光纤传输损耗的测量实验

光纤传输损耗的测量实验
光纤传输损耗的测量实验

光纤传输损耗的测量

一.实验目的和内容

1.了解光纤传输损耗的特性及其测量方法。

2. 掌握用切断法测量光纤传输损耗的方法和技巧.

二.实验基本原理

在光纤传输过程中,光信号能量损失的原因有本征的和非本征的,在实用中最关心的是它的传输总损耗。已经提出的测定光纤总损耗的方法有3种:切断法、插入损耗法和背向散射法。

波长为λ的光沿光纤传输距离L 的衰减且)(λA (以dB 为单位)定义为

)(λA =10???? ??21lg P P (1)

式中1p ,2P 分别是注入端和输出端的光功率。

对于一根均匀的光纤,可定义单位长度(通常是lkm)的衰减系数()λα(以dB /km 为单位),

()λα=L A )(λ=L P P )

/lg(1021 (2)

光纤的衰减系数是一个与长度无关但与波长有关的参数。

衰减测量注入条件

为获得精确、可重复的测量结果,由定义式(1)可见,测量时应保证光纤中功率分布是稳定的,即满足稳态功率分布的条件。实际的光纤由于存在各种不均匀性等因素,将引起 模耦合,而不同的模的衰减和群速度都不同。因此在多模传输的情况下,精确测量的主要问 题是测量结果与注入条件、环境条件(应力、弯曲、微弯)有关。实验表明:注入光通过光纤 一定长度(耦合长度)后,可达“稳态”或“稳态模功率分布”,这时模式功率分布就不再随 注入条件和光纤长度而变,但在一般情况下对于质量较好且处于平直状态的光纤,其耦合长 度也需要几公里。因此在实际测量中,对于短光纤一般用稳态模功率分布装置,或适当的光 学系统,或有足够长的注入光纤,以获得稳态功率分布条件。单模光纤因为只传导一个模, 没有稳态模功率分布问题,所以衰减测量不需要扰模。

切断法

这是直接严格按照定义建立起来的测试方法。在稳态注入条件下,首先测量整根光纤的输出光功率()λ2P ;然后,保持注入条件不变,在离注入端约2m 处切断光纤,测量此短光纤输出的光功率()λ1P ,因其衰减可忽略,故()λ1P 可认为是被测光纤的注入光功率。因此,按定义式(1)和(2)就可计算出被测光纤的衰减和衰减系数。如果要测量衰减谱,只要改变输入光波长,连续测量不同波长的()λ2P ,然后保持注入条件不变,在离注入端约2m 处切断光纤,再连续测量同样的不同波长的()λ1P ,计算各个波长下的衰减,就可得到衰减谱曲线.

由于这种测量方法需要切断光纤,所以是破坏性的,但测量精度高,优于其它方法0.1dB,所以是光纤衰减测量的一种标准测试方法。测试装置如图1所示。测量单一波长衰减时,光源可使用谱宽窄的发光二极管(LED)或激光栅(LD),以提高动态范围。测衰减谱时则应用宽光谱光源,再通过单色仪分光。光源应能在完成测试过程的足够长时间内保持光强和波长稳定。谱线宽度应不超过规定值。

插入损耗法

上述切断法除具有破坏性以外,用于现场测量既困难,又费时,因此现场测量需用非破 坏插入法来代替切断法。目前插入损耗法对于多模光纤的测试,其测量精度和重复性已可满 足要求,所以被选为替代测试方法。其测量原理如图2。

测量时先校准精入光功率()λ1P 。然后把待测光纤插入,调整耦合头使达到最佳耦合,

记下此光功率()λ2P 。于是测得的衰减且()λ'A =()λ1P -()λ2P 。显然,()λ'A 包括了光纤衰减

()λA 和连接器(或接头)损耗A i 。最后,被测光纤衰减为

()()L A /λλα=(dB /km)

式中()λA =()λ'

A -A i ,d

B /km 。可见,插入损耗法的测量精确度和重复性要受到耦合接头的精确度和重复性的影响,所以这种测试方法不如切断法的精确度高.但因此法是非破坏性的,测量简单方便,故适合干现场使用。

背向散射法

背向散射法也是一种非破坏性的测试方法。测试只需在光纤的一端进行,而且一般有较 好的重复性。更由于这种方法不仅可以测量光纤的衰减系数,还能提供沿光纤长度损耗特性 的详细情况,其中包括检测光纤的缺陷或断裂点位冒、接头的损耗和位置等,也可给出光纤 的长度,所以这种方法对实验研究、光纤制造和工程现场都很有用。利用这种方法做成的 测量仪器,叫做光时域反射计(optical time —domain reflectometer),简称OTDR 。

背向散射法是将大功率的窄脉冲注入被测光纤,然后在同一端检测沿光纤背向返回的 散射光功率。因为主要的散射机理是瑞利散射,瑞利散射光的特征是它的波长与入射光波的 波长相同,光功率与该点的入射光功率成正比,所以测量沿光纤返回的背向瑞利散射光功率 就可以获得光沿光纤传输时损耗的信息,从而可以测得光纤的衰减.故称此方法为背向散射 法。其简单原理框图如图3所示。

光脉冲通过方向耦合器注入被测光纤。光脉冲在光纤中传输,沿光纤各点来的背向瑞利散射

光返回到光纤耦合器,经方向耦合器输入光检测器,经信号处理后输出,就可观察和记录所测的结果。图4是背向散射的典型记录曲线,各段分别反映如下特性: a 段——由于耦合器和光纤前端面引起的菲涅耳反射脉冲;

b 段——光脉冲沿具有均匀特性的光纤段传播时的背向瑞利散射曲线;

c 段——由于接头或耦合不完善引起的损耗,或者光纤存在某些缺陷引起的高损耗区;

d 段——光纤断裂处,损耗峰大小反映了损坏的程度;

e 段——光纤终端引起的反射损耗。

由于被测光纤存在接头或缺陷时各段背向散射系数不同,测得的衰减是不准确的,可能 产生很大的偏差。但是对于均匀、连续、无接头和缺陷的光纤,衰减测量的结果足够精确. 背向散射法同样适用于单模光纤。虽然单模光纤中背向散射过程不能用几何光学来研 究,但是根据波动光学的理论研究证明,单模光纤输入端背向散射功率的表达式除了背向散 射系数的意义以外,与多模光纤相同。因此,背向散射法同样适用于单模光纤的衰减特性测 量。

