1名女生的概率.【分析】(1)由乒乓球的人数和其所占的百分比可求出总人数,进而可求出羽毛球的人数,则a的值可求出,从而b的值也可求出;(2)由跳绳项目的人数所占总人数的百分比即可求出所对应扇形的圆心角度数;(3)应用列表法的方法,求出恰好选到1名男生和1名女生的概率是多少即可.【解答】解:(1)∵本次调查的总人数为(2+2)÷10%=40人,∴a=40×30%﹣8=4,b=40﹣(6+10+8+4+2+2+6)=2,故答案为:4、2;(2)扇形统计图中跳绳项目所对成扇形的圆心角度数为360°×=72°,故答案为:72°;(3)列表得:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“1名男生、1名女生”有8种可能.所以所选取的2名学生中恰好有1名男生,1名女生的概率为=.23.(9分)下面是售货员与小明的对话:根据对话内容解答下列问题:(1)A、B两种文具的单价各是多少元?(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案.【分析】(1)设A种文具的单价为x元,则B种文具单价为(25﹣x)元,根据用80元购买A种文具的数量是用120元购买B种文具的数量的2倍,列方程求解;(2)设学校购进A种文具a件,则购进B种文具(20﹣a)件,根据其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,列不等式求出a的取值范围,结合a为正整数,确定购买方案.【解答】解:(1)设A种文具的单价为x元,则B种文具单价为(25﹣x)元,由题意得,=,解得:x=10,经检验,x=10是分式方程的解,且符合题意,25﹣x=15答:种文具的单价为10元,则B种文具单价为15元;(2)设学校购进A种文具a件,则购进B种文具(20﹣a)件,由题意得,解得:8≤a<10,∵a是正整数,∴a为8或9∴共有两种购买方案.24.(10分)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P为边BC上一个动点(可以包括点C 但不包括点B),以P为圆心,PB为半径作⊙P交AB于点D,过点D作⊙P的切线交边AC于点E.(1)求证:AE=DE;(2)若PB=2,求AE的长;(3)在P点的运动过程中,请直接写出线段AE长度的取值范围.【分析】(1)首先得出∠ADE+∠PDB=90°,进而得出∠B+∠A=90°,利用PD=PB得出∠EDA=∠A,进而得出答案;(2)利用勾股定理得出ED2+PD2=EC2+CP2=PE2,求出AE即可;(3)分别根据当D点在B点时以及当P与C重合时,求出AE的长,进而得出AE的取值范围.【解答】(1)证明:如图1,连接PD.∵DE切⊙P于D.∴PD⊥DE.∴∠ADE+∠PDB=90°.∵∠C=90°.∴∠B+∠A=90°.∵PD=P A.∴∠PDB=∠B.∴∠A=∠ADE.∴AE=DE;(2)解:如图1,连接PE,设DE=AE=x,则EC=8﹣x,∵PB=PD=2,BC=6.∴PC=4.∵∠PDE=∠C=90°,∴ED2+PD2=EC2+CP2=PE2.∴x2+22=(8﹣x)2+42.解得x=.∴AE=;(3)解:如图2,当圆心P在点B处时,半径为0,此时,D点与B点重合,∵AE=ED,设AE=ED=x,则EC=8﹣x,∴EC2+BC2=BE2,∴(8﹣x)2+62=x2,解得:x=,如图3,当P与C重合时,∵AE=ED,设AE=ED=x,则EC=8﹣x,∴EC2=DC2+DE2,∴(8﹣x)2=62+x2,解得:x=,∵P为边BC上一个动点(可以包括点C但不包括点B),∴线段AE长度的取值范围为:≤AE<.25.(11分)【发现】如图1,将△AOB绕点O顺时针旋转一定角度后得到△MON,当∠AOB=90°,∠B =30°,点M恰好落在边AB上时,连接AN.(1)线段MN与AO的位置关系是MN∥AO.(2)设△MBO的面积为S1,△ANO的面积为S2,试判断S1与S2之间的数量关系,并说明理由.【拓展】如图2,将△AOB绕点O逆时针旋转一定角度后得到△MON,设旋转角为α,∠AOB=β,若AM ∥OB,则α=180°﹣2β(用含β的代数式表示).【应用】如图3,将矩形ABCD绕点A逆时针旋转一定角度后得到矩形AEFG,且点F落在CD的延长线上.当BO=,AB=3时,求旋转角α的度数,并求出此时点C所经过的路径长L和边AB所扫过区域的面积S.【分析】【发现】(1)关键旋转的性质和等边三角形的性质得出∠NMO=∠AOM=60°,进而利用平行线的判定解答即可;(2)利用平行线的性质和等边三角形的性质解答即可;【拓展】根据旋转的性质和平行线的性质以及三角形的内角和解答即可;【应用】根据旋转的性质和平行线的性质以及三角形的内角和得出α=120°,再利用勾股定理和弧长和扇形面积公式解答即可.【解答】解:【发现】(1)∵∠AOB=90°,∠B=30°,∴∠BAO=60°,∵将△AOB绕点O顺时针旋转一定角度后得到△MON,∴OA=OM,∠OMN=∠OAB=60°,∴△AOM是等边三角形,∴∠AOM=60°,∴∠AOM=∠OMN,∴MN∥OA;(2)S1=S2,理由如下:∵MN∥AO,∴S△AON=S△AOM,∵△AOM是等边三角形,∴AM=AO,∵AB=2AO,∴AM=MB,∴S△AOM=S△BOM,∴S△BOM=S△AON,即S1=S2;【拓展】∵AM∥OB,∴∠OAM=∠BOA=β∵将△AOB绕点O逆时针旋转一定角度后得到△MON,∴OA=OM,∠BON=∠AOM=α,∴∠OAM=∠OMA=β,∴α+β+β=180°,∴α=180°﹣2β;【应用】连接AC,AF,由tan∠BAC=,可得:∠BAC=30°,∵CF∥AB,∴∠ACF=∠BAC=30°,∵AC=AF,∴∠ACF=∠AFC=30°,∴α=180°﹣2∠ACF=180°﹣2×30°=120°,AC=,点C所经过的路径错L=,边AB扫过的区域的面积S=.故答案为:MN∥AO,180°﹣2β.26.(12分)已知:如图,抛物线y=ax2+bx+c是由抛物线y=﹣x2的图象向左平移1个单位长度,再向上平移个单位长度得到的,抛物线与x轴交于A、B两点,与y轴交于点C.点D在线段OC上且OD =OB.(1)写出此抛物线的解析式(化成一般形式).(2)求线段AD所在直线的解析式.(3)若点P是第二象限内抛物线上一点,其横坐标为t,是否存在一点P,使△P AD的面积最大?若存在,求出点P的坐标及△P AD的面积的最大值,若不存在,请说明理由.(4)若点P仍为第二象限内抛物线上一点,抛物线的对称轴交x轴于点E,连接PE交AD于点F,当△AEF与△AOD相似时,请直接写出点P的坐标.【分析】(1)根据平移的特点直接得出结论;(2)先求出点A,B坐标,进而得出点D坐标,利用待定系数法即可得出结论;(3)设出点P坐标,得出点N坐标,进而表示出PN,得出S△P AD=﹣(t+)2+,即可得出结论;(4)分两种情况,利用相似三角形的性质即可得出结论.【解答】解:(1)∵抛物线y=﹣x2的图象向左平移1个单位长度,再向上平移个单位长度得到的,∴此抛物线的解析式y=﹣(x+1)2+=﹣x2﹣x+4;(2)令y=0,∴﹣x2﹣x+4=0,∴x=﹣4或x=2,∴A(﹣4,0),B(2,0),∴OB=2,∵OD=OB,∴OD=2,∴D(0,2),设直线AD的解析式为y=kx+2,∵点A(﹣4,0)在直线AD上,∴﹣4k+2=0,∴k=,∴直线AD的解析式为y=x+2;(3)存在,设点P(t,﹣t2﹣t+4),如图1,过点P作PM⊥x轴于M,交AD于N,∴N(t,t+2),∴PN=﹣t2﹣t+4﹣(t+2)=﹣t2﹣t+2,∴S△P AD=S△P AN﹣S△PND=PN•OA=﹣t2﹣3t+4=﹣(t+)2+,∴当t=﹣时,S△P AD的面积最大,最大值为,此时点P(﹣,);(4)设点P(m,﹣m2﹣m+4),∵△AEF与△AOD相似,且△AOD是直角三角形,∴①当∠AEF=90°时,此时,P(﹣1,),②当∠AFE=90°时,△AFE∽△AOD,∴∠OAD+∠AEF=90°,如图2,过点P作PG⊥x轴于G,∴∠AEF+∠EPG=90°,∴∠OAD=∠GPE,∵∠PGE=∠AOD=90°,∴△PGE∽△AOD,∴=2,由(1)知,抛物线对称轴为x=﹣1,∴GE=﹣1﹣m,∴=2,∴m=1+(舍)或m=1﹣,∴P(1﹣,2﹣4),即:P(﹣1,)或(1﹣,2﹣4).。

2018年河北省唐山市丰南区中考数学二模试卷含解析(完美打印版)

