高一数学第一次月考试题含答案 试题
高一上学期第一次月考数学测试题及答案

高一上学期第一次月考数学测试题及答案学校:___________班级:___________姓名:___________学号:___________一、单选题(共6小题)1.下列各式正确的是()A.a6÷a2=a3B.C.D.2.=()A.4B.8C.D.3.若2m=5,4n=3,则43n﹣m的值是()A.0.9B.1.08C.2D.44.已知,则a,b,c的大小关系是()A.a<b<c B.c<a<b C.c<b<a D.a<c<b5.设a∈R.若函数f(x)=(a﹣1)x为指数函数,且f(2)>f(3),则a的取值范围是()A.1<a<2B.2<a<3C.a<2D.a<2且a≠16.已知函数f(x)=a x﹣1﹣3(a>0,a≠1)恒过定点M(m,n),则函数g(x)=m+x n+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二.多选题(共3小题)7.下列判断正确的有()A.=3﹣πB.(其中a>0)C.D.(其中m>0,n>0)8.已知(a>0),则下列选项中正确的有()A.B.C .D .9.已知函数,则下列结论正确的是( )A .函数f (x )的定义域为RB .函数f (x )的值域为(﹣1,1)C .函数f (x )的图象关于y 轴对称D .函数f (x )在R 上为减函数 三.填空题(共3小题)10.计算=.11.如图,曲线①②③④中有3条分别是函数的图象,其中曲线①与④关于y 轴对称,曲线②与③关于y 轴对称,则的图象是曲线 .(填曲线序号)12.下列说法中正确的序号为 . ①在同一坐标系中,函数y =2x 与函数的图象关于y 轴对称;②函数f (x )=a x +1(a >0且a ≠1)的图象经过定点(0,2); ③函数的单减区间为(﹣∞,1];④任意x ∈(2,+∞),都有2x >x 2.参考答案1 2 3 4 5 6 7 8 9 10 11 12 DBBBADBCDACAB②①②③一.选择题(共6小题)1.解:A 、原式=a 4,所以A 选项错误;B 、原式=,所以B 选项错误;C、原式=,所以C选项错误;D、a<0,原式=,所以D选项正确.故选:D.2.解:原式=×==23=8.故选:B.3.解:2m=5,4n=3,则43n﹣m=(4n)3÷4m=33÷52==1.08.故选:B.4.解:根据题意,设f(x)=2x,则f(x)在(0,+∞)单调递增,所以a=f(0.4)<b=f(0.6)设g(x)=x0.6,则g(x)在(0,+∞)单调递增,所以因为a>20=1,所以a>c,综合可得:c<a<b.故选:B.5.解:函数f(x)=(a﹣1)x为指数函数,f(2)>f(3)则函数f(x)在R上单调递减,故0<a﹣1<1,解得1<a<2.故选:A.6.解:由指数函数的图象和性质,令x﹣1=0,解得x=1所以f(1)=a0﹣3=﹣2,所以f(x)=a x﹣1﹣3恒过定点(1,﹣2),所以m=1,n=﹣2所以,因此不经过第四象限.故选:D.二.多选题(共3小题)解:对于选项A,=|3﹣π|=π﹣3,A错误;对于选项B,因为a>0,所以,B正确;对于选项C C正确;对于选项D,因为m>0,n>0,所以,D正确.故选:BCD.8.解:由,得,整理得,故A正确;由于,则,故B错误;由,a>0,得,则,故C正确;由,得,解得,故D错误.故选:AC.9.解:A:因为2x>0,所以函数f(x)的定义域为R,故A正确;B:由所以函数f(x)的值域为(﹣1,1),故B正确;C:因为所以函数f(x)是奇函数,其图象关于原点对称,不关于y轴对称,故C错误;D:因为函数y=2x+1是增函数,因为y=2x+1>1,所以函数是减函数因此函数是增函数,故D错误.故选:AB.三.填空题(共3小题)10.解:=+=.故答案为:.11.解:由指数函数的图像和性质可知,y=3x,y=图像关于y轴对称,y=3x在R上单调递增,y=在R上单调递减又曲线①②③④中有3条分别是函数y=2x,y=3x,y=的图象,曲线①与④关于y轴对称,曲线②与③关于y轴对称所以曲线③为y=3x,曲线④为y=2x,曲线②为y=.故答案为:②.12.解:在同一坐标系中,函数y=2x与函数=2﹣x的图象关于y轴对称,故①正确;当x=0时,y=a0+1=2故函数f(x)的图象经过定点(0,2),故②正确;设g(x)=x2﹣2x则g(x)在(﹣∞,1]上单调递减由复合函数的单调性可知,函数的单减区间为(﹣∞,1],故③正确;当x=4时,2x=x2,故④错误.故答案为:①②③.。
高一数学上学期第一次月考试卷含解析试题

智才艺州攀枝花市创界学校实验二零二零—二零二壹第一学期第一次月考试题高一数学第一卷〔客观题〕一、选择题〔本大题一一共10小题,每一小题4分,一共40分,在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕,那么S T为〔〕A. B. C. D.【答案】D【解析】【分析】集合是一次不等式的解集,分别求出再求交集即可【详解】,,那么应选【点睛】此题主要考察了一次不等式的解集以及集合的交集运算,属于根底题。
表示同一函数的是〔〕A. B.C. D.【答案】D【解析】【分析】逐个分析各个选项里面的2个函数的定义域,值域和对应关系,是否完全一样,只有完全一样才能表示同一函数。
【详解】,,两个函数的定义域不同,不是同一函数,,,两个函数的定义域不同,不是同一函数,,,两个函数的定义域不同,对应关系也不同,不是同一函数,,,即,是同一函数应选【点睛】此题主要考察的知识点是两个函数是同一函数必须满足的条件,即:定义域,值域和对应法那么都一样,属于根底题。
3.如下列图,不可能表示函数的是〔〕A. B.C. D.【解析】【分析】由函数的定义即可判断出答案【详解】根据函数的定义,对于定义域内的任意一个值都有唯一的值与其对应,从图像上看,作一条直线它与函数的图象最多有一个交点,因此不满足此条件,故的图像不表示函数。
