水力压裂回接管柱受力分析_荣准
水力压裂法

或许所有的美国人都在受益于“水力压裂法”,尽管半数以上的人可能没有听说过这个名词。
在今时今日,美国各级政府、企业对页岩油产业的发展寄予了厚望。
美国页岩油资源极其丰富,在科罗拉多州、犹他州和怀俄明州,被锁在页岩之中的油存量达上万亿桶以上,而正是凭借“水力压裂法”,以前根本不可能企及的大量页岩油正在被开采。
这种技术方法,在测量时首先取一段基岩裸露的钻孔,用封隔器将上下两端密封起来;然后注入液体,加压直到孔壁破裂,随之记录压力随时间的变化,并用印模器或井下电视观测破裂方位。
根据记录的破裂压力、关泵压力和破裂方位,利用相应的公式算出原地应力的大小和方向。
该方法于20世纪50年代就被科学家在理论上进行论证,60年代加以完善,在分析了压裂液渗入的影响后,开始作出大量野外和室内实验工作。
由于水力压裂法操作简便,且无须水力压裂法知道岩石的弹性参量,而得到广泛应用。
由于页岩油在美国的战略资源地位和自身需求,美国已进行很多水力压裂法地应力测量,德国、日本和中国现在也已相继开展此项工作。
资料显示,目前利用此法已能在5000米深处进行测量。
[1]页岩气开发过程中所采用的水力压裂法要加入化学物质,在每次压裂完成后,要对水进行获取和重新利用。
水力压裂法向来存在争议,但是这种页岩气开采技术在争议中却得到迅速发展。
当越来越多水体污染案例同水力压裂法相关联时,美国众议院能源和商业委员会出手了。
2010年7月19日,能源和商业委员会主席亨利·韦克斯曼联手该机构下属的能源和环境小组组长爱德华·马基联名致信给美国10个主要页岩气开发商,要求它们提交水力压裂法应用全程中涉及到的化学物质细节。
8月6日,限期“交卷”。
这个要求出台的背景是,全球天然气需求旺盛,美国引领页岩气开发技术并努力让页岩气开采遍地开花。
/a4_50_59_01300000955595129844599646376_jpg.html?prd=zhengwenye_ left_neirong_tupian美国宾夕法尼亚州一页岩气开采现场取水处当前,美国页岩气开采的热门地点是纽约州和宾夕法尼亚州,这两个地方也是美国马塞卢斯页岩(Marcellus shale)的集中区域。
管柱力学大作业 (修改版)

工程背景国外在20世纪80年代中期开始研究水平井压裂增产改造技术,最初是沿水平井段进行笼统压裂。
近年来随着非常规油气资源的大规模开发和水平井的大规模应用,水平井分段压裂技术得到充分发展,压裂段数和精度都得到显著提高,目前水平井分段压裂改造技术逐渐成熟。
近年来,国内也已经建立起比较完整的水平井分段压裂技术与井网优化设计方法,同时目前国内对水平井分段压裂工艺技术的研究和试验一直在不断地探索。
在分段压裂过程中,整个井下压力,温度变化较大,会引起油管的伸缩,膨胀等变化,如不进行合理的力学校核,势必导致封隔器油管柱受力和变形发生变化,从而进一步影响到油管的强度和封隔器的密封效果,在高温高压深井、超深井作业中,这样的矛盾尤为尖锐和突出,所以目前压裂过程中的管柱受力已经成为影响压裂施工成败的关键因素之一。
本文对简化后的回接压裂油管的受力变形进行了分析。
略去封隔器上端水力锚的影=0)、忽略粘滞摩阻力、忽略回接插头与回接筒的响、忽略油套环空压力的变化(▽po阻力。
一.回接的压裂油管基本效应的力学模型建立上图是水平井分段压裂管柱示意图,图中悬挂器以下是水平段压裂管柱,由已知可知上部回接插头插入回接筒后下压300kN,并且管柱坐挂在井口,依据以上条件来分析回接油管的受力和变形情况,给出回接油管在不同地面泵压下管柱的轴向力和轴向变形。
回接压裂油管力学模型的建立主要考虑因素及其分析方法如下:1. 活塞效应由于回插管外径和油管外径不同,所以在环空存在面积差,由油管柱内外压力的变化引起油管的伸长或缩短的这种现象叫做活塞效应。