2018年河北省唐山市丰南区中考数学二模试卷(含解析)一.选择题(本大题共16小题,1-6题,每小题2分;7-16题,每小题2分,共42分)1.(2分)若实数m,n互为倒数,则下列等式中成立的是()A.m﹣n=0B.mn=1C.m+n=0D.mn=﹣12.(2分)“5300万“用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×1083.(2分)下列计算中,正确的是()A.20=1B.a+a=a2C.=±3D.(m3)2=m54.(2分)不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.5.(2分)下列四个图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.6.(2分)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.第二,三象限B.第一,三象限C.第三,四象限D.第二,四象限7.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±18.(3分)在△ABC中,AB=AC=13,BC=24,则tan B等于()A.B.C.D.9.(3分)某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x名学生,根据题意,列出方程为()A.x(x+1)=2550B.x(x﹣1)=2550C.2x(x+1)=2550D.x(x﹣1)=2550×210.(3分)学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下:现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权重比由3:5:2变成5:3:2,成绩变化情况是()A.小明增加最多B.小亮增加最多C.小丽增加最多D.三人的成绩都增加11.(3分)如图,在四边形ABCD中,AD∥BC,若∠DAB的角平分线AE交CD于E,连接BE,且BE 边平分∠ABC,则以下命题不正确的个数是①BC+AD=AB;②E为CD中点;③∠AEB=90°;④S△ABE=S四边形ABCD;⑤BC=CE.()A.0个B.1个C.2个D.3个12.(3分)如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°13.(3分)顶点为(﹣5,0),且开口方向、形状与函数y=﹣x2的图象相同的抛物线是()A.y=(x﹣5)2B.y=﹣x2﹣5C.y=﹣(x+5)2D.y=(x+5)214.(3分)一条公路弯道处是一段圆弧,点O是这条弧所在圆的圆心,点C是的中点,OC与AB 相交于点D.已知AB=120m,CD=20m,那么这段弯道的半径为()A.200m B.200m C.100m D.100m15.(3分)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b16.(3分)已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()A.B.C.D.二.细心填一填(本大题共3小题,每小题3分,共9分)17.(3分)分解因式:9x﹣x3=.18.(3分)如图,点E是矩形ABCD内任一点,若AB=30,BC=40.则图中阴影部分的面积为.19.(3分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为.三.专心解一解(本大题有7个小题,共69分)20.(9分)如图,在平面直角坐标系中,点A坐标为(0,3),点B在x轴上(1)在坐标系中求作一点M,使得点M到点A,点B和原点O这三点的距离相等,在图中保留作图痕迹,不写作法;(2)若sin∠OAB=,求点M的坐标;(3)在(2)的条件下,直接写出以点O、M、B为其中三个顶点的平行四边形的第四个顶点P的坐标21.(9分)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,AC=16.(1)求证:BN=DN;(2)求MN的长.22.(9分)三角形的周长为38,第一条边长为a,第二条边比第一条边的2倍多3.(1)表示第三条边;(2)若三角形为等腰三角形,求a的值;(3)若a为正整数,此三角形是否为直角三角形?说明理由.23.(9分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.(1)写出乙同学在数据整理或绘图过程中的错误(写出一个即可);(2)甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为;(3)该班学生的身高数据的中位数是;(4)假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?24.(10分)周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.25.(11分)如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.(1)求证:四边形AB'C'D是菱形;(2)四边形ABC'D′的周长为;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.26.(12分)已知:如图,直线y=kx+2与x轴正半轴相交于A(t,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A和点B,点C在第三象象限内,且AC⊥AB,tan∠ACB=.(1)当t=1时,求抛物线的表达式;(2)试用含t的代数式表示点C的坐标;(3)如果点C在这条抛物线的对称轴上,求t的值.2018年河北省唐山市丰南区中考数学二模试卷参考答案与试题解析一.选择题(本大题共16小题,1-6题,每小题2分;7-16题,每小题2分,共42分)1.(2分)若实数m,n互为倒数,则下列等式中成立的是()A.m﹣n=0B.mn=1C.m+n=0D.mn=﹣1【分析】根据倒数的意义,可得答案.【解答】解:A、m﹣n=0,得m=n,故A错误;B、mn=1,得m与n互为倒数,故B符合题意;C、m+n=0,得m与n互为相反数,故C不符合题意;D、mn=﹣1,得m与n互为负倒数,故D错误;故选:B.2.(2分)“5300万“用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同:当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n是负数.【解答】解:5300万=5.3×107.故选:C.3.(2分)下列计算中,正确的是()A.20=1B.a+a=a2C.=±3D.(m3)2=m5【分析】根据幂的乘方与积的乘方进行解答即可.【解答】解:A、20=1,正确;B、a+a=2a,错误;C、,错误;D、(m3)2=m6,错误;故选:A.4.(2分)不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出原不等式的解集,再根据解集即可求出结论.【解答】解:∵x+1≥2,∴x≥1.故选:A.5.(2分)下列四个图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、是轴对称图形,也是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,不合题意;D、不是轴对称图形,是中心对称图形,不合题意.故选:A.6.(2分)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.第二,三象限B.第一,三象限C.第三,四象限D.第二,四象限【分析】先把点代入函数解析式,求出k值,再根据反比例函数的性质求解即可.【解答】解:由题意得,k=﹣1×2=﹣2<0,∴函数的图象位于第二,四象限.故选:D.7.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.8.(3分)在△ABC中,AB=AC=13,BC=24,则tan B等于()A.B.C.D.【分析】根据题意画出图形,由等腰三角形的性质求出BD的长,根据勾股定理求出AD的长,再根据锐角三角函数的定义即可求出tan B的值.【解答】解:如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,AD==5,故tan B=.故选:B.9.(3分)某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x名学生,根据题意,列出方程为()A.x(x+1)=2550B.x(x﹣1)=2550C.2x(x+1)=2550D.x(x﹣1)=2550×2【分析】如果全班有x名学生,那么每名学生应该送的相片为(x﹣1)张,根据“全班共送了2550张相片”,可得出方程为x(x﹣1)=2550.【解答】解:∵全班有x名学生,∴每名学生应该送的相片为(x﹣1)张,∴x(x﹣1)=2550.故选:B.10.(3分)学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下:现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权重比由3:5:2变成5:3:2,成绩变化情况是()A.小明增加最多B.小亮增加最多C.小丽增加最多D.三人的成绩都增加【分析】根据加权平均数的概念分别计算出3人的各自成绩.先求出采访写作、计算机和创意设计这三项的权重比3:5:2是各自的成绩,然后再求出这三项权重比5:3:2是各自的成绩,进行比较.【解答】解:当采访写作、计算机和创意设计这三项的权重比为3:5:2时,小明的成绩=(70×3+60×5+86×2)÷10=68.2;小亮的成绩=(90×3+75×5+51×2)÷10=54.3;小丽的成绩=(60×3+84×5+72×2)÷10=74.4;当采访写作、计算机和创意设计这三项的权重比为5:3:2时,小明的成绩=(70×5+60×3+86×2)÷10=70.2;小亮的成绩=(90×5+75×3+51×2)÷10=77.7;小丽的成绩=(60×5+84×3+72×2)÷10=69.6;∴小明的成绩变化为70.2﹣68.2=2;小亮的成绩变化为77.7﹣54.3=23.4;小丽的成绩变化为69.6﹣74.4=﹣4.8;∴小亮增加最多.故选:B.11.(3分)如图,在四边形ABCD中,AD∥BC,若∠DAB的角平分线AE交CD于E,连接BE,且BE 边平分∠ABC,则以下命题不正确的个数是①BC+AD=AB;②E为CD中点;③∠AEB=90°;④S△ABE=S四边形ABCD;⑤BC=CE.()A.0个B.1个C.2个D.3个【分析】根据两直线平行,同旁内角互补可得∠ABC+∠BAD=180°,又BE、AE都是角平分线,可以推出∠ABE+∠BAE=90°,从而得到∠AEB=90°,然后延长AE交BC的延长线于点F,先证明△ABE 与△FBE全等,再根据全等三角形对应边相等得到AE=EF,然后证明△AED与△FEC全等,从而可以证明①②③④正确,AB与CD不一定相等,所以⑤不正确.【解答】解:∵AD∥BC,∴∠ABC+∠BAD=180°,∵AE、BE分别是∠BAD与∠ABC的平分线,∴∠BAE=∠BAD,∠ABE=∠ABC,∴∠BAE+∠ABE=(∠BAD+∠ABC)=90°,∴∠AEB=180°﹣(∠BAE+∠ABE)=180°﹣90°=90°,故③小题正确;延长AE交BC延长线于F,∵∠AEB=90°,∴BE⊥AF,∵BE平分∠ABC,∴∠ABE=∠FBE,在△ABE与△FBE中,,∴△ABE≌△FBE(ASA),∴AB=BF,AE=FE,∵AD∥BC,∴∠EAD=∠F,在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴AD=CF,∴AB=BC+CF=BC+AD,故①小题正确;∵△ADE≌△FCE,∴CE=DE,即点E为CD的中点,故②小题正确;∵△ADE≌△FCE,∴S△ADE=S△FCE,∴S四边形ABCD=S△ABF,∵S△ABE=S△ABF,∴S△ABE=S四边形ABCD,故④小题正确;若AD=BC,则CE是Rt△BEF斜边上的中线,则BC=CE,∵AD与BC不一定相等,∴BC与CE不一定相等,故⑤小题错误.综上所述,不正确的有⑤共1个.故选:B.12.(3分)如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【解答】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.13.(3分)顶点为(﹣5,0),且开口方向、形状与函数y=﹣x2的图象相同的抛物线是()A.y=(x﹣5)2B.y=﹣x2﹣5C.y=﹣(x+5)2D.y=(x+5)2【分析】设抛物线的解析式为y=a(x﹣h)2+k,由条件可以得出a=﹣,再将定点坐标代入解析式就可以求出结论.