应选【点睛】此题主要考察了函数的概念及其构成要素,纯熟掌握函数定义中自变量任取一个值,都有唯一的值与其对应,属于根底题。
的定义域是〔〕A. B. C. D.【答案】C【解析】【分析】由限制条件求出函数定义域【详解】根据题意可得:,,即定义域为即应选【点睛】此题主要考察了函数的定义域及其求法,找出题目中的限制条件是关键,属于根底题。
且,那么实数的取值范围是〔〕A. B. C. D.【解析】【分析】根据条件求出,再求即可得到答案【详解】,,那么应选【点睛】此题主要考察了集合的交集,并集以及补集的混合运算,此题比较简单。
高一上学期第一次月考数学试题(附答案解析)

高一上学期第一次月考数学试题(附答案解析)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共8小题,共32.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={−1,1},B={x|ax=1},若A∩B=B,则a的取值集合为( )A. {1}B. {−1}C. {−1,1}D. {−1,0,1}2. 下列存在量词命题是假命题的是( )A. 存在x∈Q,使2x−x3=0B. 存在x∈R,使x2+x+1=0C. 有的素数是偶数D. 有的有理数没有倒数3. 定义集合A,B的一种运算:A⊗B={x|x=a2−b,a∈A,b∈B},若A={−1,0},B={1,2},则A⊗B 中的元素个数为( )A. 1B. 2C. 3D. 44. 已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+xyz|xyz|的值所组成的集合是M,则下列判断正确的是( )A. 4∈MB. 2∈MC. 0∉MD. −4∉M5. 一批救灾物资随26辆汽车从某市以vkm/h的速度送达灾区,已知运送的路线长400km,为了安全起见,两辆汽车的间距不得小于(v20)2km,那么这批物资全部到达灾区最少需要时间( )A. 5 hB. 10 hC. 15 hD. 20 h6. 已知集合A={x|ax2−(a+1)x+1<0},B={x|x2−3x−4<0},且A∩B=A,则实数a的取值范围是( )A. a≤14B. 0<a≤14C. a≥14D. 14≤a<1或a>17. 如图,抛物线y=ax2+bx+c的对称轴是直线x=1,下列结论:①abc>0;②b2−4ac>0;③8a+ c<0;④5a+b+2c>0,正确的有( )A. 4个B. 3个C. 2个D. 1个8. 某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数的最大值是( )A. 6B. 5C. 7D. 8二、多选题(本大题共4小题,共16.0分。
高一数学第一次月考试题含解析试题

外国语2021级高一〔下〕3月阶段性测试制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日数学试题一、选择题:本大题一一共10小题,每一小题5分,一共50分.1.数列2,6,12,20,的第8项是〔〕A. 56B. 72C. 90D. 110 【答案】B【解析】【分析】根据数列前四项发现规律:相邻两项的差成等差数列,从而可得结果.【详解】,,,,,,,应选B.【点睛】此题通过观察数列的前四项,归纳出一般规律来考察归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些一样的性质. 二、从的一样性质中推出一个明确表述的一般性命题(猜测〕.2.,那么的等比中项为〔〕A. 2B.C.D. 16【答案】C【解析】【分析】直接利用等比中项的定义求解即可.【详解】因为的等比中项是,所以的等比中项为,应选C.【点睛】此题主要考察等比中项的定义与求法,意在考察对根底知识的掌握情况,属于简单题.中,,那么〔〕A. B. C. D.【答案】A【解析】【分析】根据三角形内角和定理求角,再由正弦定理可得结果.【详解】在中,,那么,由正弦定理,得,解得,应选A.【点睛】此题主要考察正弦定理及其应用,属于根底题. 正弦定理是解三角形的有力工具,其常见用法有以下几种:〔1〕知道两边和一边的对角,求另一边的对角〔一定要注意讨论钝角与锐角〕;〔2〕知道两角与一个角的对边,求另一个角的对边;〔3〕证明化简过程中边角互化;〔4〕求三角形外接圆半径.的前项和,且,那么〔〕A. 16B. 8C. 4D. 2【答案】B【解析】【分析】利用等差数列的性质和等差数列前项和公式,即可得结果.【详解】因为,,,应选B.【点睛】此题主要考察等差数列的性质以及前项和公式的应用,属于中档题. 解答有关等差数列问题时,要注意应用等差数列的性质〔〕与前项和的关系.满足,那么〔〕A. B. C. D.【答案】C【解析】【分析】由递推公式依次求出,找出数列的项之间规律即周期性,利用周期性求出. 【详解】由和得,,,,可得数列是周期为4的周期数列,,应选C.【点睛】此题主要考察利用递推公式求数列中的项,属于中档题.利用递推关系求数列中的项常见思路为:〔1〕项的序号较小时,逐步递推求出即可;〔2〕项的序数较大时,考虑证明数列是等差、等比数列,或者者是周期数列.6.的内角所对的边分别为,假设,,那么〔〕A. B. C. D.【答案】D【解析】【分析】由,利用诱导公式以及两角和的正弦公式可得,再利用余弦定理解方程求解即可.【详解】由,得,即,得,因为,所以,化为,得,应选D.【点睛】此题主要考察两角和的正弦公式以及余弦定理解三角形,属于中档题. 对余弦定理一定要熟记两种形式:〔1〕;〔2〕,同时还要纯熟掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.7.如图,从气球上测得正前方的河流的两岸的俯角分别为,此时气球的高是,那么河流的宽度〔〕A. B.C. D.【答案】C【解析】由题意画出图形,由两角差的正切求出的正切值,然后通过求解两个直角三角形得到和的长度,作差后可得结果.【详解】如图,,,在中,又,,在中,,,,河流的宽度等于,应选C.