背向散射法测量衰减有以下缺点:①无法控制背向散射光的模式分布,这常使两传输方 向上测的衰减系数不同,为此可取两方向测量值的平均。②对光纤的非均匀性很敏感。光纤 的不均匀,如数值孔径、直径或散射系数的变化等对背向散射信号有影响,不利于衰减系数 的确定。由于这些缺点,使背向散射法不能作为测量衰减的基准方法,有疑问时,应以切断法的结果为准。

三.实验用具与装置图

实验用具:鹵钨灯,透镜,单色仪,塑料光纤,光功率计。

装置图: a

b

c d

e L AB 长度

P A

P B

图4背向散射法(对数坐标)测量的典型曲线 1

4

5 6

2

3

图3 背向散射法测量原理框图

1.光源

2.光纤分路器

3.待测光纤

4.光探测器

5.信号处理单元

6.显示器

四.实验操作步骤 1. 开启鹵钨灯电源,使光源成像于缝上,透镜与缝之间的距离应使其相对孔径与仪器(单色仪)相对孔径相等。

2. 仔细调节光纤入射端面的位置,要求光纤输出最强的光。

3. 使用BGJ 型光功率计,按键打向短波和199.9nw 档。记录单色仪波长鼓从17.5,18.0,18.5,19.0,19.5,20.0,20.5,21.0八个点时光功率计的读数(减去暗电流),重复三次测量。

4. 保持光纤输入端不变,把光纤剪掉约一半重复上面八个点的测量三次。

五.数据处理

以波长为横坐标,衰减的dB 数为纵坐标,用最小二乘法分析实验数据,作出光纤损耗随波长变化的曲线

dB 数=l L -10

lg ()()L p l p

L 为原光纤长度,l 为光纤剪掉后剩下的长度。

注:可利用硅光电池光谱特性测量实验作的波长校正曲线。

六.实验结果分析与实验报告要求:

将实验数据和数据处理结果写在实验报告上,分析实验结果好坏,找出其原因。

七.思考题与预习自测题

1. 什么叫光学仪器的相对孔径?应如何调节单色仪才能使其有最大的光强及最好的单色性?

2. 光纤传输损耗的大小与哪些因素有关?

八.参考资料

廖延彪 光纤光学 清华大学出版社 2000 P218~221

光波导传输损耗的测量

南昌大学实验报告 学生姓名:刘vv 学号:55023110vv 专业班级:vvvvvv 实验日期:2014/9/24 实验成绩: 光波导传输损耗的测量 波导薄膜中导波光的传输损耗是评价介质平板波导的一个重要参数。传统的测量光波导传输损耗的方法如截断法(Cut-Off Method)和滑动棱镜法(Prism Sliding Method)在测量准确性和方便性方面均存在着较大的问题,难以获得广泛的应用。采用CCD数字成像器件,通过数字成像对光波导内部的传输光强进行测量,可计算得到波导的传输损耗,该方法具有无损、高精度快速测量等优点。 [实验目的] 1.了解CCD数字成像法测量波导传输损耗的原理及实际的测量光路; 2.掌握用于去除散粒噪声的中值滤波图像处理技术; 3.通过传输曲线的拟合计算传输衰减系数。 [实验原理] 1.损耗机理 光波导器件传输损耗主要由以下因素产生:波导材料的散射和吸收引起的损耗;基片的表面光洁度受到抛光工艺的限制;界面的不规则导致导模与辐射模间的耦合而引起的损耗;波导表面弯曲,引起能量辐射造成损耗。 2.测量原理 真实波导由于界面不平整以及波导内部杂质散射,使导模转变为辐射模。可以认为:某一位置散射出来的光强主要受到该点的传输光强、界面不平整程度、杂质多少的影响。整块波导是在特定条件下一次性制备,后两个因素的影响可以认为在整块波导中平均分布,即使由于杂质大小有涨落而出现某点散射光特别强,也可以在后期图像处理中采用数字滤波技术加以消除。因此,散射光强将只和该处的实际传输光强成正比。据此,可以采用数字成像器件CCD对传输线上各点的散射光强进行记录,转换成内部传输光强,拟合出传输衰减曲线并计算衰减系数。 CCD摄像头介绍

信号光纤传输技术实验.

音频信号光纤传输技术实验 预习要求 通过预习应理解以下几个问题: 1.音频信号光纤传输系统由那几个部分组成、主要器件(LED 、SPD 和光纤)的工作原理; 2.LED 调制、驱动电路工作原理 3.LED 偏置电流和调制信号的幅度应如何选择、; 4.测量SPD 光电流的I-V 变换电路的工作原理。 实验目的 1.熟悉半导体电光/光电器件基本性能及主要特性的测试方法; 2.了解音频信号光纤传输系统的结构及各主要部件的选配原则; 3.掌握半导体电光和光电器件在模拟信号光纤传输系统中的应用技术; 4.学习音频信号光纤传输系统的调试技术。 实验原理 一.系统的组成 音频信号光纤传输系统的原理图如图8-1-1所示。它主要包括由LED (光源)及其调制、驱动电路组成的光信号发送器、传输光纤和由光—电转换、I —V 变换及功放电路组成的光信号接收器三个部分。光源器件LED 的发光中心波长必须在传输光纤呈现低损耗的0.85μm、1.3μm或1.5μm附近。本实验采用中心波长0.85μm的GaAs 半导体发光二极管作光源、峰值响应波长为0.8~0.9μm的硅光二极管SPD 作光电检测元件。为了避免或减少谐波失真,要求整个传输系统的频带