【解答】解:设抛物线的解析式为y=a(x﹣h)2+k,且该抛物线的形状与开口方向和抛物线y=﹣x2相同,∴a=﹣,∴y=﹣(x﹣h)2+k,∴y=﹣(x+5)2.故选:C.14.(3分)一条公路弯道处是一段圆弧,点O是这条弧所在圆的圆心,点C是的中点,OC与AB 相交于点D.已知AB=120m,CD=20m,那么这段弯道的半径为()A.200m B.200m C.100m D.100m【分析】连接OA,由垂径定理求出AD的长,判断出△AOD的形状,在设OA=r,利用勾股定理即可得出r的长.【解答】解:连接OA,∵C是的中点,OC与AB相交于点D,∴AB⊥OC,∴AD=AB=×120=60m,∴△AOD是直角三角形,设OA=r,则OD=r﹣CD=OC﹣CD=r﹣20,在Rt△AOD中,OA2=AD2+OD2,即r2=602+(r﹣20)2,解得r=100m.故选:C.15.(3分)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b【分析】由m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根可得出二次函数y=(x﹣a)(x ﹣b)﹣1的图象与x轴交于点(m,0)、(n,0),将y=(x﹣a)(x﹣b)﹣1的图象往上平移一个单位可得二次函数y=(x﹣a)(x﹣b)的图象,画出两函数图象,观察函数图象即可得出a、b、m、n的大小关系.【解答】解:∵m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,∴二次函数y=(x﹣a)(x﹣b)﹣1的图象与x轴交于点(m,0)、(n,0),∴将y=(x﹣a)(x﹣b)﹣1的图象往上平移一个单位可得二次函数y=(x﹣a)(x﹣b)的图象,二次函数y=(x﹣a)(x﹣b)的图象与x轴交于点(a,0)、(b,0).画出两函数图象,观察函数图象可知:m<a<b<n.故选:A.16.(3分)已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()A.B.C.D.【分析】根据函数解析式求函数图象.【解答】解:由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选:A.二.细心填一填(本大题共3小题,每小题3分,共9分)17.(3分)分解因式:9x﹣x3=x(3+x)(3﹣x).【分析】首先提取公因式x,金进而利用平方差公式分解因式得出答案.【解答】解:原式=x(9﹣x2)=x(3﹣x)(3+x).故答案为:x(3﹣x)(3+x).18.(3分)如图,点E是矩形ABCD内任一点,若AB=30,BC=40.则图中阴影部分的面积为600.【分析】根据三角形面积公式可知,图中阴影部分面积等于矩形面积的一半;即可得出结果.【解答】解:∵四边形ABCD是矩形,∴AD=BC=40,设两个阴影部分三角形的底为AD,BC,高分别为h1,h2,则h1+h2=AB,∴S△EAB+S△ECD=AD•h1+BC•h2=AD(h1+h2)=AD•AB=矩形ABCD的面积=×30×40=600;故答案为:60019.(3分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为48+12.【分析】观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其表面积即可.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为2,高为4,故其边心距为,所以其表面积为2×4×6+2××6×2×=48+12,故答案为:48+12.三.专心解一解(本大题有7个小题,共69分)20.(9分)如图,在平面直角坐标系中,点A坐标为(0,3),点B在x轴上(1)在坐标系中求作一点M,使得点M到点A,点B和原点O这三点的距离相等,在图中保留作图痕迹,不写作法;(2)若sin∠OAB=,求点M的坐标;(3)在(2)的条件下,直接写出以点O、M、B为其中三个顶点的平行四边形的第四个顶点P的坐标【分析】(1)直接利用线段垂直平分线的作法结合直角三角形的性质得出答案;(2)利用勾股定理得出OB的长,再利用M点为AB的中点即可得出其坐标.(3)根据平行四边形的性质直接得出P的坐标即可.【解答】解:(1)如图所示:点M,即为所求;(2)∵sin∠OAB=,∴设OB=4x,AB=5x,由勾股定理可得:32+(4x)2=(5x)2,解得:x=1,由作图可得:M为AB的中点,则M的坐标为:(2,).(3)∵B(4,0),M(2,),OMBP是平行四边形,∴MP∥x轴,∴P的纵坐标为1.5,MP=4,可得:P(6,1.5)或P(﹣2,1.5),∵当OP∥MB时,∴P(2,﹣1.5),综上所述:P(6,1.5)或P(﹣2,1.5)或P(2,﹣1.5),21.(9分)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,AC=16.(1)求证:BN=DN;(2)求MN的长.【分析】(1)证明△ABN≌△ADN,即可得出结论;(2)先判断MN是△BDC的中位线,从而得出MN.【解答】证明:(1)∵AN平分∠BAC∴∠1=∠2,∵BN⊥AN∴∠ANB=∠AND,在△ABN和△ADN中,,∴△ABN≌△ADN(ASA)∴BN=DN;(2)∵△ABN≌△ADN∴AD=AB=10,DN=NB,∴CD=AC﹣AD=16﹣10=6,又∵点M是BC中点,∴MN是△BDC的中位线,∴MN=CD=3.22.(9分)三角形的周长为38,第一条边长为a,第二条边比第一条边的2倍多3.(1)表示第三条边;(2)若三角形为等腰三角形,求a的值;(3)若a为正整数,此三角形是否为直角三角形?说明理由.【分析】(1)根据周长﹣第一条边﹣第二条边=第三条边,化简即可;(2)由a≠2a+3,可知分两种情况:①a=35﹣3a,②2a+3=35﹣3a,分别解方程根据a的取值可得结论;(3)a取整数为6和7,分别根据勾股定理可得结论.【解答】解:(1)由题意得:第二条边:2a+3,第三条边:38﹣a﹣(2a+3)=35﹣3a;(2)由三边关系可知:,解得:5<a<8;∵a≠2a+3∴分两种情况:①a=35﹣3a,a=8,不符合三边关系,舍去;②2a+3=35﹣3a,a=6,符合三边关系,∴a=6;(3)不能为直角三角形;理由:∵5<a<8,且a为整数,∴a=6或7,当a=6时,三边为:6、15、17,62+152≠172,不是直角三角形;当a=7时,三边为:7、17、14,72+142≠172,不是直角三角形.23.(9分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.(1)写出乙同学在数据整理或绘图过程中的错误(写出一个即可);(2)甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为120°;(3)该班学生的身高数据的中位数是160或161;(4)假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?【分析】(1)在整理数据时漏了一个数据,它在169.5﹣﹣174.5内(答案不唯一).(2)先求出总人数,再求出求出159.5﹣164.5这一部分所对应的人数即可求出所对应的扇形圆心角的度数为;(3)根据中位数的求法,将甲的数据从小到大依次排列,可得第30与31名的数据在第3组,分2种情况讨论可得答案;(4)用树形图将所有情况列举出来即可求得概率.【解答】解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一)(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;将甲的数据相加可得10+15+20+10+5=60;由题意可知159.5﹣164.5这一部分所对应的人数为20人,所以这一部分所对应的扇形圆心角的度数为20÷60×360=120°,故答案为:120°;(3)根据中位数的求法,将甲的数据从小到大依次排列,可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或161.故答案为:160或161;(4)列表得:P(一男一女)==.24.(10分)周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.【分析】(1)用路程除以时间即可得到速度;在甲地游玩的时间是1﹣0.5=0.5小时.(2)求得线段BC所在直线的解析式和DE所在直线的解析式后求得交点坐标即可求得被妈妈追上的时间.(3)设从妈妈追上小明的地点到乙地的路程为n(km),根据妈妈比小明早到10分钟列出有关n的方程,求得n值即可.【解答】解:(1)小明骑车速度:在甲地游玩的时间是1﹣0.5=0.5(h).(2)妈妈驾车速度:20×3=60(km/h)设直线BC解析式为y=20x+b1,把点B(1,10)代入得b1=﹣10∴y=20x﹣10设直线DE解析式为y=60x+b2,把点D(,0)代入得b2=﹣80∴y=60x﹣80…∴解得∴交点F(1.75,25).答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km.(3)方法一:设从家到乙地的路程为m(km)则点E(x1,m),点C(x2,m)分别代入y=60x﹣80,y=20x﹣10得:,∵∴∴m=30.方法二:设从妈妈追上小明的地点到乙地的路程为n(km),由题意得:∴n=5∴从家到乙地的路程为5+25=30(km).方法三:设从家到乙地的路程为n(km),由题意得:(n/20+0.5)﹣(n/60+4/3)=10/60∴n=30∴从家到乙地的路程为30(km).25.(11分)如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.(1)求证:四边形AB'C'D是菱形;(2)四边形ABC'D′的周长为4;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.【分析】(1)有一组邻边相等的平行四边形是菱形,据此进行证明即可;(2)先判定四边形ABC'D'是菱形,再根据边长AB=AD=,即可得到四边形ABC'D′的周长为4;(3)根据两种不同的拼法,分别求得可能拼成的矩形周长.【解答】解:(1)∵BD是矩形ABCD的对角线,∠ABD=30°,∴∠ADB=60°,由平移可得,B'C'=BC=AD,∠D'B'C'=∠DBC=∠ADB=60°,∴AD∥B'C'∴四边形AB'C'D是平行四边形,∵B'为BD中点,∴Rt△ABD中,AB'=BD=DB',又∵∠ADB=60°,∴△ADB'是等边三角形,∴AD=AB',∴四边形AB'C'D是菱形;(2)由平移可得,AB=C'D',∠ABD'=∠C'D'B=30°,∴AB∥C'D',∴四边形ABC'D'是平行四边形,由(1)可得,AC'⊥B'D,∴四边形ABC'D'是菱形,∵AB=AD=,∴四边形ABC'D′的周长为4,故答案为:4;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形如下:∴矩形周长为6+或2+3.26.(12分)已知:如图,直线y=kx+2与x轴正半轴相交于A(t,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A和点B,点C在第三象象限内,且AC⊥AB,tan∠ACB=.(1)当t=1时,求抛物线的表达式;(2)试用含t的代数式表示点C的坐标;(3)如果点C在这条抛物线的对称轴上,求t的值.【分析】(1)把点A(1,0),B(0,2)分别代入抛物线的表达式,解方程组即可;(2)如图:作CH⊥x轴,垂足为点H,根据△AOB∽△CHA,得到==,根据tan∠ACB==,得到==,根据OA=t,得到点C的坐标为(t﹣4,﹣2t).(3)根据点C(t﹣4,﹣2t)在抛物线y=﹣x2+bx+c的对称轴上,得到t﹣4=,即b=2t﹣8,把点A(t,0)、B(0,2)代入抛物线的表达式,得﹣t2+bt+2=0,可知t2+(2t﹣8)t+2=0,即t2﹣8t+2=0,据此即可求出t的值.【解答】解:(1)∵t=1,y=kx+2,∴A(1,0),B(0,2),把点A(1,0),B(0,2)分别代入抛物线的表达式,得,解得,,∴所求抛物线的表达式为y=﹣x2﹣x+2.(2)如图:作CH⊥x轴,垂足为点H,得∠AHC=∠AOB=90°,∵AC⊥AB,∴∠OAB+∠CAH=90°,又∵∠CAH+∠ACH=90°,∴∠OAB=∠ACH,∴△AOB∽△CHA,∴==,∵tan∠ACB==,∴==,∵OA=t,OB=2,∴CH=2t,AH=4,∴点C的坐标为(t﹣4,﹣2t).(3)∵点C(t﹣4,﹣2t)在抛物线y=﹣x2+bx+c的对称轴上,∴t﹣4=,即b=2t﹣8,把点A(t,0)、B(0,2)代入抛物线的表达式,得﹣t2+bt+2=0,∴﹣t2+(2t﹣8)t+2=0,即t2﹣8t+2=0,解得t=4±,∵点C(t﹣4,﹣2t)在第三象限,∴t=4+不符合题意,舍去,∴t=4﹣.。