【点睛】此题主要考察两角差的正切公式、直角三角形的性质以及特殊角的三角函数,意在考察综合应用所学知识解决实际问题的才能,属于中档题. 与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考察书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进展解答.的前项和为,且,那么 ( 〕A. B. C. D.【解析】【分析】由等比数列的性质可得仍成等比数列,进而可用表示和,代入化简可得结果.【详解】由等比数列的性质可得,仍成等比数列,,,成等比数列,,解得,,应选D.【点睛】此题主要考察等比数列的性质与应用,意在考察对根底知识的掌握与灵敏应用,属于中档题.的前项和为,假设公差,,那么A. B. C. D.【答案】D【解析】【分析】由公差可得,由可得,可得,,由等差数列的性质可得,,从而可得结论.【详解】公差,,,,,,,,,,,应选D.【点睛】此题考察了等差数列的通项公式与性质以及单调性、不等式的性质,属于中档题.解答等差数列问题要注意应用等差数列的性质〔〕.10.的内角所对的边分别为,以下四个命题中正确的命题是〔〕A. 假设,那么一定是等边三角形B. 假设,那么一定是等腰三角形C. 假设,那么一定是等腰三角形D. 假设,那么一定是锐角三角形【答案】AC【解析】【分析】利用正弦定理可得,可判断;由正弦定理可得,可判断;由正弦定理与诱导公式可得,可判断;由余弦定理可得角为锐角,角不一定是锐角,可判断.【详解】由,利用正弦定理可得,即,是等边三角形,正确;由正弦定理可得,或者,是等腰或者直角三角形,不正确;由正弦定理可得,即,那么等腰三角形,正确;由正弦定理可得,角为锐角,角不一定是锐角,不正确,应选AC.【点睛】此题主要考察正弦定理与余弦定理的应用,以及三角形形状的判断,属于中档题. 判断三角形状的常见方法是:〔1〕通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进展判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进展判断;〔3〕根据余弦定理确定一个内角为钝角进而知其为钝角三角形.二、填空题:本大题一一共6小题,每一小题5分,一共30分.中,,那么________.【答案】【解析】【分析】根据列出关于首项、公差的方程组,解方程组可得与的值,从而根据等差数列的通项公式可得结果.【详解】,,,故答案为.【点睛】此题主要考察等差数列的通项公式,属于中档题. 等差数列根本量的运算是等差数列的一类基此题型,数列中的五个根本量一般可以“知二求三〞,通过列方程组所求问题可以迎刃而解.12.的内角所对的边分别为,假设,那么_______.【答案】【解析】【分析】直接利用正弦定理求解即可.【详解】,,是锐角,由正弦定理可得,,故答案为.【点睛】此题主要考察正弦定理解三角形以及特殊角的三角函数,属于根底题. 正弦定理是解三角形的有力工具,其常见用法有以下几种:〔1〕知道两边和一边的对角,求另一边的对角〔一定要注意讨论钝角与锐角〕;〔2〕知道两角与一个角的对边,求另一个角的对边;〔3〕证明化简过程中边角互化;〔4〕求三角形外接圆半径.中,假设,三角形的面积,那么三角形外接圆的半径为________. 【答案】2【解析】【分析】由三角形面积公式求得,由等腰三角形的性质可得的值,再由正弦定理求得三角形外接圆的半径的值.【详解】中,,三角形的面积,,故,再由正弦定理可得,三角形外接圆的半径,故答案为2.【点睛】此题主要考察正弦定理以及三角形面积公式的的应用,属于根底题. 正弦定理是解三角形的有力工具,假如三角形一条边与其对角,可求三角形外接圆半径.中,是关于的方程两个实根,那么________.【答案】8【解析】【分析】由,根据是关于的方程的两个实根,利用韦达定理可得结果.【详解】因为等比数列中,,是关于的方程的两个实根,那么,,那么,那么有,因为,所以,,故答案为8.【点睛】此题主要考察等比数列的性质,涉及一元二次方程中根与系数的关系,属于根底题. 等比数列最主要的性质是下标性质:解答等比数列问题要注意应用等比数列的性质:假设那么.的前项和为满足,那么数列的通项公式________.【答案】【解析】【分析】由可得,是以2为公差,以2为首项的等差数列,求得,利用可得结果.【详解】,故,,故是以2为公差,以2为首项的等差数列,,,,综上所述可得,故答案为.【点睛】此题主要考察数列的通项公式与前项和公式之间的关系,属于中档题. 数列前项和,求数列通项公式,常用公式,将所给条件化为关于前项和的递推关系或者是关于第项的递推关系,假设满足等比数列或者等差数列定义,用等比数列或者等差数列通项公式求出数列的通项公式,否那么适当变形构造等比或者等数列求通项公式. 在利用与通项的关系求的过程中,一定要注意的情况.的三边和面积满足条件,且角既不是的最大角也不是的最小角,那么实数的取值范围是________ .【答案】【解析】【分析】根据余弦定理和面积公式可得,得,结合的范围确定结果.【详解】,,又,,,锐角三角形不是最大角、也不是最小角,那么,,,故荅案为.【点睛】此题主要考察余弦定理和三角形面积公式的应用,属于根底题. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.假如式子中含有角的余弦或者边的二次式,要考虑用余弦定理;假如遇到的式子中含有角的正弦或者边的一次式时,那么考虑用正弦定理;以上特征都不明显时,那么要考虑两个定理都有可能用到.三、解答题:本大题一一共6小题,一共70分.中,.〔1〕求数列的通项公式;〔2〕设,求数列的前项和.【答案】〔1〕;〔2〕.【解析】【分析】〔1〕根据等差数列中,求出、公差的值,从而可得数列的通项公式;(2) 由〔1〕可得,每相邻两项结合求和,从而可得结果.【详解】〔1〕,,(2).【点睛】此题主要考察等差数列的通项公式,属于中档题. 