宽度能够覆盖被传信号的频谱范围。对于音频信号,其频谱在20Hz ~20KHz 的范围内。光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的频率特性。 二、光纤的结构及传光原理 衡量光纤信道性能好坏有两个重要指标:一是看它传输信息的距离有多远,二是看它单位时间内携带信息的容量有多大。前者决定于光纤的损耗特性,后者决定于光纤的频率特性。目前光纤的损耗容易做到每公里零点几dB 水平。光纤的损耗与工作波长有关,所以在工作波长的选用上,应尽量选用低损耗的工作波长。光纤通讯最早是用短波长0.85μm,近来发展到能用1.3~1.55μm范围的波长,在这一波长范围内光纤不仅损耗低,而且“色散”也小。 光纤的频率特性主要决定于光纤的模式性质。光纤按其模式性质通常可以分成单模光纤和多模光纤。无论单模或多模光纤,其结构均由纤芯和包层两部分组成。纤芯的折射率较包层折射率大。对于单模光纤,纤芯直径只有5~10μm,在一定条件下,只允许一种电磁场形态的光波在纤芯内传播。多模光纤的纤芯直径为50μm或62.5μm,允许多种电磁场形态的光波传播。以上两种光纤的包层直径均为125μm。按其折射率沿光纤截面的径向分布状况又分成阶跃型和渐变型两种光纤,对于阶跃型光纤,在纤芯和包层中折射率均为常图8-1-1 音频信号光纤传输系统原理图 数,但纤芯折射率n 1略大于包层折射率n 2。所以对于阶跃型多模光纤,可用几何光学的全反射理论解释它的导光原理。在渐变型光纤中,纤芯折射率随离开光纤轴线距离的增加而逐渐减小,直到在纤芯—包层界面处减到某一值后,在包层

光纤损耗大的几个因素

光纤损耗大存在的因素 光纤熔接包处损耗变大,是常见的故障,原因通常有3个: 1、光纤熔接处开裂,可能的原因有:当初熔接时存在缺陷;光缆遭受外力拉伸;熔接点塑料护套、固定金属棒与光纤热膨胀系数差异,反复的温度变化引起伸缩。显然排除故障时必须重新熔接光纤。 2、熔接包内盘纤变形失园而出现角度,导致损耗变大。可能的原因有:光缆遭受外力拉伸;因温度变化热涨冷缩引起。排除故障时只需重新整理盘纤,保证圆形、消除角度。 3、熔接包内进水并侵入熔接处的裸纤,导致光信号散射损失。排除故障时要打开熔接包清除积水,并晒干熔接处,尽量散尽水分,或者重新熔接。 光纤传输损耗的产生原因是多方面的,在光纤通信网络的建设和维护中,最值得关注的是光纤使用中引起传输损耗的原因以及如何减少这些损耗 光纤使用中引起的传输损耗主要有 1接续损耗 2光纤本质造成的损耗、 3熔接不当所报造成的损耗和 4活动接头(光纤适配器及光纤跳线)造成的损耗和 5非接续损耗(弯曲损耗和其它施工因素和应用环境所造成的损耗) 接续损耗 (1)光纤固有损耗主要源于光纤模场直径不一致;光纤芯径失配;纤芯截面不圆;纤芯与包层同心度不佳等原因;其中影响最大的是模场直径不一致。 (2)熔接损耗非本征因素的熔接损耗主要由轴向错位;轴心(折角)倾斜;端面分离(间隙);光纤端面不完整;折射率差;光纤端面不清洁以及接续人员操作水平、操作步骤、熔接机电极清洁程度、熔接参数设置、工作环境清洁程度等其他因素造成。 (3)活动接头损耗非本征因素的活动接头损耗主要由活动连接器质量差、接触不良、不清洁以及与熔接损耗相同的一些因素(如轴向错位、端面间隙、折角、折射率差等)造成。 解决接续损耗的方案 (1)工程设计、施工和维护工作中应选用特性一致的优质光纤一条线路上尽量采用同一批次的优质品牌裸纤,以求光纤的特性尽量匹配,使模场直径对光纤熔接损耗的影响降到最低程度。 (2)光缆施工时应严格按规程和要求进行 挑选经验丰富的施工人员光缆配盘时尽量做到整盘配置(单盘≥500-800米),以尽量减少接头数量。敷设时严格按缆盘编号和端别顺序布放,使损耗值达到最小。 (3)挑选经验丰富训练有素的接续人员进行接续和测试 接续人员的水平直接影响接续损耗的大小,接续人员应严格按照光纤熔接工艺流

光纤通信optisystem实验

光纤通信大作业 1.选择一个你认为合适的方案 供选方案:NRZ、RZ调制格式,直接调制或者外调制,APD管或者PIN管,low pass rectangular filter或者low pass gauss filter。请选择你认为实际中可实现的通信性能最好的一组方案。并给出相应的理由。 答:选择NRZ调制格式,直接调制,APD管,low pass gauss filter。选择这个方案的理由是:为了使得整个系统得到最好的信噪比,并且保证系统误码率在可接受的范围内。具体理由分析如下: 选择NRZ调制格式,因为经NRZ调制的光信号具有紧凑的频谱特性,调制和调解结构简单,在10G和一部分40G系统中得到广泛应用,一直被作为中短距离光纤通信系统中的主要调制格式,通过色散管理和终端可调色散补偿技术,NRZ调制格式在终端传输距离普通光纤获得良好的光传输性能。 选择直接调制,因为直接强度调制是用信号直接调制激光器的驱动电流,使其输出功率随信号变化.这种方式设备相对简单,研究较早,现已成熟并商品化.外调制则常用于要求较高的通信系统。 选择APD管,因为由书上的P264页的图8.3可知,PIN管接收灵敏度适用于低数据速率光纤通信,当系统通信数据速率为10G时,PIN灵敏度管不适于应用,我们优选ADP管。 选择low pass gauss filter(低通高斯响应滤波器),因为low pass rectangular filter(低通矩形响应滤波器)是理想的低通滤波器的模型,在幅频特性曲线上呈现矩形。在现实中,如此理想的特性是无法实现的,所有的设计只不过是力图逼近矩形滤波器的特性而已。而low pass gauss filter(低通高斯响应滤波器)采用时域法测量有效带宽,具有直观、简便的优点,而采用时域法能够显著缩短有效带宽测量时间。 实验过程: 本次实验中,由NRZ调制格式、直接调制、APD管和low pass gauss filter构成的光纤通信系统。 1).根据实验要求,连接实验电路。同时为了实时地观察系统的运行状态,必须在系统外围增加监测及显示装置,将系统运行结果显示出来,便于观察和分析。因此,在系统中加入了Eye Diagram Analyzer、BER Analyzer、Optical Time Domain Visualizer、Optical Power Meter、Optical Spectrum Analyzer、Oscilloscope Visualizer。通过这些监测及显示器件,可以较为直观地观察到入纤光功率、调制前后的光信号频谱与时域波形、解调后的信号波形、信号眼图及误码率等系统的运行状态和运行结果。整个光纤通信系统的架构如下图示:

实验一音频信号光纤传输技术实验

音频信号光纤传输技术实验 [目的要求] 1.熟悉半导体电光/光电器件的基本性能。 2.了解音频信号光纤传输的结构。 3.学习分析集成运放电路的基本方法。 4.了解音频信号在光纤通信的基本结构和原理 [仪器设备] 1.ZY120FCom13BG3型光纤通信原理实验箱。 2.20MHz双踪模拟示波器。 3.FC/PC-FC/PC 单模光跳线 4.数字万用表。 5.850nm光发端机和光收端机 6.连接导线 7.电话机 [实验原理] 一.半导体发光二极管结构、工作原理、特性及驱动、调制电路光纤通讯系统中,对光源器件在发光波长、电光效率、工作寿命、光谱宽度和调制性能等许多方面均有特殊要求。所以不是随便哪种光源器件都能胜任光纤通讯任务,目前在以上各个方面都能较好满足要求的光源器件主要有半导体发光二极管(LED)、半导体激光二极管(LD),本实验采用LED作光源器件。 图 1 半导体发光二极管及工作原理 光纤传输系统中常用的半导体发光二极管是一个如图所示的N-P-P三层结构的半导体器件,中间层通常是由GaAs(砷化镓)p型半导体材料组成,称有源层,其带隙宽度较窄,两侧分别由GaAlAs的N型和P型半导体材料组成,与有源层相比,它们都具有较宽的带隙。具有不同带隙宽度的两种半导体单晶之间的结构称为异结。在图(1)中,有源层与左侧的N层之间形成的是p-N 异质结,而与右侧P层之间形成的是p-P异质结,故这种结构又称N-p-P双异质结构。当给这种结构加上正向偏压时,就能使N层向有源层注入导电电子,这些导电电子一旦进入有源层后,因受到右边p-P异质结的阻挡作用不能再进入右侧的P层,它们只能被限制在有源层与空穴复合,导电电子在有源层与空穴复合的过程中,其中有不少电子要释放出能量满足以下关系的光子:

光纤基础知识简介

光纤简介 一、光纤概述 光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。通常,光纤一端的发射装臵使用发光二极管(light emitting diode,LED)或一束激光将光脉冲传送至光纤,光纤另一端的接收装臵使用光敏元件检测脉冲。 二、光纤工作波长 光是一种电磁波。可见光部分波长范围是:390nm—760nm(纳米),大于760nm部分是红外光,小于390nm部分是紫外光。光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。光纤损耗一般是随波长加长而减小,0.85μm的损耗为2.5dB/km,1.31μm的损耗为0.35dB/km,1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。 三、光纤分类 光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上作一归纳的,各种分类如下。 (1)工作波长:紫外光纤、可观光纤、近红外光纤、红外光纤(0.85μm、1.3μm、1.55μm)。 (2)折射率分布:阶跃(SI)型光纤、近阶跃型光纤、渐变(GI)型光纤、其它(如三角型、W型、凹陷型等)。 (3)传输模式:单模光纤(含偏振保持光纤、非偏振保持光纤)、多模光纤。 (4)原材料:石英光纤、多成分玻璃光纤、塑料光纤、复合材料光纤(如塑料包层、液体纤芯等)、红外材料等。按被覆材料还可分为无机材料(碳等)、金属材料(铜、镍等)和塑料等。 (5)制造方法:预塑有汽相轴向沉积(VAD)、化学汽相沉积(CVD)等,拉丝法有管律法(Rod intube)和双坩锅法等。

光纤通信optisystem实验

光纤通信大作业 1、选择一个您认为合适的方案 供选方案:NRZ、RZ调制格式,直接调制或者外调制,APD管或者PIN管,low pass rectangular filter或者low pass gauss filter。请选择您认为实际中可实现的通信性能最好的一组方案。并给出相应的理由。 答:选择NRZ调制格式,直接调制,APD管,low pass gauss filter。选择这个方案的理由就是:为了使得整个系统得到最好的信噪比,并且保证系统误码率在可接受的范围内。具体理由分析如下: 选择NRZ调制格式,因为经NRZ调制的光信号具有紧凑的频谱特性,调制与调解结构简单,在10G与一部分40G系统中得到广泛应用,一直被作为中短距离光纤通信系统中的主要调制格式,通过色散管理与终端可调色散补偿技术,NRZ调制格式在终端传输距离普通光纤获得良好的光传输性能。 选择直接调制,因为直接强度调制就是用信号直接调制激光器的驱动电流,使其输出功率随信号变化、这种方式设备相对简单,研究较早,现已成熟并商品化、外调制则常用于要求较高的通信系统。 选择APD管,因为由书上的P264页的图8、3可知,PIN管接收灵敏度适用于低数据速率光纤通信,当系统通信数据速率为10G时,PIN灵敏度管不适于应用,我们优选ADP管。 选择low pass gauss filter(低通高斯响应滤波器),因为low pass rectangular filter(低通矩形响应滤波器)就是理想的低通滤波器的模型,在幅频特性曲线上呈现矩形。在现实中,如此理想的特性就是无法实现的,所有的设计只不过就是力图逼近矩形滤波器的特性而已。而low pass gauss filter(低通高斯响应滤波器)采用时域法测量有效带宽,具有直观、简便的优点,而采用时域法能够显著缩短有效带宽测量时间。 实验过程: 本次实验中,由NRZ调制格式、直接调制、APD管与low pass gauss filter构成的光纤通信系统。 1)、根据实验要求,连接实验电路。同时为了实时地观察系统的运行状态,必须在系统外围增加监测及显示装置,将系统运行结果显示出来,便于观察与分析。因此,在系统中加入了Eye Diagram Analyzer、BER Analyzer、Optical Time Domain Visualizer、Optical Power Meter、Optical Spectrum Analyzer、Oscilloscope Visualizer。通过这些监测及显示器件,可以较为直观地观察到入纤光功率、调制前后的光信号频谱与时域波形、解调后的信号波形、信号眼图及误码率等系统的运行状态与运行结果。整个光纤通信系统的架构如下图示: 完整的光纤通信系统