2018年河北邯郸市中考数学一模试卷及答案

2018年河北邯郸市中考数学一模试卷及答案2018年邯郸市初三升学模拟考试(一)数学试卷一、选择题(本大题共16小题,共42分。

1-10题小题各3分;11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、下列各数中,比-1小的数是()A.0B.0.5C.-0.5D.-22、如图,“中国天眼”即500米口径球面射电望远镜(FAST),是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜,由4600个反射单元组成一个球面,把4600表示成(其中,1≤a<10,n为整数)的形式,则n为()A.-1B.2C.3D.43、如图,若∠1=50°,则∠2的度数为()A.30°B.40°C.50°D.90°4、下列运算中,正确的是()A.B.C.D.5、如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,则Rt△ABC的中线CD的长为()A.5B.6C.8D.106、已知面积为8的正方形边长是x,则关于x的结论中,正确的是()A.x是有理数B.x不能在数轴上表示C.x是方程4x=8的解D.x是8的算术平方根7、如图,△ABC中,∠BCD=∠A,DE∥BC,与△ABC相似的三角形(△ABC自身除外)的个数是()A.1个B.2个C.3个D.4个8、用配方法解一元二次方程的过程中,变形正确的是()A.B.C.D.9、已知□ABCD,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是()A.∠DAE=∠B某工厂计划生产1500个零件,但是在实际生产时,……,求实际每天生产零件的个数,在这个题目中,若设实际每天生产零件x个,可得方程,则题目中用“……”表示的条件应是()A.每天比原计划多生产5个,结果延期10天完成B.每天比原计划多生产5个,结果提前10天完成C.每天比原计划少生产5个,结果延期10天完成D.每天比原计划少生产5个,结果提前10天完成11、由7个大小相同的正方体搭成的几何体如图所示,则以下结论:①主视图既是轴对称图形,又是中心对称图形;②俯视图是中心对称图形③左视图不是中心对称图形④俯视图和左视图都不是轴对称图形其中正确结论是()A.①③B.①④C.②③D.②④12、如图,在半径为4的⊙O中,弦AB∥OC,∠BOC=30°,则AB的长为()A.2B.C.4D.13、在一个不透明的袋子里装有2个红球1个黄球,这3个小球除颜色不同外,其它都相同,贝贝同学摸出一个球后放回口袋再摸一个;莹莹同学一次摸2个球,两人分别记录下小球的颜色,关于两人摸到1个红球1个黄球和2个红球的概率的描述中,正确的是()A.B.C.D.14、如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线(a≠0)经过△ABC区域(包括边界),则a的取值范围是()A.a≤-1或a≥2B.-1≤a<0或0<a≤2C.-1≤a<0或1<a≤D.≤a≤215、如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,∠BAC的平分线交BC于点D,过点D作DE⊥AB,垂足为E,连接CE交AD于点F,则以下结论:①AB=2CE;②AC=4CD;③CE⊥AD;④△DBE与△ABC的面积比是:1:()其中正确结论是()A.①②B.②③C.③④D.①④16、一个数学游戏,正六边形被平均分为6格(其中1格涂有阴影),规则如下:若第一个正六边形下面标的数字为a(a为正整数),则先绕正六边形的中心顺时针旋转a格;再沿某条边所在的直线l翻折,得到第二个图形。

2018年河北省邯郸市中考一模数学试卷(解析版)

