“放缩法”技巧

合集下载

放缩法技巧全总结(非常精辟,是尖子生解决高考数学最后

放缩法技巧全总结(非常精辟,是尖子生解决高考数学最后

2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩例1.1求的值;2求证:.解析:1因为,所以2因为,所以奇巧积累:1 2 34 5 6 7 8 9 10 11111213 14 15 15 例2.1求证: 2求证: 3求证: 4 求证:解析:1因为,所以2 3先运用分式放缩法证明出,再结合进行裂项,最后就可以得到答案4首先,所以容易经过裂项得到再证而由均值不等式知道这是显然成立的,所以例3.求证: 解析:一方面:因为,所以另一方面: 当时,,当时,,当时,,所以综上有例 4.2008年全国一卷设函数.数列满足..设,整数.证明:解析:由数学归纳法可以证明是递增数列,故存在正整数,使,则,否则若,则由知,,因为,于是例5.已知,求证: 解析:首先可以证明: 所以要证只要证:故只要证,即等价于,即等价于而正是成立的,所以原命题成立.例6.已知,,求证:.解析:所以从而例7.已知,,求证:证明: ,因为,所以所以二、函数放缩例8.求证: 解析:先构造函数有,从而因为所以例9.求证:1 解析:构造函数,得到,再进行裂项,求和后可以得到答案函数构造形式: ,例10.求证:解析:提示:函数构造形式:当然本题的证明还可以运用积分放缩如图,取函数,首先:,从而,取有,,所以有,,…,,,相加后可以得到:另一方面,从而有取有,,所以有,所以综上有例11.求证:和.解析:构造函数后即可证明例12.求证: 解析:,叠加之后就可以得到答案函数构造形式:加强命题例13.证明: 解析:构造函数,求导,可以得到:,令有,令有,所以,所以,令有,所以,所以例14. 已知证明.解析: ,然后两边取自然对数,可以得到然后运用和裂项可以得到答案放缩思路:。

函数放缩法技巧全总结

函数放缩法技巧全总结

函数放缩法技巧全总结函数放缩法是数学中常用的一种方法,用于求解函数的极限、导数、积分等问题。

它通过对函数进行适当的放缩,从而得到更简单、更易处理的形式,进而解决原问题。

在实际应用中,函数放缩法可以帮助我们更加灵活地处理复杂的数学问题,提高问题求解的效率和准确性。

下面,我们将对函数放缩法的技巧进行全面总结,希望能够帮助大家更好地掌握这一方法。

首先,函数放缩法的核心思想是利用已知函数的性质,构造一个比较简单的函数,从而对原函数进行放缩。

常用的放缩方法包括利用三角函数的性质、利用幂函数的性质、利用指数函数的性质等。

在具体应用中,我们需要根据具体问题的特点,选择合适的放缩方法,以达到简化问题、加快求解的目的。

其次,对于常见的函数放缩技巧,我们可以总结如下:1. 利用三角函数的性质,对于涉及三角函数的问题,可以利用三角函数的周期性、奇偶性、单调性等性质,构造合适的三角函数放缩原函数,从而简化问题的求解。

2. 利用幂函数的性质,对于幂函数的问题,可以利用幂函数的增减性、凹凸性等性质,构造合适的幂函数放缩原函数,从而简化问题的求解。

3. 利用指数函数的性质,对于指数函数的问题,可以利用指数函数的增减性、单调性等性质,构造合适的指数函数放缩原函数,从而简化问题的求解。

4. 利用函数的极限性质,对于函数的极限问题,可以通过构造逼近原函数的序列或函数,利用函数的极限性质,对原函数进行放缩,从而求得原函数的极限。

5. 利用函数的导数性质,对于函数的导数问题,可以利用导数的定义、性质,构造合适的导数函数,对原函数进行放缩,从而简化导数的计算。

最后,需要注意的是,在使用函数放缩法时,我们需要充分理解原函数的性质,灵活选择合适的放缩方法,并且要注意放缩后的函数与原函数之间的关系,以确保放缩后的函数能够准确反映原函数的性质。