等差数列根本量的运算是等差数列的一类基此题型,数列中的五个根本量一般可以“知二求三〞,通过列方程组所求问题可以迎刃而解.18.如图,在梯形中,,.〔1〕求;〔2〕求的长度.【答案】〔1〕;〔2〕.【解析】【分析】(1)由正弦定理求出的正弦值,再利用可得结果;〔2〕求得,利用正弦定理可得结果.【详解】(1)在中,由正弦定理,得,∴,∵,∴,.(2)由〔1〕可知,,在中,由正弦定理,得.【点睛】此题主要考察正弦定理的应用,属于中档题. 正弦定理是解三角形的有力工具,其常见用法有以下几种:〔1〕知道两边和一边的对角,求另一边的对角〔一定要注意讨论钝角与锐角〕;〔2〕知道两角与一个角的对边,求另一个角的对边;〔3〕证明化简过程中边角互化;〔4〕求三角形外接圆半径.19.是等差数列,是等比数列,且〔1〕求,的通项公式;〔2〕设,求数列的前项和.【答案】〔1〕,;〔2〕.【解析】【分析】〔1〕由,根据等比数列的性质求得、的值,即可得的通项公式,再根据列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式;〔2〕结合〔1〕可得,根据错位相减法,利用等比数列求和公式可得结果.【详解】〔1〕等比数列的公比,所以,.设等差数列的公差为.因为,,所以,即.所以.〔2〕由〔1〕知,,.因此.从而数列的前项和,,,两式作差可得,,解得.【点睛】此题主要考察等比数列和等差数列的通项、等比数列的求和公式以及错位相减法求数列的前项和,属于中档题.一般地,假如数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法〞求和,一般是和式两边同乘以等比数列的公比,然后作差求解, 在写出“〞与“〞的表达式时应特别注意将两式“错项对齐〞以便下一步准确写出“〞的表达式.中,角,,所对的边分别为,,,假设.〔1〕求的大小;〔2〕求的最大值.【答案】〔1〕;〔2〕1【解析】试题分析:〔1〕利用余弦定理,将即可求出,继而得;〔2〕利用三角形内角和定理将所求表达式表示为关于的三角函数式,结合三角函数的性质求解最大值.试题解析:〔1〕由题意,余弦定理:,∵,所以.〔2〕因为,,那么.那么:∵,∴,当时,获得最大值为1,即的最大值1.21.某企业2021年的纯利润为500万元,因设备老化等原因,企业的消费才能逐年下降,假设不能进展技术改造,预测从2021年起每年比上一年纯利润减少20万元,2021年初该企业一次性投入资金600万元进展技术改造,预测在未扣除技术改造资金的情况下,第年〔以2021年为第一年〕的利润为万元〔为正整数〕.〔1〕设从今年起的前年,假设该企业不进展技术改造的累计..纯利润为万元,进展技术改造后的累计纯利润为万元〔须扣除技术改造资金〕,求,的表达式;〔2〕依上述预测,从2021年起该企业至少经过多少年,进展技术改造后的累计利润超过不进展技术改造的累计纯利润?【答案】〔1〕;〔2〕4.【解析】【分析】〔1〕利用等差数列的求和公式可得,由等比数列的求和公式可得的表达式;〔2〕令,构造函数,根据函数的单调性,利用特殊值验证,从而可得结果.【详解】..〔2〕令,设在单调递增,,,所以当时 ,即经过4年,进展技术改造后的累计利润超过不进展技术改造的累计纯利润 .【点睛】此题主要考察等比数列与等差数列的求和公式以及函数单调性的应用,考察的阅读才能与建模才能,属于中档题. 与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考察书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进展解答.的满足,且,记.(1)求证:为等差数列,并求的通项公式;(2)设,求的值;(3)是否存在正实数,使得对任意都成立?假设存在,务实数的取值范围;假设不存在,请说明理由.【答案】〔1〕证明见解析,;〔2〕;〔3〕.【解析】【分析】(1)化简,从而可得的通项公式;〔2〕结合〔1〕可得 ,利用裂项相消法可得结果;〔3〕利用“累乘法〞化简左边式子为,从而可得对任意恒成立,构造函数,利用单调性求得,从而可得结果. 【详解】(1) ,所以是以为首项,2为公差的等差数列,.〔2〕 ,,.(3) 左边,由题意可知,对任意恒成立,令,那么由对钩函数的性质可知在上单调递增,故,综上可以,即正实数的取值范围为.【点睛】此题主要考察等差数列的定义与通项公式,以及裂项相消法求和、不等式恒成立问题,属于难题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,打破这一难点的方法是根据式子的构造特点,常见的裂项技巧:(1);〔2〕;〔3〕;〔4〕制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日;此外,需注意裂项之后相消的过程中容易出现丢项或者多项的问题,导致计算结果错误.制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日。
高一数学第一次月考试题含解析试题

智才艺州攀枝花市创界学校外国语2021级高一〔下〕3月阶段性测试数学试题一、选择题:本大题一一共10小题,每一小题5分,一共50分.1.数列2,6,12,20,的第8项是〔〕A.56B.72C.90D.110【答案】B【解析】【分析】根据数列前四项发现规律:相邻两项的差成等差数列,从而可得结果.【详解】,,,,,,,应选B.【点睛】此题通过观察数列的前四项,归纳出一般规律来考察归纳推理,属于中档题.归纳推理的一般步骤:一、通过观察个别情况发现某些一样的性质.(猜想〕.2.,那么的等比中项为〔〕【答案】C【解析】【分析】直接利用等比中项的定义求解即可.【详解】因为的等比中项是,所以的等比中项为,应选C.【点睛】此题主要考察等比中项的定义与求法,意在考察对根底知识的掌握情况,属于简单题.中,,那么〔〕A. B. C. D.【答案】A【解析】【分析】根据三角形内角和定理求角,再由正弦定理可得结果.【详解】在中,,那么,由正弦定理,得,解得,应选A.【点睛】此题主要考察正弦定理及其应用,属于根底题.