2018年河北省邯郸市中考数学一模试卷一、选择题(本大题共16小题,共42分.1-10题小题各3分;11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数中,比﹣1小的数为()A.0B.0.5C.﹣2D.12.(3分)如图,“中国天眼”即500米口径球面射电望远镜(F AST),是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜,由4600个反射单元组成一个球面,把4600表示成a×10n(其中,1≤a<10,n为整数)的形式,则n为()A.﹣1B.2C.3D.43.(3分)如图,若∠1=50°,则∠2的度数为()A.30°B.40°C.50°D.90°4.(3分)下列运算中,正确的是()A.(a3)3=a9B.a2•a2=2a2C.a﹣a2=﹣a D.(ab)2=ab2 5.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,则Rt△ABC 的中线CD的长为()A.5B.6C.8D.106.(3分)已知面积为8的正方形边长是x,则关于x的结论中,正确的是()A.x是有理数B.x不能在数轴上表示C.x是方程4x=8的解D.x是8的算术平方根7.(3分)如图,△ABC中,∠BCD=∠A,DE∥BC,与△ABC相似的三角形(△ABC自身除外)的个数是()A.1个B.2个C.3个D.4个8.(3分)用配方法解一元二次方程2x2﹣4x﹣2=1的过程中,变形正确的是()A.2(x﹣1)2=1B.2(x﹣2)2=5C.D.9.(3分)已知▱ABCD,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是()A.∠DAE=∠BAE B.∠DEA=∠DABC.DE=BE D.BC=DE10.(3分)某工厂计划生产1500个零件,但是在实际生产时,……,求实际每天生产零件的个数,在这个题目中,若设实际每天生产零件x个,可得方程,则题目中用“……”表示的条件应是()A.每天比原计划多生产5个,结果延期10天完成B.每天比原计划多生产5个,结果提前10天完成C.每天比原计划少生产5个,结果延期10天完成D.每天比原计划少生产5个,结果提前10天完成11.(3分)由7个大小相同的正方体搭成的几何体如图所示,则以下结论:①主视图既是轴对称图形,又是中心对称图形;②俯视图是中心对称图形③左视图不是中心对称图形④俯视图和左视图都不是轴对称图形其中正确结论是()A.①③B.①④C.②③D.②④12.(2分)如图,在半径为4的⊙O中,弦AB∥OC,∠BOC=30°,则AB的长为()A.2B.C.4D.13.(2分)在一个不透明的袋子里装有2个红球1个黄球,这3个小球除颜色不同外,其它都相同,贝贝同学摸出一个球后放回口袋再摸一个;莹莹同学一次摸2个球,两人分别记录下小球的颜色,关于两人摸到1个红球1个黄球和2个红球的概率的描述中,正确的是()A.P(贝贝摸到1红1黄)=P莹莹摸到1红1黄B.P(贝贝摸到1红1黄)>P莹莹摸到1红1黄C.P(贝贝摸到2红)=P莹莹摸到2红D.P(贝贝摸到2红)>P莹莹摸到2红14.(2分)如图,在平面直角坐标系中,A(1,2),B(1,﹣1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是()A.a≤﹣1或a≥2B.≤a≤2C.﹣1≤a<0或1<a≤D.﹣1≤a<0或0<a≤215.(2分)如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,∠BAC的平分线交BC于点D,过点D作DE⊥AB,垂足为E,连接CE交AD于点F,则以下结论:①AB=2CE;②AC=4CD;③CE⊥AD;④△DBE与△ABC的面积比是:1:(7+4)其中正确结论是()A.①②B.②③C.③④D.①④16.(2分)一个数学游戏,正六边形被平均分为6格(其中1格涂有阴影),规则如下:若第一个正六边形下面标的数字为a(a为正整数),则先绕正六边形的中心顺时针旋转a格;再沿某条边所在的直线l翻折,得到第二个图形.例如:若第一个正六边形下面标的数字为2,如图,则先绕其中心顺时针旋转2格;再沿直线l翻折,得到第二个图形.若第一个正六边形下面标的数字为4,如图,按照游戏规则,得到第二个图形应是()A.B.C.D.二、填空题(本大题共3小题,共10分.17-18小题3分;19小题有2个空,每空2分,把答案写在题中横线上)17.(3分)=.18.(3分)不等式组的解集是.19.(4分)如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=;(2)当△ABC的边与坐标轴平行时,t=.三、解答题(本大图共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(7分)张老师在黑板上写了三个算式,希望同学们认真观察,发现规律.请你结合这些算式,解答下列问题:请观察以下算式:①32﹣12=8×1②52﹣32=8×2③72﹣52=8×3(1)请你再写出另外两个符合上述规律的算式;(2)验证规律:设两个连续奇数为2n+1,2n﹣1(其中n为正整数),则它们的平方差是8的倍数;(3)拓展延伸:“两个连续偶数的平方差是8的倍数”,这个结论正确吗?21.(9分)为了解甲、乙两班英语口语水平,每班随机抽取了10名学生进行了口语测验,测验成绩满分为10分,参加测验的10名学生成绩(单位:分)称为样本数据,抽样调查过程如下:收集数据甲、乙两班的样本数据分别为:甲班:6 7 9 4 6 7 6 9 6 10乙班:7 8 9 7 5 7 8 5 9 5整理和描述数据规定了四个层次:9分以上(含9分)为“优秀”,8﹣9分(含8分)为“良好”,6﹣8分(含6分)为“一般”,6分以下(不含6分)为“不合格”.按以上层次分布绘制出如下的扇形统计图.请计算:(1)图1中,“不合格”层次所占的百分比;(2)图2中,“优秀”层次对应的圆心角的度数.分析数据对于甲、乙两班的样本数据,请直接回答:(1)甲班的平均数是7,中位数是;乙班的平均数是,中位数是7;(2)从平均数和中位数看,班整体成绩更好.解决问题若甲班50人,乙班40人,通过计算,估计甲、乙两班“不合格”层次的共有多少人?22.(9分)如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应的数分别为a、b、c、d、e.(1)若a+e=0,直接写出代数式b+c+d的值为;(2)若a+b=7,先化简,再求值:;(3)若a+b+c+d+e=5,数轴上的点M表示的实数为m,且满足MA+ME>12,则m的范围是.23.(9分)如图,点O在线段AB上,(不与端点A、B重合),以点O为圆心,OA的长为半径画弧,线段BP与这条弧相切与点P,直线CD垂直平分PB,交PB于点C,交AB于点D,在射线DC上截取DE,使DE=DB.已知AB=6,设OA=r.(1)求证:OP∥ED;(2)当∠ABP=30°时,求扇形AOP的面积,并证明四边形PDBE是菱形;(3)过点O作OF⊥DE于点F,如图所示,线段EF的长度是否随r的变化而变化?若不变,直接写出EF的值;若变化,直接写出EF与r的关系.24.(10分)如图,在平面直角坐标系中,已知点A(5,3),点B(﹣3,3),过点A的直线y=x+m(m为常数)与直线x=1交于点P,与x轴交于点C,直线BP与x轴交于点D.(1)求点P的坐标;(2)求直线BP的解析式,并直接写出△PCD与△P AB的面积比;(3)若反比例函数y=(k为常数且k≠0)的图象与线段BD有公共点时,请直接写出k的最大值或最小值.25.(11分)如图1,图2中,正方形ABCD的边长为6,点P从点B出发沿边BC﹣CD以每秒2个单位长的速度向点D匀速运动,以BP为边作等边三角形BPQ,使点Q在正方形ABCD内或边上,当点Q恰好运动到AD边上时,点P停止运动.设运动时间为t秒(t≥0).(1)当t=2时,点Q到BC的距离=;(2)当点P在BC边上运动时,求CQ的最小值及此时t的值;(3)若点Q在AD边上时,如图2,求出t的值;(4)直接写出点Q运动路线的长.26.(12分)某商场经销一种商品,已知其每件进价为40元.现在每件售价为70元,每星期可卖出500件.该商场通过市场调查发现:若每件涨价1元,则每星期少卖出10件;若每件降价1元,则每星期多卖出m(m为正整数)件.设调查价格后每星期的销售利润为W元.(1)设该商品每件涨价x(x为正整数)元,①若x=5,则每星期可卖出件,每星期的销售利润为元;②当x为何值时,W最大,W的最大值是多少?(2)设该商品每件降价y(y为正整数)元,①写出W与y的函数关系式,并通过计算判断:当m=10时每星期销售利润能否达到(1)中W的最大值;②若使y=10时,每星期的销售利润W最大,直接写出W的最大值为.(3)若每件降价5元时的每星期销售利润,不低于每件涨价15元时的每星期销售利润,求m的取值范围.2018年河北省邯郸市中考数学一模试卷参考答案与试题解析一、选择题(本大题共16小题,共42分.1-10题小题各3分;11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数中,比﹣1小的数为()A.0B.0.5C.﹣2D.1【解答】解:A、﹣1<0,故A错误;B、﹣1<0.5,故B错误;C、﹣1>﹣2,故C正确;D、1>﹣1,故D错误.故选:C.2.(3分)如图,“中国天眼”即500米口径球面射电望远镜(F AST),是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜,由4600个反射单元组成一个球面,把4600表示成a×10n(其中,1≤a<10,n为整数)的形式,则n为()A.﹣1B.2C.3D.4【解答】解:把4600表示成a×10n(其中,1≤a<10,n为整数)的形式,则n为3.故选:C.3.