如图1-a 所示(油管的内径等于密封管的外径),p o 为环空压力,p i 为油管压力,A o 、A i 各为油管内外径截面积,A p 为密封管的内腔截面积。
因此有:向上的力: )()('1p i i i o o A A p A A p F -+-=向下的力:)(''1p i i A A p F -=假设向下的力为正, 向上的力为负。
水力压裂钻孔起裂位置的力学分析

1 钻孔周围应力分析
模拟, 单元力学参数如表 1 所示 。
表1i i i
称
取值
强
m m ( ) Mpa ( )
强
Mp a ( )
内
角 聚
1 . 3
度
1 . 4 8
( 。)
M pa l O k ( )( , dm )
黄广 帅 ’ , 李丙 广 , 李 玉川 2
( 1 . 河南理工大学能源科学与工程学 院, 河南 焦作 4 5 4 0 0 0 ; 2 . 平顶山天安煤业股份有限公司一矿 , 河南 平顶 山 4 6 7 0 0 0 )
摘 要: 井下水 力压 裂可有 效提 高储层 透 气性 , 解 决低透 气性煤 层 瓦斯 抽放 难 问题 。 水力压 裂钻 孔起 裂位 置影 响 因素 较 多 , 其中
第3 3卷第 3 期
Vo 1 - 3 3 N o . 3
企 业 技 术 开 发
T E C HNOL OGI C AL DE VE L OP ME NT OF ENT ERP RI S E
2 0 1 4年 1 月
J a n . 2 01 4
水 力压裂 钻 孔 起 裂 位 置 的 力 学分 析
m= 0
o
级上 , 传统 的瓦斯抽采工艺瓦斯抽放半径小 , 抽采率低下 , 瓦斯超限频繁 , 严重威胁煤矿 的生产安全。 低渗透率煤层 严重制约着瓦斯抽 放技术 的推广 。 因 此, 对于低渗透性煤层需要采取增透措施 , 提高抽采效果。 水力压裂作为一项增产措施 , 已经广泛用于油气领域并取 得显著的效果。 1 9 6 5 年由煤炭科学总院沈 阳研究院在全国 首次应用于煤层强化瓦斯抽放领域 。 井下水力压裂是将地 面水力压裂技术应用于井下 , 通过 向钻孔 以大于储层滤失 的速率 向储层 中注入高压液体 , 当液体压力达到钻孔最弱
水力压裂小结

三、主要公式
1. 应力计算公式 (1) 地应力 (2) 周向应力(3) 裂缝形成条件 2. 压裂液滤失系数 3. 裂缝尺寸计算(吉尔兹玛公式) 4. 压裂施工参数的确定
或支撑剂体积与压裂液体积之比。
5.平衡状态: 当液体的流速逐渐达到使颗粒处于悬浮状态的 能力时,颗粒处于停止沉降的状态。 6.平衡流速:
平衡时的流速,也即携带颗粒最小的流速。
二、基本理论与分析
1.压裂的定义、种类、原理与工艺过程 2.造缝条件(垂直缝、水平缝)
3.压裂液任务(前置液、携砂液、顶替液的作用)
裂缝几何参数计算模型二维pknkgd拟三维p3d和真三维模型麦克奎尔与西克拉垂直裂缝增产倍数曲线三主要公式1
第七章
水力压裂
一、名词解释
1.填砂裂缝的导流能力:
在油层条件下,填砂裂缝渗透率与裂缝宽度的乘积, 常用FRCD表示,导流能力也称为导流率。 2.裂缝内的砂浓度(裂缝内砂比):是指单位体积裂缝内所 含支撑剂的质量。 3.裂缝闭合后的砂浓度(铺砂浓度):指单位面积裂缝上所 铺的支撑剂质量。 4.地面砂比:单位体积混砂液中所含的支撑剂质量。
4.压裂液的性能要求 5.压裂液类型
6.压裂液的滤失性(受三种机理控制)
7.支撑剂的类型、性能要求
8.沉降型支撑剂在垂直缝高上的分布规律及随地面 排量的变化特征 9.影响支撑剂选择的倍数曲线
11.裂缝几何参数计算模型
二维(PKN、KGD)、拟三维(P3D)和真三维模型
压裂施工管柱摩阻计算-(3)

压裂施工管柱摩阻计算苏权生摘 要:压裂施工管柱摩阻计算对压裂施工过程中压力波动判断和压后净压力拟合具有重要意义。
目前对压裂液在层流状态下的摩阻计算比较成熟,计算结果可信度高,但对压裂液在紊流状态下性质还未找出一定的规律,摩阻计算结果误差较大。