正弦定理是解三角形的有力工具,其常见用法有以下几种:〔1〕知道两边和一边的对角,求另一边的对角〔一定要注意讨论钝角与锐角〕;〔2〕知道两角与一个角的对边,求另一个角的对边;〔3〕证明化简过程中边角互化;〔4〕求三角形外接圆半径.的前项和,且,那么〔〕【答案】B【解析】【分析】利用等差数列的性质和等差数列前项和公式,即可得结果.【详解】因为,,,应选B.【点睛】此题主要考察等差数列的性质以及前项和公式的应用,属于中档题.解答有关等差数列问题时,要注意应用等差数列的性质〔〕与前项和的关系.满足,那么〔〕A. B. C. D.【答案】C【解析】【分析】由递推公式依次求出,找出数列的项之间规律即周期性,利用周期性求出.【详解】由和得,,,,可得数列是周期为4的周期数列,,应选C.【点睛】此题主要考察利用递推公式求数列中的项,属于中档题.利用递推关系求数列中的项常见思路为:〔1〕项的序号较小时,逐步递推求出即可;〔2〕项的序数较大时,考虑证明数列是等差、等比数列,或者者是周期数列.6.的内角所对的边分别为,假设,,那么〔〕A. B. C. D.【答案】D【解析】【分析】由,利用诱导公式以及两角和的正弦公式可得,再利用余弦定理解方程求解即可.【详解】由,得,即,得,因为,所以,化为,得,应选D.【点睛】此题主要考察两角和的正弦公式以及余弦定理解三角形,属于中档题.对余弦定理一定要熟记两种形式:〔1〕;〔2〕,同时还要纯熟掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.7.如图,从气球上测得正前方的河流的两岸的俯角分别为,此时气球的高是,那么河流的宽度〔〕A. B.C. D.【答案】C【解析】【分析】由题意画出图形,由两角差的正切求出的正切值,然后通过求解两个直角三角形得到和的长度,作差后可得结果.【详解】如图,,,在中,又,,在中,,,,河流的宽度等于,应选C.【点睛】此题主要考察两角差的正切公式、直角三角形的性质以及特殊角的三角函数,意在考察综合应用所学知识解决实际问题的才能,属于中档题.的前项和为,且,那么( 〕A. B. C. D.【答案】D【解析】【分析】由等比数列的性质可得仍成等比数列,进而可用表示和,代入化简可得结果.【详解】由等比数列的性质可得,仍成等比数列,,,成等比数列,,解得,,应选D.【点睛】此题主要考察等比数列的性质与应用,意在考察对根底知识的掌握与灵敏应用,属于中档题.的前项和为,假设公差,,那么A. B. C. D.【答案】D【解析】【分析】由公差可得,由可得,可得,,由等差数列的性质可得,,从而可得结论.【详解】公差,,,,,,,,,,,应选D.【点睛】此题考察了等差数列的通项公式与性质以及单调性、不等式的性质,属于中档题.解答等差数列问题要注意应用等差数列的性质〔〕.10.的内角所对的边分别为,〕A.假设,那么一定是等边三角形B.假设,那么一定是等腰三角形C.假设,那么一定是等腰三角形D.假设,那么一定是锐角三角形【答案】AC【解析】【分析】利用正弦定理可得,可判断;由正弦定理可得,可判断;由正弦定理与诱导公式可得,可判断;由余弦定理可得角为锐角,角不一定是锐角,可判断.【详解】由,利用正弦定理可得,即,是等边三角形,正确;由正弦定理可得,或者,是等腰或者直角三角形,不正确;由正弦定理可得,即,那么等腰三角形,正确;由正弦定理可得,角为锐角,角不一定是锐角,不正确,应选AC.【点睛】此题主要考察正弦定理与余弦定理的应用,以及三角形形状的判断,属于中档题.判断三角形状的常见方法是:〔1〕通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进展判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进展判断;〔3〕根据余弦定理确定一个内角为钝角进而知其为钝角三角形.二、填空题:本大题一一共6小题,每一小题5分,一共30分.中,,那么________.【答案】【解析】【分析】根据列出关于首项、公差的方程组,解方程组可得与的值,从而根据等差数列的通项公式可得结果.【详解】,,,故答案为.【点睛】此题主要考察等差数列的通项公式,属于中档题.等差数列根本量的运算是等差数列的一类基此题型,数列中的五个根本量一般可以“知二求三〞,通过列方程组所求问题可以迎刃而解.12.的内角所对的边分别为,假设,那么_______.【答案】【解析】【分析】直接利用正弦定理求解即可.【详解】,,是锐角,由正弦定理可得,,故答案为.【点睛】此题主要考察正弦定理解三角形以及特殊角的三角函数,属于根底题.正弦定理是解三角形的有力工具,其常见用法有以下几种:〔1〕知道两边和一边的对角,求另一边的对角〔一定要注意讨论钝角与锐角〕;〔2〕知道两角与一个角的对边,求另一个角的对边;〔3〕证明化简过程中边角互化;〔4〕求三角形外接圆半径.中,假设,三角形的面积,那么三角形外接圆的半径为________.【答案】2【解析】【分析】由三角形面积公式求得,由等腰三角形的性质可得的值,再由正弦定理求得三角形外接圆的半径的值.【详解】中,,三角形的面积,,故,再由正弦定理可得,三角形外接圆的半径,故答案为2.【点睛】此题主要考察正弦定理以及三角形面积公式的的应用,属于根底题.正弦定理是解三角形的有力工具,假设三角形一条边与其对角,可求三角形外接圆半径.中,是关于的方程两个实根,那么________.【答案】8【解析】【分析】由,根据是关于的方程的两个实根,利用韦达定理可得结果.【详解】因为等比数列中,,是关于的方程的两个实根,那么,,那么,那么有,因为,所以,,故答案为8.【点睛】此题主要考察等比数列的性质,涉及一元二次方程中根与系数的关系,属于根底题.等比数列最主要的性质是下标性质:解答等比数列问题要注意应用等比数列的性质:假设那么.的前项和为满足,那么数列的通项公式________.【答案】【解析】【分析】由可得,是以2为公差,以2为首项的等差数列,求得,利用可得结果.【详解】,故,,故是以2为公差,以2为首项的等差数列,,,,综上所述可得,故答案为.