(3分)如图,若∠1=50°,则∠2的度数为()A.30°B.40°C.50°D.90°【解答】解:由图可知:∠1+∠2=90°,∴∠2=40°,故选:B.4.(3分)下列运算中,正确的是()A.(a3)3=a9B.a2•a2=2a2C.a﹣a2=﹣a D.(ab)2=ab2【解答】解:A、(a3)3=a9,故此选项正确;B、a2•a2=a4,故原题计算错误;C、a和a2不是同类项,不能合并,故原题计算错误;D、(ab)2=a2b2,故原题计算错误;故选:A.5.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,则Rt△ABC 的中线CD的长为()A.5B.6C.8D.10【解答】解:Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴AB==10,∵CD是Rt△ABC的中线,∴CD=AB=5,故选:A.6.(3分)已知面积为8的正方形边长是x,则关于x的结论中,正确的是()A.x是有理数B.x不能在数轴上表示C.x是方程4x=8的解D.x是8的算术平方根【解答】解:由题意,得x=,A、x是无理数,故A不符合题意;B、x能在数轴上表示处来,故B不符合题意;C、x是x2=8的解,故C不符合题意;D、x是8的算术平方根,故D符合题意;故选:D.7.(3分)如图,△ABC中,∠BCD=∠A,DE∥BC,与△ABC相似的三角形(△ABC自身除外)的个数是()A.1个B.2个C.3个D.4个【解答】解:∵DE∥BC,∴△AED∽△ABC,∵∠BCD=∠A,∴∠DBC=∠A,∠ACB=∠ACB,∴△BDC∽△ABC,∴有两个与△ABC相似的三角形.故选:B.8.(3分)用配方法解一元二次方程2x2﹣4x﹣2=1的过程中,变形正确的是()A.2(x﹣1)2=1B.2(x﹣2)2=5C.D.【解答】解:∵2x2﹣4x=3,∴x2﹣2x=,则x2﹣2x+1=1+,即(x﹣1)2=,故选:C.9.(3分)已知▱ABCD,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是()A.∠DAE=∠BAE B.∠DEA=∠DABC.DE=BE D.BC=DE【解答】解:A、由作法可知AE平分∠DAB,所以∠DAE=∠BAE,故本选项不符合题意;B、∵CD∥AB,∴∠DEA=∠BAE=∠DAB,故本选项不符合题意;C、无法证明DE=BE,故本选项符合题意;D、∵∠DAE=∠DEA,∴AD=DE,∵AD=BC,∴BC=DE,故本选项不符合题意.故选:C.10.(3分)某工厂计划生产1500个零件,但是在实际生产时,……,求实际每天生产零件的个数,在这个题目中,若设实际每天生产零件x个,可得方程,则题目中用“……”表示的条件应是()A.每天比原计划多生产5个,结果延期10天完成B.每天比原计划多生产5个,结果提前10天完成C.每天比原计划少生产5个,结果延期10天完成D.每天比原计划少生产5个,结果提前10天完成【解答】解:,由分式方程可知,实际每天比原计划多生产5个,实际提前10天完成.故选:B.11.(3分)由7个大小相同的正方体搭成的几何体如图所示,则以下结论:①主视图既是轴对称图形,又是中心对称图形;②俯视图是中心对称图形③左视图不是中心对称图形④俯视图和左视图都不是轴对称图形其中正确结论是()A.①③B.①④C.②③D.②④【解答】解:①主视图既是轴对称图形,又是中心对称图形,此结论正确;②俯视图不是中心对称图形,此结论错误;③左视图不是中心对称图形,此结论正确;④俯视图不是轴对称图形,左视图是轴对称图形,此结论错误;故选:A.12.(2分)如图,在半径为4的⊙O中,弦AB∥OC,∠BOC=30°,则AB的长为()A.2B.C.4D.【解答】解:延长BO交⊙O于点D,连接AD∵BD是直径,∴∠BAD=90°,BD=4×2=8∵AB∥OC,∠BOC=30°,∴∠ABD=30°在Rt△ADB中,∵∠ABD=30°,∴AD=BD=4,AB===4故选:D.13.(2分)在一个不透明的袋子里装有2个红球1个黄球,这3个小球除颜色不同外,其它都相同,贝贝同学摸出一个球后放回口袋再摸一个;莹莹同学一次摸2个球,两人分别记录下小球的颜色,关于两人摸到1个红球1个黄球和2个红球的概率的描述中,正确的是()A.P(贝贝摸到1红1黄)=P莹莹摸到1红1黄B.P(贝贝摸到1红1黄)>P莹莹摸到1红1黄C.P(贝贝摸到2红)=P莹莹摸到2红D.P(贝贝摸到2红)>P莹莹摸到2红【解答】解:贝贝同学摸出的球的所有情况如下:由树状图知,共有9种等可能结果,其中摸到1个红球1个黄球有4种结果、摸到2个红球有4种结果,所以摸到1个红球1个黄球的概率为,摸到2个红球的概率为;莹莹同学摸出的球的所有情况如下:由以上树状图知共有6种等可能的结果,其中摸到1个红球1个黄球的有4种结果、两次都摸到红球的有2种情况,∴所以摸到1个红球1个黄球的概率为,摸到2个红球的概率为,∴P(贝贝摸到2红)>P莹莹摸到2红,故选:D.14.(2分)如图,在平面直角坐标系中,A(1,2),B(1,﹣1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是()A.a≤﹣1或a≥2B.≤a≤2C.﹣1≤a<0或1<a≤D.﹣1≤a<0或0<a≤2【解答】解:如图所示,∵A(1,2),B(1,﹣1),C(2,2),当抛物线经过点A时,a=2,当抛物线经过点B时,a=﹣1,当抛物线经过C时,a=,∵a>0时,a越大,开口越小;a<0时,a越大,开口越大;∴抛物线y=ax2(a≠0)经过△ABC区域(包括边界),a的取值范围是:0<a≤2或﹣1≤a<0;故选:D.15.(2分)如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,∠BAC的平分线交BC于点D,过点D作DE⊥AB,垂足为E,连接CE交AD于点F,则以下结论:①AB=2CE;②AC=4CD;③CE⊥AD;④△DBE与△ABC的面积比是:1:(7+4)其中正确结论是()A.①②B.②③C.③④D.①④【解答】解:如图,设BE=a.在Rt△BDE中,∵∠DEB=90°,∠B=60°,BE=a,∴BD=2BE=2a,DE=a,∵DA平分∠CAB,DC⊥AC,DE⊥AB,∴DC=DE=a,∴AB=2BC=4a+2a,∵∠BEC是钝角,∴BC>CE,∵AB=2BC,故①错误,∵△DAC≌△DAE,∴AE=AC=BC=(2a+a)=2a+3a,显然AC≠4CD,故②错误,∵DE=DC,AC=AE,∴AD垂直平分线段EC,故③正确,∴==,故④正确,故选:C.16.(2分)一个数学游戏,正六边形被平均分为6格(其中1格涂有阴影),规则如下:若第一个正六边形下面标的数字为a(a为正整数),则先绕正六边形的中心顺时针旋转a格;再沿某条边所在的直线l翻折,得到第二个图形.例如:若第一个正六边形下面标的数字为2,如图,则先绕其中心顺时针旋转2格;再沿直线l翻折,得到第二个图形.若第一个正六边形下面标的数字为4,如图,按照游戏规则,得到第二个图形应是()A.B.C.D.【解答】解:由题意,可得先绕其中心顺时针旋转4格后的图形为,再将沿直线l翻折得到的图形是.故选:A.二、填空题(本大题共3小题,共10分.17-18小题3分;19小题有2个空,每空2分,把答案写在题中横线上)17.(3分)=3.【解答】解:原式=2+,=(2+1),=3,故答案为:3.18.(3分)不等式组的解集是.【解答】解:∵解不等式①得:x<3,解不等式②得:x>,∴不等式组的解集是<x<3,故答案为:<x<3.19.(4分)如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A 在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=;(2)当△ABC的边与坐标轴平行时,t=.【解答】解:(1)∵BC=AC=5,AB=8,CD⊥AB∴BD=4=AD,∴由勾股定理得:CD=3∵AD=BD,∠AOB=90°∴OD=AB=4∵在△OCD中,OC<OD+DC∴当O,D,C三点共线时,OC值最大,即OD⊥AB,∵AD=BD,DO⊥AB∴BO=AO,且AB=8∴AO=BO=4,且点A的速度为每秒1个单位长度∴t==4(2)若BC∥x轴∴∠CBA=∠BAO且∠CDB=∠AOB∴△BOC∽△AOB∴,即∴t=若AC∥y轴,∴∠CAB=∠ABO且∠CDA=∠AOB∴△ACD∽△AOB∴即∴t=∴当t=或时,△ABC的边与坐标轴平行三、解答题(本大图共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(7分)张老师在黑板上写了三个算式,希望同学们认真观察,发现规律.请你结合这些算式,解答下列问题:请观察以下算式:①32﹣12=8×1②52﹣32=8×2③72﹣52=8×3(1)请你再写出另外两个符合上述规律的算式;(2)验证规律:设两个连续奇数为2n+1,2n﹣1(其中n为正整数),则它们的平方差是8的倍数;(3)拓展延伸:“两个连续偶数的平方差是8的倍数”,这个结论正确吗?【解答】解:(1)92﹣72=8×4,112﹣92=8×5;(2)验证规律:设两个连续奇数为2n+1,2n﹣1(其中n为正整数),则它们的平方差是8的倍数;(2n+1)2﹣(2n﹣1)2=(2n+1﹣2n+1)(2n+1+2n﹣1)=2×4n=8n故两个连续奇数的平方差是8的倍数.(3)拓展延伸:“两个连续偶数的平方差是8的倍数”,这个结论正确吗?不正确.解法一:举反例:42﹣22=12,因为12不是8的倍数,故这个结论不正确.解法二:设这两个偶数位2n和2n+2,(2n+2)2﹣(2n)2=(2n+2﹣2n)(2n+2+2n)=8n+4因为8n+4不是8的倍数,故这个结论不正确.21.