音频信号的光纤传输+实验报告

音频信号光纤传输实验 摘要: 实验通过对LED-传输光纤组件的电光特性的测量,得出了在合适的偏置电流下,其具有线性。验证了硅光电二极管可以把传输光纤出射端输出的信号转变成与之成正比的光电流。 Abstracf The experimental transmission through the LED-fiber components of the electro-optical properties Measuring obtained at the right bias current, with its linear. Verification of the silicon photodiode fiber can transmit a radio-signal output into with the current proportional to the light. 一.前言: 1.实验的历史地位: 光纤自20世纪60年代问世以来,其在远距离信息传输方面的应用得到了突飞猛进的发展,以光纤作为信息传输介质的“光纤通信”技术,是世界新技术革命的重要标志,也是未来信息社会各种信息网的主要传输工具。随着光纤通信技术的发展,一个以微电子技术,激光技术,计算机技术呵现代通信技术为基础的超高速宽带信息网将使远程教育.远程医疗.电子商务.智能居住小区越来越普及.光纤通信以其诸多优点将成为现代通信的主流,未来信息社会的一项基础技术和主要手段. 2.实验目的 了解音频信号光纤传输系统的结构 熟悉半导体电光/光电器件的基本性能及主要特性的测试方法 了解音频信号光纤传输系统的调试技能 3.待解决的几个主要问题: 声音是一种低频信号,你可能有这样的经历,当你说话的声音较低时,只有你旁边的人可以听见你的声音,要让声音传的远些你必须大声喊。这说明了低频信号的传播受周围环境的影响很大,传播的范围有限。为了解决上述的问题,在通信技术中一般是使用一个高频信号作为载波利用被传输的信号(如音频信号)对载波进行调制。当信号到达传输地点时需要对信号进行解调,也就是将高频载波滤掉,最终得到被传输的音频信号。随着通信容量的增加和信息传递速度的加快,上述传播过程的缺陷也暴露了出来,主要为以下几点: 1信号间的干扰; 2 对接手端和发射端阻抗匹配要求较高; 3 传播速度受到一定的限制。 专家们一致认为解决上述问题的关键是利用光作为信号的载体,也就是所说的光纤通信。本实验的目的就是去了解光纤传输系统的结构,以及半导体电光/光电器件的基本性能及主要特性的测试方法。 二. 实验介绍 1.实验原理

实验二十七、光波导传输损耗的测量

实验二十七、光波导传输损耗的测量 波导薄膜中导波光的传输损耗是评价介质平板波导的一个重要参数。传统的测量光波导传输损耗的方法如截断法(Cut-Off Method )和滑动棱镜法(Prism Sliding Method )在测量准确性和方便性方面均存在着较大的问题,难以获得广泛的应用。采用CCD 数字成像器件,通过数字成像对光波导内部的传输光强进行测量,可计算得到波导的传输损耗,该方法具有无损、高精度快速测量等优点。 [实验目的] 1. 了解CCD 数字成像法测量波导传输损耗的原理及实际的测量光路; 2. 掌握用于去除散粒噪声的中值滤波图像处理技术; 3. 通过传输曲线的拟合计算传输衰减系数。 [实验仪器] 1.半导体激光器(650nm )、偏振棱镜、透镜; 2.待测离子交换光波导片; 3.数字成像器件CCD 和数据采集系统。实验中使用的是自带视频信号输出的CCD 。 [预习提示] 1.光波导的损耗有哪些? 2.什么是数字滤波技术? [实验原理] 损耗机理 光波导器件传输损耗主要由以下因素产生:波导材料的散射和吸收引起的损耗;基片的表面光洁度受到抛光工艺的限制;界面的不规则导致导模与辐射模间的耦合而引起的损耗;波导表面弯曲,引起能量辐射造成损耗。 2.测量原理 真实波导由于界面不平整以及波导内部杂质散射,使导模转变为辐射模。可以认为:某一位置散射出来的光强主要受到该点的传输光强、界面不平整程度、杂质多少的影响。整块波导是在特定条件下一次性制备,后两个因素的影响可以认为在整块波导中平均分布,即使由于杂质大小有涨落而出现某点散射光特别强,也可以在后期图像处理中采用数字滤波技术加以消除。因此,散射光强将只和该处的实际传输光强成正比。据此,可以采用数字成像器件CCD 对传输线上各点的散射光强进行记录,转换成内部传输光强,拟合出传输衰减曲线并计算衰减系数。 3.图像噪声的消除 在波导传输线静态数字照片上,对传输光强分布进行研究,发现波导杂散光十分明显,如图1,杂散光相当于噪声必须消除,否则将给传输衰减系数的计算带来很大的误差。 消除数字图像噪声的方法有很多种,本文采用的是均值滤波算法。该算法相当于一个低通滤波器,图像上的每一点均被周围点的加权平均值来代替。即: R e l a t i v e I n t e n s i t y