【点睛】此题主要考察数列的通项公式与前项和公式之间的关系,属于中档题.数列前项和,求数列通项公式,常用公式,将所给条件化为关于前项和的递推关系或者是关于第项的递推关系,假设满足等比数列或者等差数列定义,用等比数列或者等差数列通项公式求出数列的通项公式,否那么适当变形构造等比或者等数列求通项公式.在利用与通项的关系求的过程中,一定要注意的情况.的三边和面积满足条件,且角既不是的最大角也不是的最小角,那么实数的取值范围是________.【答案】【分析】根据余弦定理和面积公式可得,得,结合的范围确定结果.【详解】,,又,,,锐角三角形不是最大角、也不是最小角,那么,,,故荅案为.【点睛】此题主要考察余弦定理和三角形面积公式的应用,属于根底题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.假设式子中含有角的余弦或者边的二次式,要考虑用余弦定理;假设遇到的式子中含有角的正弦或者边的一次式时,那么考虑用正弦定理;以上特征都不明显时,那么要考虑两个定理都有可能用到.三、解答题:本大题一一共6小题,一共70分.中,.〔1〕求数列的通项公式;〔2〕设,求数列的前项和.【答案】〔1〕;〔2〕.【分析】〔1〕根据等差数列中,求出、公差的值,从而可得数列的通项公式;(2)由〔1〕可得,每相邻两项结合求和,从而可得结果.【详解】〔1〕,,(2).【点睛】此题主要考察等差数列的通项公式,属于中档题.等差数列根本量的运算是等差数列的一类基此题型,数列中的五个根本量一般可以“知二求三〞,通过列方程组所求问题可以迎刃而解.18.如图,在梯形中,,.〔1〕求;〔2〕求的长度.【答案】〔1〕;〔2〕.【解析】【分析】(1)由正弦定理求出的正弦值,再利用可得结果;〔2〕求得,利用正弦定理可得结果.【详解】(1)在中,由正弦定理,得,∴,∵,∴,.(2)由〔1〕可知,,在中,由正弦定理,得.【点睛】此题主要考察正弦定理的应用,属于中档题.正弦定理是解三角形的有力工具,其常见用法有以下几种:〔1〕知道两边和一边的对角,求另一边的对角〔一定要注意讨论钝角与锐角〕;〔2〕知道两角与一个角的对边,求另一个角的对边;〔3〕证明化简过程中边角互化;〔4〕求三角形外接圆半径.19.是等差数列,是等比数列,且〔1〕求,的通项公式;〔2〕设,求数列的前项和.【答案】〔1〕,;〔2〕.【解析】【分析】〔1〕由,根据等比数列的性质求得、的值,即可得的通项公式,再根据列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式;〔2〕结合〔1〕可得,根据错位相减法,利用等比数列求和公式可得结果.【详解】〔1〕等比数列的公比,所以,.设等差数列的公差为.因为,,所以,即.所以.〔2〕由〔1〕知,,.因此.从而数列的前项和,,,两式作差可得,,解得.【点睛】此题主要考察等比数列和等差数列的通项、等比数列的求和公式以及错位相减法求数列的前项和,属于中档题.一般地,假设数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法〞求和,一般是和式两边同乘以等比数列的公比,然后作差求解,在写出“〞与“〞的表达式时应特别注意将两式“错项对齐〞以便下一步准确写出“〞的表达式.中,角,,所对的边分别为,,,假设.〔1〕求的大小;〔2〕求的最大值.【答案】〔1〕;〔2〕1【解析】试题分析:〔1〕利用余弦定理,将即可求出,继而得;〔2〕利用三角形内角和定理将所求表达式表示为关于的三角函数式,结合三角函数的性质求解最大值. 试题解析:〔1〕由题意,余弦定理:,∵,所以. 〔2〕因为,,那么.那么:∵,∴,当时,获得最大值为1,即的最大值1.21.某企业2021年的纯利润为500万元,因设备老化等原因,企业的消费才能逐年下降,假设不能进展技术改造,预测从2021年起每年比上一年纯利润减少20万元,2021年初该企业一次性投入资金600万元进展技术改造,预测在未扣除技术改造资金的情况下,第年〔以2021年为第一年〕的利润为万元〔为正整数〕.〔1〕设从今年起的前年,假设该企业不进展技术改造的累计..纯利润为万元,进展技术改造后的累计纯利润为万元〔须扣除技术改造资金〕,求,的表达式;〔2〕依上述预测,从2021年起该企业至少经过多少年,进展技术改造后的累计利润超过不进展技术改造的累计纯利润? 【答案】〔1〕;〔2〕4.【解析】 【分析】〔1〕利用等差数列的求和公式可得,由等比数列的求和公式可得的表达式;〔2〕令,构造函数,根据函数的单调性,利用特殊值验证,从而可得结果.【详解】..〔2〕令,设在单调递增,,,所以当时,即经过4年,进展技术改造后的累计利润超过不进展技术改造的累计纯利润.【点睛】此题主要考察等比数列与等差数列的求和公式以及函数单调性的应用,考察的阅读才能与建模才能,属于中档题..的满足,且,记.(1)求证:为等差数列,并求的通项公式;(2)设,求的值;(3)是否存在正实数,使得对任意都成立?假设存在,务实数的取值范围;假设不存在,请说明理由.【答案】〔1〕证明见解析,;〔2〕;〔3〕.【解析】【分析】(1)化简,从而可得的通项公式;〔2〕结合〔1〕可得,利用裂项相消法可得结果;〔3〕利用“累乘法〞化简左边式子为,从而可得对任意恒成立,构造函数,利用单调性求得,从而可得结果.【详解】(1),所以是以为首项,2为公差的等差数列,.〔2〕,,.(3)左边,由题意可知,对任意恒成立,令,那么由对钩函数的性质可知在上单调递增,故,综上可以,即正实数的取值范围为.【点睛】此题主要考察等差数列的定义与通项公式,以及裂项相消法求和、不等式恒成立问题,属于难题.裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,打破这一难点的方法是根据式子的构造特点,常见的裂项技巧:(1);〔2〕;〔3〕;〔4〕;此外,需注意裂项之后相消的过程中容易出现丢项或者多项的问题,导致计算结果错误.。
高一数学第一次月考试题(含解析)

所以CC1⊥BC.