本文以降阻比法为基础进行压裂管柱摩阻计算,通过理论计算与现场实测数据进行对比分析,提高计算精度。
关键词: 管柱摩阻 紊流 降阻比 计算精度压裂管柱摩阻计算是压裂施工过程中压力变化判断的基础,是进行井底压力和裂缝净压力计算的关键。
在实际压裂设计中经常采用经验估计法对管柱摩阻进行粗略计算,往往不能准确地预测实际管柱摩阻。
本文以降阻比法为基础,分别对HPG 压裂液的前置液、携砂液沿程管柱摩阻进行理论计算,并结合胜利油田现场施工井的实际数据进行对比分析,对影响管柱摩阻计算的影响因素进行修正,提高理论计算和现场施工数据的一致性,形成适合胜利油田压裂施工管柱摩阻计算的相关计算程序。
1、降阻比管柱摩阻计算Lord 和MC Gowen 等人在前人研究的基础上提出了HPG 压裂液前置液,携砂液摩阻计算的新方法,称为降阻比法,其基本原理是在相同条件(如排量、管径、管长相同)下,压裂液摩阻与清水摩阻之比称为降阻比,用公式表示为:wf p f P P )()(∆∆=δ (1)式中:p f P )(∆:压裂液摩阻,Mpa ;w f P )(∆:清水摩阻,Mpa ;δ:降阻比系数,无单位。
1.1 清水摩阻计算从公式(1)可以看出,降阻比法要首先计算清水摩阻,且其值的准确性对压裂液摩阻计算有较大的影响,水力学中伯拉休斯清水摩阻计算式:L Q D P ***10*779.775.175.461--=∆ (2)式中: 1P ∆:清水摩阻,Mpa ; D :管柱内径,m ; Q :施工排量m 3/s ; L: 管柱长度,m ;用车古201井数据进行清水摩阻验证,车古201井酸化施工管柱为Φ73mm 光油管,下深4505m ,施工前用20m 3清水正洗井降温,排量1.5m 3/min ,测得沿程管路摩阻为31Mpa ,用公式(2)计算管柱摩阻值为30Mpa ,计算值与实际值误差3.2%。
水力压裂讲义

孔隙流体压力
热应力 。
(1) 重力应力(上覆压力)
z 10
6
H
0
r (h) gdh
其中:r(h) 为上覆岩层密度,由密度测 井曲线获得。 有效垂向应力为
z z ps
为Boit孔隙弹性常数。
研究对象:地层中任意单元体。
由广义虎克定律计算总应变
(1) 矿场测量
— 水力压裂法(Page 245 ) — 井眼椭圆法(井壁崩落法) (2)岩心分析(实验室) —滞弹性应变恢复 (ASR) —微差应变分析 (DSCA) (3) 测井解释 (4) 有限元计算
第二节
压裂液
ห้องสมุดไป่ตู้
压裂液及其性能要求 压裂液添加剂 压裂液的流动性 压裂液的滤失性 压裂液对储层的伤害 压裂液选择
特点:与温度变化、岩石力学性质有关 产生环境:火烧油层、注蒸汽开采、注水
2 人工裂缝方位
原理:裂缝面垂直于最小主应力方向 当z最小时,形成水平裂缝; 当Y或x>z,形成垂直裂缝。
z
y y
x
x
显裂缝地层很难出现人工裂缝。 微裂缝地层 —垂直于最小主应力方向; —基本上沿微裂缝方向发展,把微裂缝串成显裂缝
构造运动的边界影响使其在传播过程
中逐渐衰减。
• 断层和裂缝发育区 — 正断层,水平应力x可能只 有垂向应力z的1/3。 — 逆断层或褶皱带的水平应力 可大到 z的3倍。
正断层
右旋走向滑动断层
逆断层
(3) 热应力 原因:地层温度变化引起的内应力增量。 计算方法
T ET x y 1
1 2 z Pi ( Pi Ps ) 1 1 2 v z ( Pi Ps ) t 1
第06章水力压裂分析PPT课件
1 Cr
Cb
4.井壁上的最小总周向应力
在地层破裂前,井壁上的最小总周向应力 应为地应力、井筒内压及液体渗滤所引起的
周向应力 之 和3 :y x . P i P i P s1 1 2 25
二、造缝条件
(一)形成垂直裂缝的条件
当井壁上存在的周向应力超过井壁岩 石的水平方向的抗拉强度时,岩石将在 垂直于水平应力的方向上产生脆性破裂, 即在与周向应力相垂直的方向上产生垂 直裂缝。造缝条件为:
th
.