数字信号光纤通信技术实验报告

数字信号光纤通信技术实验的报告 预习要求 通过预习应理解以下几个问题: 1.数字信号光纤传输系统的基本结构及工作过程; 2.衡量数字通信系统有那两个指标?; 3.数字通信系统中误码是怎样产生的?; 4.为什么高速传输系统总是与宽带信道对应?; 5.引起光纤中码元加宽有那些因素?; 6.本实验系统数字信号光-电/电-光转换电路的工作原理; 7.为什么在数字信号通信系统中要对被传的数据进行编码和解码?; 8.时钟提取电路的工作原理。 目的要求 1.了解数字信号光纤通信技术的基本原理 2.掌握数字信号光纤通信技术实验系统的检测及调试技术 实验原理 一、数字信号光纤通信的基本原理 数字信号光纤通信的基本原理如图8-2-1示(图中仅画出一个方向的信道)。工作的基本过程如下:语音信号经模/数转换成8位二进制数码送至信号发送电路,加上起始位(低电平)和终止位(高电平)后,在发时钟TxC的作用下以串行方式从数据发送电路输出。此时输出的数码称为数据码,其码元结构是随机的。为了克服这些随机数据码出现长0或长1码元时,使接收端数字信号的时钟信息下降给时钟提取带来的困难,在对数据码进行电/光转换之前还需按一定规则进行编码,使传送至接收端的数字信号中的长1或长0码元个数在规定数目内。由编码电路输出的信号称为线路码信号。线路码数字信号在接收端经过光/电转换后形成的数字电信号一方面送到解码电路进行解码,与此同时也被送至一个高Q值的RLC谐振选频电路进行时钟提取. RLC谐振选频电路的谐振频率设计在线路码的时钟频率处。由时钟提取电路输出的时钟信号作为收时钟RxC,其作用有两个:1.为解码电路对接收端的线路码进行解码时提供时钟信号;2.为数字信号接收电路对由解码电路输出的再生数据码进行码值判别时提供时钟信号。接收端收到的最终数字信号,经过数/模转换恢复成原来的语音信号。 图8-2-1 数字信号光纤通信系统的结构框图 在单极性不归零码的数字信号表示中,用高电平表示1码元,低电平表示0码元。码元持续时间(亦称码元宽度)与发时钟TxC的周期相同。为了增大通信系统的传输容量,就要求提高收、发时钟的频率。发时钟频率愈高码元宽度愈窄。 由于光纤信道的带宽有限,数字信号经过光纤信道传输到接收端后,其码元宽度要加宽。加宽程度由光纤信道的频率特性和传输距离决定。单模光纤频带宽,多模光纤频带窄。因为按光波导理论[1]分析:光纤是一种圆柱形介质波导,光在其中传播时实际上是一群满足麦克斯韦方程和纤芯—包层界面处边界条件的电磁波,每个这样的电磁波称为一个模式。光纤中允许存在的模式的数量与纤芯半径和数字孔径有关。纤芯半径和数字孔径愈大,光纤中参与光信号传输的模式也愈多,这种光纤称为多模光纤(芯径50或62.5μm)。多模光纤中每个模式沿光纤轴线方向的传播速度都不相同。因此,在光纤信道的输入端同时激励起多个模式时,每个模式携带的光功率到达光纤信道终点的时间也不一样,从而引起了数字信号码元的加宽。码元加

光纤音频信号传输技术实验

TKGT-1型音信号传输仪器 评 价 报 告 学院:工业制造学院 专业:测控技术与仪器 班级:2010级2班 报告人:邱兆芳 学号:201010114201

光纤音频信号传输技术实验 1.引言 随着Internet网络时代的到来,人们对数据通讯的带宽、速度的要求越来越高,光纤通讯具有频带宽、高速、不受电磁干扰影响等一系列优点,正在得到不断发展和应用。通过使用THKGT-1型光纤音频信号传输实验仪做音频信号光纤传输实验,让学生熟悉了解信号光纤传输的基本原理。同时学生可以了解光纤传输系统的基本结构及各部件选配原则,初步认识光发送器件LED的电光特性及使用方法,光检测器件光电二极管的光电特性及使用方法,基本的信号调制与解调方法,完成光纤通讯原理基本实验。 光纤即为光导纤维的简称。光纤通信是以光波为载波,以光导纤维为传输媒质的一种通信方式,由发送电端机将待传送的模拟信号转换成数字信号,再由发送光端机将电信号转换成相应的光信号,并将它送入光纤中传输至接收端。接收光端机将传来的光信号转换成相应的电信号并进行放大,然后通过接收电端机恢复成原来的模拟信号。 光纤广泛应用于各种工业控制、分布式数据采集等场合,特别适合电力系统自动化、交通控制等部门。 通过本实验的学习,在了解光导纤维的基本结构和光在其中传播规律的基础上,要建立起光导纤维的数值孔径、光纤色散、光纤损耗、集光本领等基本概念。 [实验目的] 1.学习音频信号光纤传输系统的基本结构及各部件选配原则。 2.熟悉光纤传输系统中电光/光电转换器件的基本性能。 3.训练如何在音频光纤传输系统中获得较好信号传输质量。 [实验仪器] THKGT-1型光纤音频信号传输实验仪,函数信号发生器,双踪示波器。 [实验原理] 光纤传输系统如图1所示,一般由三部分组成:光信号发送端;用于传送光信号的光纤;光信号接收端。光信号发送端的功能是将待传输的电信号经电光转换器件转换为光信号,目前,发送端电光转换器件一般采用发光二极管或半导体激光管。发光二极管的输出光功率较小,信号调制速率相对低,但价格便宜,其输出光功率与驱动电流在一定范围内基本上呈线性关系,比较适宜于短距离、低速、模拟信号的传输;激光二极管输出功率大,信号调制速率高,但价格较高,适宜于远距离、高速、数字信号的传输。光纤的功能是将发送端光信号以尽可能小的衰减和失真传送到光信号接收端,目前光纤一般采用在近红外波段0.84μm、1.31μm、1.55μm有良好透过率的多模或单模石英光纤。光信号接收端的功能是将光信号经光电转换器件还原为相应的电信号,光电转换器件一般采用半导体光电二极管或雪崩光电二极管。组成光纤传输系统光源的发光波长必须与传输光纤呈现低损耗窗口的波段、光电检测器件的峰值响应波段匹配。本实验发送端电光转换器件采用中心发光波长为0.84μm的高亮度近红外半导体发光二极管,传输光纤采用多模石英光纤,接收端光电转换器件采用峰值响应波长为0.8~0.9μm的硅光电二极管。下面对各部分作进一步介绍。