因为AC=BC=2, ,
所以由勾股定理的逆定理知BC⊥AC.
又因为AC∩CC1=C,
所以BC⊥平面ACC1A1.
因为AM 平面ACC1A1,
所以BC⊥AM.
(Ⅱ)过N作NP∥BB1交AB1于P,连结MP,则NP∥CC1.
A. 30°B. 60°C. 120°D. 150°
【答案】A
【解析】
试题分析:先利用正弦定理化简 得 ,再由 可得 ,然后利用余弦定理表示出 ,把表示出的关系式分别代入即可求出 的值,根据A的范围,利用特殊角的三角函数值即可求出A的值.
由 及正弦定理可得 ,
故选A.
考点:正弦、余弦定理
4.如图, 是水平放置的 的直观图,则 的面积为
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.在 中,角 的对边分别为 ,若 ,则角 的值为________.
【答案】
【解析】
【分析】
根据余弦定理得到 由特殊角的三角函数值得到角B.
【详解】根据余弦定理得到 进而得到角B= .
故答案为: .
【点睛】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现 及 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.
A. 6B.
C. D. 12
【答案】D
【解析】
△OAB是直角三角形,OA=6,OB=4,∠AOB=90°,∴S△OAB= ×6×4=12.
高一数学必修1第一次月考试卷

高一数学必修1第一次月考试卷(含答案解析)数学试卷(时间:120分钟总分:150分)一.选择题:(本大题共10小题;每小题5分;共50分. 在每小题给出的四个选项中;只有一项是符合题目要求的.)1.集合{1;2;3}的真子集共有()A、5个B、6个C、7个D、8个2.图中的阴影表示的集合中是()A.B.C.D.3.以下五个写法中:①{0}∈{0;1;2};②{1;2};③{0;1;2}={2;0;1};④;⑤;正确的个数有()A.1个B.2个C.3个D.4个4.下列从集合A到集合B的对应f是映射的是()A B A B A B A BA B C D5.函数的定义域为()A.B.C.D.6.若函数;则的值为()A.5 B.-1C.-7D.27.已知函数;;那么集合中元素的个数为………………………………………………………()A.1 B.0 C.1或0 D.1或28.给出函数如下表;则f〔g(x)〕的值域为()A.{4,2}B.{1,3}C. {1,2,3,4}D. 以上情况都有可能9.设集合;若A∩B≠;则a的取值范围是()A.B.C.D.10.设, 与是的子集, 若∩=,则称(,)为一个“理想配集”.那么符合此条件的“理想配集”的个数是(规定(,)与(,)是两个不同的“理想配集”)A. 4B. 8C. 9D. 16二.填空题(本大题共5个小题;每小题4分;共20分)11.已知集合;则=12.若函数;则=_ __ __13.若函数的定义域为[-1;2];则函数的定义域是14.函数在区间上递减;则实数的取值范围是_ __15.对于函数;定义域为;以下命题正确的是(只要求写出命题的序号)①若;则是上的偶函数;②若对于;都有;则是上的奇函数;③若函数在上具有单调性且则是上的递减函数;④若;则是上的递增函数。
三.解答题:(本大题共6小题;共80分;解答应写出文字说明;证明过程或演算步骤)。
16.(本小题13分).全集U=R;若集合;;则(1)求;, ;(2)若集合C=;;求的取值范围;(结果用区间或集合表示)17.(本小题13分).已知函数的定义域为集合;;(1)求;;(2)若;求实数的取值范围。
高一数学上学期第一次月考试题附答案

已知 A = {x | x ∈ R, x2 + (m + 2)x + 1 = 0} , B={x|x 是正实数},若 A B = ∅ ,求实数 m 的取值范围.
(22)(本小题满分 10 分) 已知 p:|1- x − 1 |≤2,q:x2-2x+1-m2≤0(m>0)的解集依次为 A、B,
3 且(CUB) (CUA)。求实数 a 的取值范围。
(18)(本小题满分 8 分)
已知集合 P = {y | y = −x2 + 2x + 5, x ∈ R} , Q = {y | y = 3x − 4, x ∈ R} , 求PQ,PQ.
(19)(本小题满分 10 分)
已知 A= {x | −2 < x ≤ 5} ,=B {x | 2m −1 ≤ x ≤ m +1},且 A B = B ,
-N)等于( ).
A. M N
B. M N
C.M
D.N
第Ⅱ卷(非选择题 共 72 分)
考生注意事项: 请在.答.题.纸.上.书.写.作.答.,.在.试.题.卷.上.书.写.作.答.无.效...
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.把答案填在答题纸的相应
位置.
(13)设集合 A = {x | (x − 2)2 ≤ 4} ,B={1,2,3,4},则 A B =__________.
A. −16 ≤ a < 0
B. a > −16 C. −16 < a ≤ 0
)
D. a < 0
(9)已知 M 有 3 个真子集,集合 N 有 7 个真子集,那么 M∪N 的元素个数为( )
A.有 5 个元素
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智才艺州攀枝花市创界学校2021级郎溪高一第一次月考数学试题
第一局部根底演练〔150分〕
一、选择题.(每一小题有且只有一个正确答案,5分×12=60分)
1、全集U={1,2,3,4,5,6,7},A={3,4,5},
B={1,3,6},那么集合{2,7}是〔〕
A .
A B B .B A
C .()U C A B
D .()U C A B 2.假设集合A={x |ax 2
+2x +1=0}中只有一个元素,那么a 的值是
〔〕
A .0
B .0或者1
C .1
D .不能确定
3.设集合A={x |1<x <2},B={x |x <a }满足A
⊆B ,那么实数a 的取值范围是〔〕
A .{a |a ≥2}
B .{a |a ≤1}C.{a |a ≥1}. D .{a |a ≤2}.
4.满足{1,2,3}≠⊂M ≠
⊂{1,2,3,4,5,6}的集合M 的个数是
〔〕
A .8
B .7
C .6
D .5
5.以下四种说法中,不正确的选项是〔〕
A .假设函数的定义域只含有一个元素,那么值域也只含有一个元素.