另外,对于一些特殊的函数,我们也可以通过函数的泰勒展开、泰勒公式等方法,对函数进行适当放缩,进而求解问题。

基本不等式放缩法

基本不等式放缩法

基本不等式放缩法是解决数学问题中的一种常用技巧,特别是在证明不等式时。

放缩法的核心思想是通过适当的放大或缩小某些项,使得原始的不等式更容易处理或者更容易证明。

以下是一些常见的放缩技巧:
1. 添加或舍弃一些正项(或负项):在保持不等式方向不变的前提下,可以适当添加或去掉一些不影响不等式成立的正项或负项。

2. 先放缩再求和(或先求和再放缩):根据问题的需要,可以先对某些项进行放缩,然后再进行求和,或者先求和再对结果进行放缩。

3. 逐项放大或缩小:对不等式中的每项单独进行放缩,然后合并结果。

4. 固定一部分项,放缩另外的项:在某些情况下,可以固定一部分项不变,只对其他项进行放缩。

5. 函数放缩:利用函数的单调性进行放缩,例如,对于递增函数,可以放大小的值,缩小大的值。

6. 裂项放缩:将复杂的项分解成更简单的形式,然后进行放缩。

7. 均值不等式放缩:利用算术平均值大于等于几何平均值的性质进行放缩。

8. 二项放缩:在涉及二项式的情况下,可以利用二项式的性质进行放缩。

9. 指数函数放缩:例如,对于指数函数e^x,有e^x ≥x + 1 当x ≥0。

10. 利用导数判断函数的单调性:通过求导数来判断函数的单调性,然后根据单调性进行放缩。

在实际应用中,放缩法往往需要结合具体问题灵活运用,有时还需要与其他数学方法(如代换法、综合法、反证法等)结合使用。

通过放缩,可以将复杂的不等式转化为更易于处理的形式,从而简化问题的解决过程。

数列放缩法技巧全总结

数列放缩法技巧全总结

数列放缩法技巧全总结引言数列放缩法(Sequence Squeezing Method)是指在解决数学问题时,通过限制或放缩数列的取值范围,从而简化问题的求解过程。

数列放缩法是数学竞赛和高等数学中常见的一种技巧,本文将总结数列放缩法常用的技巧和应用场景。

1. 加减不等式放缩法加减不等式放缩法是通过对等式进行加减操作,使得所得不等式比原来的不等式更易于求解。

常见的加减不等式放缩技巧有如下几个:1.1. 约束条件加减法设原不等式为A<B,通过针对不等式的约束条件进行加减操作,将原不等式放缩为C<D。

常见的约束条件包括正整数、正实数等。

1.2. 平方项加减法对于不等式中的平方项,可以通过改变平方项的系数进行加减操作,从而得到一个更易于处理的不等式。

例如,对于a2+b2<2ab,可以将不等式变换为(a−b)2>0,从而得到更容易求解的形式。

1.3. 倒数项加减法对于不等式中的倒数项,可以通过改变倒数项的系数进行加减操作,从而放缩不等式。

例如,在2ab<a2+b2中,可以将不等式变换为$\\frac{1}{a}+\\frac{1}{b} > \\frac{2}{a+b}$,从而得到更容易处理的形式。

2. 乘除不等式放缩法乘除不等式放缩法是通过对等式进行乘除操作,使得所得不等式比原来的不等式更易于求解。

常见的乘除不等式放缩技巧有如下几个:2.1. 约束条件乘除法设原不等式为A<B,通过针对不等式的约束条件进行乘除操作,将原不等式放缩为C<D。

常见的约束条件包括正整数、正实数等。

2.2. 平方项乘除法对于不等式中的平方项,可以通过改变平方项的系数进行乘除操作,从而得到一个更易于处理的不等式。

例如,在a2+b2<2ab中,可以将不等式变换为a2−2ab+b2<0,从而得到更容易求解的形式。

2.3. 倒数项乘除法对于不等式中的倒数项,可以通过改变倒数项的系数进行乘除操作,从而放缩不等式。

放缩法技巧全总结(非常精辟,是尖子生解决高考数学最后一题之瓶颈之精华!!)