光纤传输损耗测试实验报告报告

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验1 光纤传输损耗测试 学院:工学院 专业班级:13光电 姓名:林洋 学号:1395121026 指导教师:王达成 2016 年05 月日

预 习 报 告 一、 实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、 实验仪器 20MHz 双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、 实验原理 光纤在波长λ处的衰减系数为()αλ,其含义为单位长度光纤引起的光功率衰减,单位是dB/km 。当长度为L 时, 10()()l g (/)(0) P L dB km L P αλ=- (公式1.1) ITU-T G .650、G .651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1)截断法:(破坏性测量方法) 截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率2()P λ和剪断后约2m 长度短光纤的输出功率1()P λ,按定义计算出()αλ。该方法测试精度最高。

图1.1 截断法定波长衰减测试系统装置 (2)插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条 件)由于插入被测光纤引起的功率损耗。显然,功率1P、2P的测量没有 截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图1.2示出了两种参考条件下的测试原理框图。 (a) (b) 图1.2 典型的插入损耗法测试装置

有机聚合物光波导有效折射率的测量

1 光波导薄膜厚度和折射率的测量 有效折射率是表征光波导的重要参数,知道了有效折射率,才能计算波导的传播常数,进而根据光波导的色散方程计算波导介质的厚度、介电系数等其它参数。因此,通过测量光波导的有效折射率计算波导波膜厚度和折射率对波导器件的设计具有十分重要的意义。 [实验目的] 1. 了解聚合物光波导结构,学习介质平板波导理论; 2. 掌握测量有机聚合物光波导有效折射率的方法; 3. 熟悉棱镜耦合激发导模的实验方法。 [实验原理] 1.介质平板波导理论 如图1所示的三层平板波导的TM 模色散方程可写为: ??? ? ??+???? ??+=--κκπκq n n p n n m h 232 1122211 tan tan 式中: ()2 122120βκ-=n k ()2 12 2202n k p -=β ( ) 12 3 202n k q -=β 其中β为传播常数。0k 为真空中的波矢,λπ 20=k ,λ为实验中所用激光的波长 (λ=650nm )。1n 、2n 分别为波导薄膜、衬底(空气)的的折射率,3n 为覆盖层(银膜) 的复折射率,1723-=n 。h 为薄膜厚度。导模有效折射率eff n 定义为: 0k n eff β= 因而测得了eff n ,便知道了传播常数β。对于多模波导,若知道了三个模的1-m β、m β、1+m β,便可联立当模序数为m-1、m 、m+1时的超越方程(1), ??? ?? ??? ??????? ??+???? ??++=??? ? ??+???? ??+=? ??? ??+???? ??+-=++-++-+---------112321111222111232112221111232 1111222111tan tan )1(tan tan tan tan )1(m m m m m m m m m m m m m m m q n n p n n m h q n n p n n m h q n n p n n m h κκπκκκπκκκπκ 求出波导薄膜的厚度h 和折射率1n (1) (2) (3) (4) (5) 3n 波导层n 衬底2n n k Fig.1 三层平板波导结构 (6) κ β

音频信号光纤传输技术

音频信号光纤传输技术实验 实验目的 1.熟悉半导体电光/光电器件的基本性能及主要特性的测试方法 2.了解音频信号光纤传输系统的结构及选配各主要部件的原则 3.学习分析集成运放电路的基本方法 4.训练音频信号光纤传输系统的调试技术 实验仪器 YOF—B型音频信号光纤传输技术实验仪(由四川大学物理系研制); 音频信号发生器; 示波器; 数字万用表 实验原理 一.系统的组成 图(1)给出了一个音频信号直接光强调制光纤传输系统的结构原理图,它主要包括由LED及其调制、驱动电 路组成的光信号发送器、传输光纤和由光电转换、I—V变换及功放电路组成的光信号接收器三个部分。光源器件L ED的发光中心波长必须在传输光纤呈现低损耗的0.85μm、1.3μm或1.5μm附近,本实验采用中心波长0.85μm附近的GaAs半导体发光二极管作光源、峰值响应波长为0.8~0.9μm的硅光二极管(SPD)作光电检测元件。为了避免或减少谐波失真,要求整个传输系统的频带宽度能够覆盖被传信号的频谱范围,对于语音信号,其频谱在300~3400Hz的范围内。由于光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的幅频特性。 此电路的工作原理如下: 音频信号经IC1放大电路传到LED调制电路。W2调节发光管LED工作(偏置)电流,音频电流调制此工作电流,并经LED转换成音频调制的光信号,经光纤传至光电二极管SPD 再复原成原始音频电流信号,经由IC2构成的I—V变换电路转换成电压信号,最后通过功率放大电路输出声音功率信号,推动扬声器发出声音。这样就完成了音频信号通过光纤的传输过程。 二、半导体发光二极管的驱动、调制电路