B .假设函数的定义域含有无数多个元素,那么值域也含有无数多个元素.
C.定义域和对应法那么确定后,函数的值域也就确定了. D.定义域和值域一样的两个函数,有可能不是同一个函数. 6.以下各图中,可表示函数y=f(x)的图象只可能是〔〕
AB CD
7.设x为实数,那么)
(x
f与)
(x
g表示同一个函数的是〔〕
A.2
2)
(
)
(
,
)
(x
x
g
x
x
f=
=B.x
x
g
x
x
f=
=)
(
,
)
(2
C.0)2
(
)
(
,1
)
(-
=
=x
x
g
x
f D.
1
1
)
(
,
1
1
)
(
2-
=
-
+
=
x
x
g
x
x
x
f
8.函数)
(
则
满足1-
,0
)2(
)1(
,
)
(2f
f
f
b
ax
x
x
f=
=
+
+
=的值是〔〕A.5B.-5 C.6D.-6
9.设3
2
)2
(+
=
+x
x
g,那么)
(x
g等于〔〕
A.1
2+
x B.1
2-
x C.3
2-
x D.7
2+
x
10.函数
2
2
1
()
1
x
f x
x
-
=
+
,那么
(2)
1
()
2
f
f
=〔〕
A.1 B.-1 C.
3
5
D.
3
5
-
11.
1
1
)(-+=
x x x f )1(±≠x ,那么=-)(x f 〔〕 A .
)(1x f B .)(x f -C .)
(1x f -D .)(x f -- 12.以下列图象中,能表示函数
[]1,1,-∈-=x x y 的图象是〔〕
AB
CD
二、填空题〔4分×4=16分〕
()f x =
________________________________
14.函数
⎪⎩
⎪⎨⎧≥<<--≤+=)
2(,2)21(,)
1(,2)(2x x x x x x x f 那么_____________)23(________,)23(=⎥⎦⎤⎢⎣⎡
-=-f f f
15.某城出租车按如下方法收费,起步价6元,可行3km ,3km 到10km 每走1km 加价1元,10km 后每走1km 加价0.8元,某人坐出租车走了12km ,他应交费_______________元 16.集合M={a |
a
-56
∈N,且a ∈Z},用列举法表示集合M= 三、解答题.(74分)
17.(12分)设U={x ∈Z|0<x≤10},A={1,2,4,5,9},B={4,6,7,8,10},C={3,5,7},
求
A B ,(C U
A) (C U
B),()A B C 。
18.(12分)设集合A={a 2
,a +1,-1},B={2a -1,|a -2|,3a 2
+4},A∩B={-1},
务实数a 的值.
19.(14分)求以下函数的值域
〔1〕
2
45x x y -+=〔2〕
2y x =+20.(12分)
(),f x 的定义域为[-2,3]求函数)()()(x f x f x F --=的定义域.
21.(12分)
13)(-=x x f ,32)]([+=x x g f ,)(x g 为x 的一次函数,求)(x g
22.(12分)
x x x f 2)1(+=+,求(1)f ,()f x
第二局部才能进步(20分)
1.设U ={1,2,3,4,5},假设A ∩B ={2},(C U A)∩B ={4},(C U A)∩(C U B)={1,5},那么以下结论正确的选项是〔〕
A.3∉A 且3∉B ∉B 且3∈A
C.3∉A 且3∈B ∈A 且3∈B
a a x x x g ax x x f ()(1)(22++=++=与为常数〕的定义域都是R,假设它们的值域也一样,那么
a=______________
862++-=m mx mx y 的定义域为R ,务实数m 的取值范围
2021郎溪高一第一次月考数学参考答案
一、选择题.(,5分×12=60分)
13.{x|x ≤4且x ≠1}111
,24
6.{-1,2,3,4} 三、解答题.(74分) 1
7.(12分)解:A B ={1,2,4,5,6,7,8,9,10},C U A ={3,6,7,8,10}C U B ={1,
2,3,5,9}
∴(C U A) (C U B)={1,2,3,5,6,7,8,9,10},
A B ={4}∴()A B C =∅
18.(12分)解:
A∩B={-1}∴-1∈B.而|a -2|>0,3a 2
+4>0∴2a -1=-1 a =0
此时A={0,1,-1}B={-1,2,4}符合题意
19.(14分)解:〔1〕245x x y -+=由254x x +-≥0得
245x x --≤0∴-1≤x ≤5
∴-3≤x -2≤3∴0≤(x -2)2≤9∴0≤≤3
即函数245x x y -+=的值域为[0,3]
〔2t 〔t ≥0〕,那么x =21t +.∴22115222()48
y t t t =++=++
0t ≥∴22111111
,(),2()
4441648
t t t +
≥∴+≥+≥2y ∴≥
即函数2y x =+
∞)
20.(12分)解:(),f x 的定义域为[-2,3]∴()F x 中的x 满足
2323x x -≤≤⎧⎨
-≤-≤⎩即23
32x x -≤≤⎧⎨-≤≤⎩
∴22x -≤≤
∴函数)()()(x f x f x F --=的定义域为[-2,2]
21.(12分)解:
)(x g 为x 的一次函数,∴可设()g x kx b =+,那么
[()]()3()1331f g x f kx b kx b kx b =+=+-=+-又32)]([+=x x g f 比较系数有32313k b =⎧⎨-=⎩解得2
3
43
k b ⎧=⎪⎪
⎨
⎪=
⎪⎩
24()33g x x ∴=+ 22.(12分)解:在x x x f 2)1(+=+中令0x =得(1)f =0,
1(1)t t =≥那么
22(1)21x t t t =-=-+,∴22()21221f t t t t t =-++-=-,2()1f x x ∴=-(1)x ≥
第二局部才能进步(20分)
1.B,
2.a=-5
3.解:函数862++-=m mx mx y 的定义域为R,∴2680mx mx m -++≥对
x R ∈恒成立
∴0m =或者2
0(6)4(8)0m m m m >⎧
⎨--+≤⎩
即0m =或者01m <≤m ∴的取值范围是[0,1]。