26
1)当有滤失时:
x x ps x x ps
y y ps y y ps
当产生裂 缝时,井 筒内注入 流体的压 力等于地 层的破裂 压力:
pi pi
3 y x P i P i P s1 1 2
3 y x(p ip s) 2 1 1 2
h t
PF
.
PS
伸并填以支撑剂,关井后裂缝闭
合在支撑剂上,从而在井底附近
地层内形成具有一定几何尺寸和
导流能力的填砂裂缝,使井达到
增产增注目的工艺措施。 .
2
压裂材料
压
支
裂
撑
液
剂
.
3
水力压裂的工艺过程:
憋压 造逢
裂缝延伸 充填支撑剂
裂缝闭合
压力/砂比/(MPa/%) 排量/(方/分)
80
4
70
3.5
60
3
50
2.5
1.裂缝形成条件
2.裂缝形态(垂直、水平缝)
3.裂缝方位
造缝条件及裂缝形态、方位等与井底附近地
层的地应力及其分布、岩石的力学性质、压裂
液的渗滤性质及注入方式. 有密切关系。
水力压裂技术
第四章 水力压裂技术水力压裂是利用地面高压泵组,将高粘液体以大大超过地层吸收能力的排量注入井中, 在井底憋起高压,当此压力大于井壁附近的地应力和地层岩石抗张强度时,在井底附近地层 产生裂缝。
继续注入带有支撑剂的携砂液,裂缝向前延伸并填以支撑剂,关井后裂缝闭合在 支撑剂上,从而在井底附近地层内形成具有一定几何尺寸和导流能力的填砂裂缝,使井达到 增产增注的目的。
水力压裂增产增注的原理主要是降低了井底附近地层中流体的渗流阻力和改变了流体的渗流状态,使原来的径向流动改变为油层流向裂缝近似性的单向流动和裂缝与井筒间的单向流 动,消除了径向节流损失,大大降低了能量消耗。
因而油气井产量或注水井注入量就会大幅 度提高。
第一节 造缝机理在水力压裂中,了解裂缝形成条件、裂缝的形态和方位等,对有效地发挥压裂在增产、 增注中的作用都是很重要的。
在区块整体压裂改造和单井压裂设计中,了解裂缝的方位对确 定合理的井网方向和裂缝几何参数尤为重要,这是因为有利的裂缝方位和几何参数不仅可以 提高开采速度,而且还可以提高最终采收率。
造缝条件及裂缝的形态、方位等与井底附近地层的地应力及其分布、岩石的力学性质、压 裂液的渗滤性质及注入方式有密切关系。
图4一l 是压裂施工过程中井底压力随时间的变化曲 线。
P F 是地层破裂压力,P E 是裂缝延伸压力,P S 是地层压力。
图4一l 压裂过程井底压力变化曲线a — 致密岩石;b —微缝高渗岩石 在致密地层内,当井底压力达到破裂压力P F 后,地层发生破裂(图4—1中的a 点),然后在较低的延伸压力P E 下,裂缝向前延伸。
对高渗或微裂缝发育地层,压裂过程中无明 显的破裂显示,破裂压力与延伸压力相近(图4—1中的b 点)。
一、油井应力状况一般情况下,地层中的岩石处于压应力状态,作用在地下岩石某单元体上的应力为垂向 主应力σZ 和水平主应力σH (σH 又可分为两个相互垂直的主应力σx ,σY )。
水力压裂力学-1讲解
岩石力学性质及其对压裂工 程的影响
一般地层岩石含 有孔隙,孔隙中 含有流体,流体 承受的压力称为 孔隙压力。(石 油工程中称为地 层压力) 在油气藏开发过 程中,孔隙压力 是变化的。