放缩法技巧全总结(非常精辟,是尖子生解决高考数学最后一题之瓶颈之精华!!)

2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk Λ 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n Λ (5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n nn n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i ji j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n Λ (2)求证:nn 412141361161412-<++++Λ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ(4) 求证:)112(2131211)11(2-+<++++<-+n nn Λ解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222nn n -+<+++=++++ΛΛ(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ΛΛ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+Λ再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n nΛ例3.求证:35191411)12)(1(62<++++≤++n n n n Λ解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk Λ 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n ΛΛ 当3≥n 时,)12)(1(61++>+n n n n n,当1=n 时,2191411)12)(1(6n n n n ++++=++Λ,当2=n 时,2191411)12)(1(6nn n n ++++<++Λ,所以综上有35191411)12)(1(62<++++≤++n n n n Λ例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+Λ321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1(Λ所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([Λ 故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn na a a T +++=Λ212,求证:23321<++++nT T T T Λ.解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=ΛΛ所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T ΛΛ 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++Λ.解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n +++--<++++ΛΛ因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121ΛΛΛ6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---Λ所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nnΛ例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n αααααααΛ解析:构造函数xx x f ln )(=,得到22ln ln n n n n≤αα,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:nn n 1211)1ln(113121+++<+<++++ΛΛ 解析:提示:2ln 1ln 1ln 1211ln )1ln(++-++=⋅⋅-⋅+=+ΛΛn n nn n n n n n当然本题的证明还可以运用积分放缩 如图,取函数xx f 1)(=,首先:⎰-<n in ABCFx S 1,从而,)ln(ln |ln 11i n n x x i n n i n ni n --==<⋅--⎰ 取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n ,n n n ln )1ln(11-+<+,相加后可以得到: )1ln(113121+<++++n n Λ另一方面⎰->n i n ABDExS 1,从而有)ln(ln |ln 11i n n x x i i n n i n ni n --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+Λ,所以综上有nn n 1211)1ln(113121+++<+<++++ΛΛ例11.求证:e n <+⋅⋅++)!11()!311)(!211(Λ和e n <+⋅⋅++)311()8111)(911(2Λ. 解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n Λ解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n Λ 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n Λ例14. 已知112111,(1).2n n na a a n n+==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。

放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)

放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)

47
3n 2
04、分类放缩
15.求证:1 1 1
23
1 2n 1
n 2
.
16.在平面直角坐标系 xoy 中, y 轴正半轴上的点列An 与曲线 y 2x x 0 上的点列Bn 满足
OAn
OBn
1 n
,直线
An Bn

x
轴上的截距为
an
.点
Bn
的横坐标为
bn

n N
.
(1)证明 an > an1 >4, n N ;
1 a2n
7n 11 36 .
05、迭代放缩
19.已知 xn1
xn xn
4 1

x1
1 ,求证:当
n
2
时,
n i 1
xi 2
2 21n .
20.设
Sn
sin1! 21
sin 2! 22
sin n! 2n
,求证:对任意的正整数
k,若
k≥n
恒有:|Sn+k-Sn|<
1 n
.
06、借助数列递推关系
21.求证: 1 13 135 135 (2n 1) 2n 2 1 .
2 24 246
246 2n
22.求证: 1 13 135 135 (2n 1) 2n 1 1
2 24 246
2 46 2n
(一)、经典试题
01、裂项放缩
1.(1)求
n k 1
4k
2 2 1
的值;
(2)求证:
n k 1
1 k2
5 3
.
2.求证:1
1 32
1 52