(9分)为了解甲、乙两班英语口语水平,每班随机抽取了10名学生进行了口语测验,测验成绩满分为10分,参加测验的10名学生成绩(单位:分)称为样本数据,抽样调查过程如下:收集数据甲、乙两班的样本数据分别为:甲班:6 7 9 4 6 7 6 9 6 10乙班:7 8 9 7 5 7 8 5 9 5整理和描述数据规定了四个层次:9分以上(含9分)为“优秀”,8﹣9分(含8分)为“良好”,6﹣8分(含6分)为“一般”,6分以下(不含6分)为“不合格”.按以上层次分布绘制出如下的扇形统计图.请计算:(1)图1中,“不合格”层次所占的百分比;(2)图2中,“优秀”层次对应的圆心角的度数.分析数据对于甲、乙两班的样本数据,请直接回答:(1)甲班的平均数是7,中位数是 6.5;乙班的平均数是7,中位数是7;(2)从平均数和中位数看,乙班整体成绩更好.解决问题若甲班50人,乙班40人,通过计算,估计甲、乙两班“不合格”层次的共有多少人?【解答】解:整理和描述数据(1)抽取的10人中,甲班不合格的人数为1,×100%=10%,(2)抽取的10人中,乙班优秀的人数为2,×360°=72°;分析数据(1)甲班的平均数是7,中位数是=6.5,乙班的平均数是=7,中位数是7;(2)从平均数和中位数看,乙班整体成绩更好.故答案为:(1)6.5、7;(2)乙;解决问题甲班不合格的人数约为:50×10%=5(人)乙班不合格的人数约为:40×=12(人)则5+12=17(人)答:甲、乙两班“不合格”层次的共有17人.22.(9分)如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应的数分别为a、b、c、d、e.(1)若a+e=0,直接写出代数式b+c+d的值为0;(2)若a+b=7,先化简,再求值:;(3)若a+b+c+d+e=5,数轴上的点M表示的实数为m,且满足MA+ME>12,则m的范围是m<﹣5或m>7.【解答】解:(1)∵a+e=0,∴e=2,e=﹣2,∴b=﹣1,c=0,d=1,∴b+c+d=﹣1+0+1=0,故答案为:0;(2)∵A、B、C、D、E为连续整数,∴b=a+1,∵a+b=7,∴a=3,,=,=,=,当a=3时,原式=.(3)∵A、B、C、D、E为连续整数,∴b=a+1,c=a+2,d=a+3,e=a+4,∵a+b+c+d+e=5,∴a+a+1+a+2+a+3+a+4=5,5a=﹣5,a=﹣1,∴a=﹣1,e=3,分三种情况:①M在A的左侧,∵MA+ME>12,∴﹣1﹣m+3﹣m>12,m<﹣5,②当M在A和E之间时,MA+ME=3﹣(﹣1)=4,不符合题意,③当M在E的右侧时,∵MA+ME>12,∴m﹣3+m﹣(﹣1)>12,m>7,综上所述,则m的范围是m<﹣5或m>7;故答案为:m<﹣5或m>7.23.(9分)如图,点O在线段AB上,(不与端点A、B重合),以点O为圆心,OA的长为半径画弧,线段BP与这条弧相切与点P,直线CD垂直平分PB,交PB于点C,交AB于点D,在射线DC上截取DE,使DE=DB.已知AB =6,设OA=r.(1)求证:OP∥ED;(2)当∠ABP=30°时,求扇形AOP的面积,并证明四边形PDBE是菱形;(3)过点O作OF⊥DE于点F,如图所示,线段EF的长度是否随r的变化而变化?若不变,直接写出EF的值;若变化,直接写出EF与r的关系.【解答】解:(1)∵BP为⊙O的切线,∴OP⊥BP,∵CD⊥BP,∴∠OPB=∠DCB=90°,∴OP∥ED;(2)在Rt△OBP中,∠OPB=90°,∠ABP=30°,∴∠POB=60°,∴∠AOP=120°.在Rt△OBP中,OP=OB,即r=(6﹣r),解得:r=2,S扇形AOP=.∵CD⊥PB,∠ABP=30°,∴∠EDB=60°,∵DE=BD,∴△EDB是等边三角形,∴BD=BE.又∵CD⊥PB,∴CD=CE.∴DE与PB互相垂直平分,∴四边形PDBE是菱形.(3)EF的长度不随r的变化而变化,且EF=3,∵AO=r、AB=6,∴BO=AB﹣AO=6﹣r,∵BP为⊙O的切线,∴∠BPO=90°,∵直线CD垂直平分PB,∴∠DCB=∠OPB=90°,且BC=PC,∵∠DBC=∠OBP,∴△DBC∽△OBP,∴=,则CD=OP=r、BD=OB=(6﹣r)=3﹣,∵DB=DE=3﹣,∴CE=DE﹣CD=3﹣r,∵OF⊥EF,∴∠OFC=∠FCP=∠CPO=90°,∴四边形OFCP为矩形,∴CF=OP=r,则EF=CF+CE=r+3﹣r=3,即EF的长度为定值,EF=3.24.(10分)如图,在平面直角坐标系中,已知点A(5,3),点B(﹣3,3),过点A的直线y=x+m(m为常数)与直线x=1交于点P,与x轴交于点C,直线BP与x轴交于点D.(1)求点P的坐标;(2)求直线BP的解析式,并直接写出△PCD与△P AB的面积比;(3)若反比例函数y=(k为常数且k≠0)的图象与线段BD有公共点时,请直接写出k的最大值或最小值.【解答】解:(1)∵过点A(5,3),∴3=×5+m,解得m=,∴直线为y=x+,当x=1时,∴∴P(1,1);(2)设直线BP的解析式为y=ax+b根据题意,得∴直线BP的解析式为y=﹣x+,∵p(1,1),A(5,3),B(﹣3,3),∴=()2=;(3)当k<0时,反比例函数在第二象限,函数图象经过B点时,k的值最小,此时k=﹣9;当k>0时,反比例函数在第一象限,k的值最大,联立得:,消去y得:﹣x+=,整理得:x2﹣3x+2k=0,∵反比例函数与线段BD有公共点,∴△=32﹣4×1×2k≥0,解得:k≤,故当k<0时,最小值为﹣9;当k>0时,最大值为;25.(11分)如图1,图2中,正方形ABCD的边长为6,点P从点B出发沿边BC﹣CD以每秒2个单位长的速度向点D匀速运动,以BP为边作等边三角形BPQ,使点Q在正方形ABCD内或边上,当点Q恰好运动到AD边上时,点P停止运动.设运动时间为t秒(t≥0).(1)当t=2时,点Q到BC的距离=2;(2)当点P在BC边上运动时,求CQ的最小值及此时t的值;(3)若点Q在AD边上时,如图2,求出t的值;(4)直接写出点Q运动路线的长.【解答】解:(1)如图1,由运动知,BQ=2t=4,过点Q作QH⊥BC于H,∵△BPQ是等边三角形,∴BP=BQ=4,∠PBQ=60°,在Rt△BPH中,PH=BP•sin∠PBQ=4×=2,故答案为2;解:(2)点P在BC边上运动时,有∠QBC=60°,根据垂线段最短,当CQ⊥BQ时,CQ最小.如图,在直角三角形BCQ中,∠QBC=60°,∴∠BCQ=30°∴BQ=∴BP=BQ=3,∴t=∴CQ=BQ•tan∠QBC=;(3)若点Q在AD边上,则CP=2t﹣6,∵BA=BC,BQ=BP,∠A=∠C=90°,∴Rt△BAQ≌Rt△BCP(HL)∴AQ=CP=2t﹣6,∴DQ=DP=12﹣2t,∵BP=PQ,在Rt△PDQ和Rt△BCP中,由勾股定理可得,DQ2+DP2=QP2,BC2+CP2=BP2∴2(12﹣2t)2=62+(2t﹣6)2解得:(不合题意,舍去),∴;(4)如图,当点P在BC上从点B运动到点C时,点Q从点B运动到点Q,∵△PBQ是等边三角形,∴BQ=BC,∠QBC=60°当点P在CD上从点C运动到如图所示的点P时,点Q从如图所示的点Q运动到Q',∵△BPQ'是等边三角形,∴BP=BQ',∠PBQ'=60°=∠QBC,∴∠PBC=∠Q'BQ,∵BQ=BC,∴△BQQ'≌△BCP,∴QQ'=CP,∴点Q的运动路线长等于点P的运动路线长,由(3)知,t=9﹣,∴点Q的运动路线长等于2(9﹣3)=26.(12分)某商场经销一种商品,已知其每件进价为40元.现在每件售价为70元,每星期可卖出500件.该商场通过市场调查发现:若每件涨价1元,则每星期少卖出10件;若每件降价1元,则每星期多卖出m(m为正整数)件.设调查价格后每星期的销售利润为W元.(1)设该商品每件涨价x(x为正整数)元,①若x=5,则每星期可卖出450件,每星期的销售利润为15750元;②当x为何值时,W最大,W的最大值是多少?(2)设该商品每件降价y(y为正整数)元,①写出W与y的函数关系式,并通过计算判断:当m=10时每星期销售利润能否达到(1)中W的最大值;②若使y=10时,每星期的销售利润W最大,直接写出W的最大值为20000.(3)若每件降价5元时的每星期销售利润,不低于每件涨价15元时的每星期销售利润,求m的取值范围.【解答】解:(1)①若x=5,则每星期可卖出500﹣5×10=450件,每星期的销售利润为(70+5﹣40)×450=15750元,故答案为:450、15750;②根据题意得:W=(70﹣40+x)(500﹣10x)=﹣10x2+200x+15000∵W是x的二次函数,且﹣10<0,∴当时,W最大.W最大值=﹣10×102+200×10+15000=16000答:当x=10时,W最大,最大值为16000.(2)①W=(70﹣40﹣y)(500+my)=﹣my2+(30m﹣500)y+15000,当m=10时,W=﹣10y2﹣200y+15000,∵W是y的二次函数,且﹣10<0,∴当y=﹣时,W最大,当y>﹣10时,W随y的增大而减小,∵y为正整数,=﹣10×12﹣200×1+15000=14790,∴当y=1时,W最大,W最大14790<16000答:当m=10时每星期销售利润不能达到(1)中W的最大值;②∵W=﹣my2+(30m﹣500)y+15000,当y=10时,W最大,∴10=,解得,m=50,∴W=﹣m×102+(30m﹣500)×10+15000=200m+10000=200×50+10000=20000,故答案为:20000元;(3)降价5元时销售利润为:W=(70﹣40﹣5)(500+5m)=125m+12500涨价15元时的销售利润为:W=﹣10×152+200×15+15000=15750∵每件降价5元时的每星期销售利润,不低于每件涨价15元时的每星期销售利润,∴125m+12500≥15750解得,m≥26答:m的取值范围是m≥26.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年河北省唐山市丰润区中考数学一模试卷