中国石油勘探开发研究院廊坊分院
岩石力学性质及其对压裂工 程的影响
3.有效应力
' Pp
pb
3 2
1 2p T 2(1 )
(1 2 ) 2(1 )
岩石力学性质及其对压裂工 程的影响
σ2:水平最小主应力 σ1:水平最大主应力 Pp :地层压力 γ:泊松比 T:岩石抗张强度
13
二、岩石力学
中国石油勘探开发研究院廊坊分院
③ 有效应力:作用在岩石骨架(颗粒)上的力。 ④ 地层破裂压力 ⑤ 裂缝闭合压力(闭合应力):开始张开一条已存在的 裂缝所需流体压力。 ⑥ 裂缝延伸压力
⑦ 瞬时停泵压力 ⑧ 净压力 ⑨ 摩擦力:井筒摩阻,孔眼摩阻,裂缝内摩阻。
14
中国石油勘探开发研究院廊坊分院
σ’ :有效应力,作用在岩石骨架(颗粒)上的力 σ :地应力(总应力) Pp :孔隙压力(地层压力)
' Pp
α:孔隙弹性系数,表征油勘探开发研究院廊坊分院
4.地层破裂压力 使地层产生张性裂缝的压力 如果不考虑液体滤失
Pb 32 1 P T
如果考虑液体滤失
中国石油勘探开发研究院廊坊分院
❖1 基本概念
① 应力:作用在单位面积上的力,当面积无限趋于 零时的极限,成为作用在某点的应力,应力单位是 N/㎡,简称为Pa(帕)。
z
y x
σzz
σyy σxx
11
二、岩石力学
中国石油勘探开发研究院廊坊分院
第6章水力压裂
KC f φ −3 C ΙΙ = 4 . 3 × 10 ∆ P µ f
1/ 2
Cf—油藏综合压缩系数
图6-3 滤失后 地层中 压力分 布示意 图
压缩并使油藏流 体流动的压差 使压裂液滤失于 储层内的压差 裂缝壁面滤 饼的压力差
(三)具有造壁性压裂液滤失系数CⅢ
具有固相颗粒及添加有防滤失剂的压裂液,滤失速度受造壁性控制
三、压裂液流变性
(一)各类压裂液的流变曲线 1.牛顿压裂液(A曲线) . 压裂液( 曲线)
Cr α = 1− Cb
在地层破裂前,井壁上的最小总周向应力应为地应 地应 力、井筒内压及液体渗滤所引起的周向应力之和: 井筒内压及液体渗滤所引起的周向应力
1 − 2ν σ θ = (3σ y − σ x ) − Pi + (Pi − Ps )α 1 −ν
二、造缝条件
(一)形成垂直裂缝的条件 当井壁上存在的周向应力达到井壁岩石的水平方向的抗 水平方向的抗 垂直于水平应力的方向上产生脆性破裂, 拉强度时,岩石将在垂直于水平应力 拉强度 垂直于水平应力 即在与周向应力相垂直的方向上产生垂直裂缝。 造缝条件为:
3.压裂液径向渗入地层所引的井壁应力 3.压裂液径向渗入地层所引的井壁应力 由于注入井中的高压液体在地层破裂前,渗入井筒 周围地层中,形成了另外一个应力区,它的作用是增大 了井壁周围岩石中的应力。 增加的周向应力值为:
1 − 2ν σ θ = (Pi − Ps )α 1 −ν
4.井壁上的最小总周向应力
滤失系数CⅢ是由实验方法测定
加压口
滤 失 量 ml
α
V sp
tg α = m
筛座 (含滤纸或岩心片) 出液口 图6-4 静滤失仪示意图