高中数学放缩法技巧全总结

高中数学放缩法技巧全总结高中数学中的放缩法是一种常用的解题技巧,它通过适当调整式子的形式,进行等价转化,从而简化计算或者明晰问题的关键点。

下面总结了一些常见的高中数学放缩法技巧。

1. 分子分母同乘:当分式的分子和分母中含有相同的因式时,可以将分子和分母同时乘以这个因式的倒数,从而得到一个等价的分式。

这样做的好处是可以简化分式,消去分子分母中的公因式。

2. 导数法:在解决函数极值问题时,可以利用导数的概念进行放缩。

通过求函数的导数,并研究导数的正负性,可以找到函数的极值点。

这种方法可以有效地缩小问题的范围,简化计算。

3. 均值不等式:均值不等式是一种常用的放缩方法,它通过寻找合适的均值来放缩不等式。

常见的均值不等式有算术-几何均值不等式、柯西-施瓦茨不等式等。

通过将不等式的两边同时取均值,可以得到一个更简单的等价不等式。

4. 三角函数变换:在解决三角函数相关的问题时,可以利用三角函数的性质进行放缩。

常见的三角函数变换有和差化积、倍角公式等。

通过适当的变换,可以将原问题转化为更容易处理的形式。

5. 幂函数变换:在解决幂函数相关的问题时,可以利用幂函数的性质进行放缩。

常见的幂函数变换有换元法、幂函数的反函数等。

通过适当的变换,可以使问题的形式更简单,更易于分析。

6. 递推关系式:在解决数列相关的问题时,可以利用递推关系式进行放缩。

通过找到数列的递推关系式,可以将原问题转化为递推问题。

递推关系式可以帮助我们找到数列的通项公式,从而简化问题的求解过程。

以上是一些高中数学中常用的放缩法技巧。

通过灵活运用这些技巧,可以在解题过程中简化计算、明晰问题的关键点,从而更高效地解决数学问题。

线性代数问题中的放缩法

线性代数问题中的放缩法放缩法在线性代数中是一种常用的技巧,用于解决各种与矩阵和线性方程有关的问题。

放缩法的基本思想是通过确定一个上界和下界,将原始问题转化为一个更容易处理的范围内的问题。

在本文中,我们将介绍放缩法的基本原理和应用。

基本原理放缩法的核心思想是通过确定一个上界和下界,不断缩小问题的范围。

具体而言,我们可以通过以下步骤进行放缩。

1. 确定问题的初始范围。

2. 通过计算矩阵的特征值或线性方程的解集,确定问题的上界和下界。

3. 根据上界和下界之间的差距,调整初始范围。

4. 重复步骤2和步骤3,直到范围达到所需精度或找到满足条件的解。

应用场景放缩法在线性代数中有许多应用场景。

以下是其中一些常见的应用。

1. 特征值问题:通过放缩法,我们可以确定矩阵的特征值的上界和下界。

这有助于我们评估矩阵的性质和优化相关问题。

2. 线性方程组求解:对于给定的线性方程组,我们可以使用放缩法确定解的范围。

这有助于我们估算解的数量和解的稳定性。

3. 矩阵逆的计算:放缩法可以帮助我们确定矩阵逆的范围。

这对于解决求逆问题时的计算或优化非常有用。

示例让我们通过一个简单的示例来说明放缩法的应用。

假设我们有一个3x3的矩阵A,我们想要确定它的特征值的范围。

1. 我们首先计算矩阵A的特征值,得到最大特征值lambda_max和最小特征值lambda_min。

2. 假设lambda_max为10,lambda_min为1,我们可以将特征值的范围放缩为[1, 10]。

3. 如果我们希望特征值的范围缩小到[5, 6],我们可以调整矩阵A的元素,使得新的特征值范围满足要求。

4. 重复上述步骤,直到我们获得满足要求的特征值范围。

通过放缩法,我们可以逐步缩小特征值的范围,从而更精确地评估矩阵的性质和优化问题的解。

结论放缩法是解决线性代数中与矩阵和线性方程有关的问题常用的技巧之一。

它通过确定上界和下界,逐步缩小问题的范围,从而简化问题的处理过程。

放缩法的注意问题以及解题策略


Ti
i 1
n