一、选择题 1. −2018的倒数是( )

A. 2018 B. −

12018 C. 1

2018 D. −2018

2. 正在修建的黔张常铁路,横跨渝、鄂、湘三省,起于重庆市黔江区黔江站,止于常德市武陵区常德站.铁路规划线路总长340公里,工程估算金额37500000000元.将数据37500000000用科学记数法表示为( ) A. 0.375×10

11 B. 3.75×1011 C. 3.75×1010 D. 375×108

3. 下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )

A. B.

C. D. 4. 已知{𝑥−𝑦=4𝑘+3

3𝑥+2𝑦=𝑘

,如果x与y互为相反数,那么( )

A. 𝑘=0 B. 𝑘=−

34 C. 𝑘=−32 D. 𝑘=3

4

5. 下列计算:①(√2)2=2;②√(−2)2=2;③(−2√3)2=12;④(√2+√3)(√2−√3)=−1.其中正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个

6. 如图,直线𝑎//𝑏,直线l与a,b分别交于点A,B,过点A作𝐴𝐶⊥𝑏于点C,若∠1=50∘,则∠2的度数为( ) A. 130

B. 50

C. 40

D. 25

7. 如图,△𝐴′𝐵′𝐶′是△𝐴𝐵𝐶以点O为位似中心经过位似变换得到的,若△𝐴′𝐵′𝐶′的面积与△𝐴𝐵𝐶的面积比是4:9,则𝑂𝐵′:OB为( ) A. 2:3 B. 3:2 C. 4:5 D. 4:9

8. 如图,在△𝐴𝐵𝐶中,∠𝐶𝐴𝐵=65∘,将△𝐴𝐵𝐶在平面内绕点A旋

转到△𝐴𝐵′𝐶′的位置,使𝐶𝐶′//𝐴𝐵,则旋转角的度数为( )

A. 35

∘ B. 40∘ C. 50∘

D. 65∘

9. 已知a,b,c是△𝐴𝐵𝐶的三条边长,化简|𝑎+𝑏−𝑐|−|𝑐−𝑎−𝑏|的结果为( ) A. 2𝑎+2𝑏−2𝑐 B. 2𝑎+2𝑏 C. 2c D. 0

10. 如图,一艘海轮位于灯塔P的南偏东70∘方向的M处,它以每小时

40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东

40∘的N处,则N处与灯塔P的距离为( )

A. 40海里

B. 60海里

C. 70海里

D. 80海里

11. 某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下: 尺码 39 40 41 42 43 平均每天销售数量/件 10 12 20 12 12 该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是( ) A. 平均数 B. 方差 C. 众数 D. 中位数

12. 如图,在▱ABCD中,连结AC,∠𝐴𝐵𝐶=∠𝐶𝐴𝐷=45∘,𝐴𝐵=2,则BC的长是( )

A. √2 B. 2 C. 2√2 D. 4

13. 如图,A,B,C,D是⊙𝑂上的四个点,B是𝐴𝐶⌢的中点,M是半径OD上任意一点.若∠𝐵𝐷𝐶=40∘,则∠𝐴𝑀𝐵的度数不可能是( ) A. 45

B. 60

C. 75

D. 85

14. 如图,𝐴𝐶⊥𝐵𝐶,𝐴𝐶=𝐵𝐶=4,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作𝐵𝐶⌢,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是( ) A. 53𝜋−2√3 B. 53𝜋+2√3

C. 2√3−

53𝜋 D. √3+5

3𝜋

15. 如图,矩形ABOC的顶点A的坐标为(−4,5),D是OB的中点,E是OC上的一点,当△𝐴𝐷𝐸的周长最小时,点E的坐标是( )

A. (0,

4

3)

B. (0,

5

3)

C. (0,2)

D. (0,

10

3) 16. 如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为𝑆(阴影部分),则S与t的大致图象为( )

A. B. C. D. 二、填空题 17. 把多项式3𝑥2−12因式分解的结果是______.

18. 如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形𝐴𝐹𝐵(阴影部分)的面积为______.

19. 如图,△𝑂𝐴𝐶和△𝐵𝐴𝐷都是等腰直角三角形,∠𝐴𝐶𝑂=∠𝐴𝐷𝐵=90∘,反比例函数𝑦=𝑘𝑥在第一象限的图象经过点B.

①若𝑂𝐶=3,𝐵𝐷=2,则𝑘=______; ②若𝑂𝐴2−𝐴𝐵2=18.则𝑘=______.

三、解答题 20. 小明解不等式1+𝑥2−2𝑥+13≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的

解答过程.

21. 如图,已知E、F分别是▱ABCD的边BC、AD上的点,且𝐵𝐸=𝐷𝐹. (1)求证:四边形AECF是平行四边形;

(2)若四边形AECF是菱形,且𝐵𝐶=10,∠𝐵𝐴𝐶=90∘,求BE的长. 22. 某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取10%进行调查,根据调查结果绘制了如图不完整的频数分布表和扇形统计图: 运动项目 频数(人数) 羽毛球 30 篮球 a 乒乓球 36 排球 b 足球 12 请根据以上图表信息解答下列问题: (1)频数分布表中的𝑎=______,𝑏=______;

(2)在扇形统计图中,“排球”所在的扇形的圆心角为______度;

(3)全校有多少名学生选择参加乒乓球运动?

23. 政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的14,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天. 24. 如图,在△𝐴𝐵𝐶中,𝐴𝐶=𝐵𝐶,𝐴𝐵⊥𝑥轴,垂足为𝐴.反比例函数𝑦=𝑘𝑥(𝑥>0)的图象经过点C,

交AB于点𝐷.已知𝐴𝐵=4,𝐵𝐶=52. (1)若𝑂𝐴=4,求k的值;

(2)连接OC,若𝐵𝐷=𝐵𝐶,求OC的长.

25. 如图,在△𝐴𝐵𝐶中,∠𝐴𝐶𝐵=90∘,CD是中线,𝐴𝐶=𝐵𝐶,一个以点D为顶点的45∘角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.

(1)如图1,若𝐶𝐸=𝐶𝐹,求证:𝐷𝐸=𝐷𝐹;

(2)如图2,在∠𝐸𝐷𝐹绕点D旋转的过程中:

①探究三条线段AB,CE,CF之间的数量关系,并说明理由; ②若𝐶𝐸=4,𝐶𝐹=2,求DN的长. 26. 如图,抛物线𝑦=−12𝑥2+𝑏𝑥+𝑐与x轴交于𝐴(−1,0)、B两点,

与y轴交于点𝐶(0,2),抛物线的对称轴交x轴于点D. (1)求抛物线的解析式;

(2)求sin∠𝐴𝐵𝐶的值;

(3)在抛物线的对称轴上是否存在点P,使△𝑃𝐶𝐷是以CD为腰的

等腰三角形?如果存在,直接写出点P的坐标;如果不存在,请说明理由; (4)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什

么位置时线段EF最长?求出此时E点的坐标. 答案和解析 【答案】 1. B 2. C 3. B 4. C 5. D 6. C 7. A

8. C 9. D 10. D 11. C 12. C 13. D 14. A

15. B 16. A

17. 3(𝑥−2)(𝑥+2) 18. 18 19. 5;9 20. 解:错误的是①②⑤,正确解答过程如下:

去分母,得3(1+𝑥)−2(2𝑥+1)≤6, 去括号,得3+3𝑥−4𝑥−2≤6, 移项,得3𝑥−4𝑥≤6−3+2, 合并同类项,得−𝑥≤5, 两边都除以−1,得𝑥≥−5. 21. (1)证明:∵四边形ABCD是平行四边形,

∴𝐴𝐷//𝐵𝐶,且𝐴𝐷=𝐵𝐶,

∴𝐴𝐹//𝐸𝐶,

∵𝐵𝐸=𝐷𝐹,

∴𝐴𝐹=𝐸𝐶,

∴四边形AECF是平行四边形.

(2)解:∵四边形AECF是菱形,

∴𝐴𝐸=𝐸𝐶,

∴∠1=∠2,

∵∠𝐵𝐴𝐶=90∘,

∴∠3=90∘−∠2,∠4=90∘−∠1,

∴∠3=∠4,

∴𝐴𝐸=𝐵𝐸,

∴𝐵𝐸=𝐴𝐸=𝐶𝐸=12𝐵𝐶=5.

22. 24;18;54 23. 解:10÷

1

4=40(天),

设乙工程队单独完成这项工程需要x天,依题意有 (1𝑥+140)×10=1−14,

解得𝑥=20, 经检验,𝑥=20是原方程的解. 答:乙工程队单独完成这项工程需要20天. 24. 解:(1)作𝐶𝐸⊥𝐴𝐵,垂足为E,

∵𝐴𝐶=𝐵𝐶,𝐴𝐵=4,

∴𝐴𝐸=𝐵𝐸=2.

在𝑅𝑡△𝐵𝐶𝐸中,𝐵𝐶=52,𝐵𝐸=2,

相关文档
最新文档