3 n 1 1 3 1 1 1 1 1 1 ( i i 1 ) ( 1 2 2 3 n n 1 ) 2 i 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1
=
3 1 1 3 ( 1 n 1 ) 2 2 1 2 1 2
∵a, b, c, dR+ ∴m
例 2、求证:(1) 证:
1 1 1 1 2 2 2 2 2 1 2 3 n
1 1 1 1 , 2 n(n 1) n 1 n n

1 1 1 1 1 1 1 1 1 1 2 2 2 11 2 2 2 2 2 3 n 1 n n 1 2 3 n
a b c d 2 abd bca cd b d ac a b c d 证:记 m = abd bca cd b d ac
例 1、若 a, b, c, dR+,求证: 1
a b c d 1 abcd abca cd ab d abc a b c d m 2 , ∴1 < m < 2 即原式成立 ab ab cd d c
例 5、 在数列 {a n }中,已知a1 2, a n 1
(I)求数列 {a n } 的通项公式;
2a n an 1
(II)求证: a1 ( a1 1) a 2 ( a 2 1) a n ( a n 1) 3 解:(1)数列 {a n }的通项公式是a n
n
n n2 n n2 2 2; n2 n n2 n
(4)二项式定理放缩:如 2 1 2n 1( n 3) ; ( 5)舍掉(或加进)一些项,如: | an a1 || a2 a1 | | a3 a2 | | an an 1 | ( n 2) 。 例题选用

极限放缩法技巧全总结

极限放缩法技巧全总结极限放缩法是一种数学分析中常用的技巧,用于求解极限问题。

它通过适当的放缩变换,将原问题转化为更简单的问题,从而得到极限的解答。

本文将全面总结极限放缩法的技巧和应用。

一、基本思想极限放缩法的基本思想是通过适当的变换,将原极限问题转化为一个可以比较容易求解的极限问题。

常用的变换方式有代换法、夹逼法和单调有界法等。

二、代换法代换法是极限放缩法中最常用的技巧之一。

通过适当的变换,将原极限问题转化为一个新的极限问题,使得求解更加简便。

常见的代换方式有:1. 有理化代换:将含有无理数的极限问题化为含有有理数的极限问题,例如将√x的极限问题代换为x的极限问题。

2. 正弦余弦代换:将含有三角函数的极限问题化为不含三角函数的极限问题,例如将tanx的极限问题代换为sinx和cosx的极限问题。

3. 对数指数代换:将含有指数和对数的极限问题化为不含指数和对数的极限问题,例如将lim(x→∞)(1+x)^(1/x)的极限问题代换为lim(x→0)(1+x)^(1/x)的极限问题。

三、夹逼法夹逼法是极限放缩法中常用的一种技巧。

通过构造两个函数,一个比原函数大,一个比原函数小,且两个函数的极限相等,从而确定原函数的极限。

夹逼法的基本思想是找到两个函数,使得它们在极限点附近趋于相同的值。

通过比较这两个函数和原函数的大小关系,可以得到原函数的极限。

四、单调有界法单调有界法是极限放缩法中常用的一种技巧。

通过证明原函数是单调递增或递减的,并且存在上界或下界,从而得到原函数的极限。

单调有界法的基本思想是找到原函数的一个单调递增(或递减)的函数序列,并证明该序列存在上界(或下界)。

通过比较原函数和该序列的大小关系,可以得到原函数的极限。

五、应用举例1. 计算极限lim(x→0)(sinx/x),可以使用夹逼法。

构造函数f(x)=sinx和g(x)=x,显然有0≤f(x)≤g(x),并且lim(x→0)f(x)=lim(x→0)g(x)=0,因此根据夹逼法,可以得到lim(x→0)(sinx/x)=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档