光纤损耗有哪些

光纤损耗有哪些 光纤传输相比电缆传输和无线传输而言有众多优势。光纤比电缆更轻、更小、更灵活,而且在长距离传输中,光纤比电缆的传播速度更快。然而,影响光纤传输性能的因素很多,为了确保光纤的性能更好更稳定,这些因素不容忽视。光纤的损耗就是其中之一,它已成为许多工程师在选择和使用光纤时最优先考虑的一个因素。这篇教程将为您详细介绍光纤传输中的光损耗。 光信号经光纤传输后,光的强度会逐渐减弱,与此同时,光信号也会逐渐减弱。光纤传输过程中,光信号的损失就叫做光纤损耗或者光的衰减。所谓损耗是指光纤每单位长度上的衰减,单位为dB/km。为了确保光信号安全有效的传输,就要尽可能地降低光纤的损耗。引起光纤损耗的因素主要有两个:内部因素和外部因素,亦即本征光纤损耗和非本征光纤损耗。 本征光纤损耗 本征光纤损耗是指光纤材料固有的一种损耗,引起本征光纤损耗的因素主要有两个:光的吸收和光的散射。 光的吸收是光纤传输中引起光损耗的主要原因,这是由于光纤材料和杂质对光能的吸收而引起的,因此,光的吸收损耗也被称为光纤材料吸收损耗。实际上,光的吸收是光在传播过程中以热能的形式消耗于光纤中,这是由于分子的共振和波长的掺杂不均匀引起的。完全纯净的的原子只吸收特定波长的光,但是绝对纯净的光纤材料几乎不可能生产出来,所以,光纤制造厂商选择掺杂锗这类含有纯硅的材料来优化光纤的性能。 光的散射是光纤损耗的另一个重要原因。光纤的散射损耗是指在玻璃结构中分子水平上的不规则所造成的光的散射。在光纤线路中,当发生散射时,光能量会向各个方向分散,其中一部分能量沿着线路方向继续前行,而其它方向分散的光能量则会丢失,如下图所示。因此,为了减少散射而引起的光纤损耗,必须消除光纤芯的不完善,并对光纤涂层和挤压进行严格控制。 非本征光纤损耗

光波导的理论以及制备方法介绍

光波导的理论以及制备方法介绍 摘要 由光透明介质(如石英玻璃)构成的传输光频电磁波的导行结构。光波导的传输原理是在不同折射率的介质分界面上,电磁波的全反射现象使光波局限在波导及其周围有限区域内传播。 光波导的研究条件与当前科技的飞速发展是密不可分的,随着技术的发展,新的制备方法不断产生,从而形成了各种各样的制备方法,如离子注入法、外延生长法、化学气相沉淀法、溅射法、溶胶凝胶法等。重点介绍离子注入法。 光波导简介如图所示为光波导结构 图表1光波导结构 如图中共有三层平面相层叠的光学介质,其对应折射率n0,n1,n2。其中白色曲折线表示光的传播路径形式。可以看出,这是依靠全反射原理使光线限制在一层薄薄的介质中传播,这就是光波导的基本原理。为了形成全反射,图中要求n1>n0,n2。 一般来讲,被限制的方向微米量级的尺度。 图表2光波导模型 如图2所示,选择适当的角度θ(为了有更好的选择空间,一般可以通过调整三层介质的折射率来取得合适的取值),则可以将光线限制在波导区域传播。 光波导具有的特点光波导可以用于限制光线传播光路,由于本身其尺寸在微米量级,就使得其有很多较好的特点: (1)光密度大大增强 光波导的尺寸量级是微米量级,这样就使得光斑从平方毫米尺度到平方微米尺度光密度增大104—106倍。 (2)光的衍射被限制 从前面可以看出,图示的光波导已经将光波限制在平面区域内,后面会提到稍微变动一下技

术就可以做成条形光波导了,这样就把光波限制在一维条形区域传播,这就限制了光波的衍射,有一维限制(一个方向),二维限制(两个方向)区分(注:此处“一维”与“二维”的说法并不是专业术语,仅仅指光的传播方向的空间自由度,不与此研究专业领域的说法相混同)。 (3)微型元件集成化 微米量级的尺寸集成度高,相应的成本降低 (4)某些特性最优化 非线性倍频阈值降低,波导激光阈值降低 综上所述,光波导本身的尺寸优势使得其有很好的研究前景以及广泛的应用范围。 光波导的分类一般来讲,光波导可以分为以下几个大类别: 图表3平面波导(planar) 图表4光纤(fiber)

光纤通信传输损耗及降低方法(张骥)

光纤通信传输损耗及降低方法光纤通信由于其自身的一些优点,因此得到了广泛的使用,因此,在光纤通信中产生的问题,也值得我们去认真思考并加以解决。光纤接续工作,技术复杂、工艺要求高,是对质量标准严格要求的精细工作,也是关系到光纤通信传输质量的重要工作,因此,在施工中,技术人员要充分重视光纤接续时产生的损耗,按照严格标准做好光纤的接续工作,从而降低光缆的附加损耗,提高光纤的传输质量。同时相关的技术人员在日常的施工工作中注意总结经验教训,不断的提高施工的质量,这也是提高光纤传输效果的一条有效的途径。 1、光纤通信的相关理论 光纤即为光导纤维的简称。光纤通信是以光波作为信息载体,以 光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。光纤 通信的应用在当前主要集中于各种信息的传输与控制上。以互联网的发展为例,传统互联网以电缆为传输工具,速度比较慢,随着90年 代美国信息高速公路的建设,现代互联网传输的主体为光纤。去年,我国的有线电视实现了由模拟信号向数字信号的完全转变,有线电视信号的传输也是以光纤的应用为前提的。另外,随着信息化的普及,

光纤通信基本已经深入到每个人的生活。除此之外,由于光纤通信具有保密性高、受干扰性能高的优点,其在军事与科技中的应用也十分广泛。当然光纤在实际应用中也有一些缺陷,比如玻璃的质地比较脆,比较容易折断,因此加工难度高,价格也较昂贵,要求的加工工艺与电缆相比也复杂很多。而且由于光纤通信自身存在着传输过程中的光能损耗等问题,因此,对于光纤通信要有全面的认识。 2、光纤传输损耗的种类及原因 光纤在传输中的损耗一般可分为接续损耗和非接续损耗。接续损耗包括由于光纤自身特性引起的固有损耗以及非自身因素(一般为工业加工下艺以及机械的设置)引起的的熔接损耗和活动接头的损耗。非接续损耗包括光纤自身的弯曲损耗和由于施工等因素造成的损耗,另外由于具体光纤应用环境对光纤传输带来的损耗也属于非接续损耗。除此之外,按照光纤传输过程中损耗产生的原因,可分为吸收损耗、散射损耗和其他损耗。 2.1 吸收损耗 吸收损耗是指光波通过光纤材料时,一部分光能变成热能,造成光功率的损失。光在传输过程中会与介质发生作用,由于光含有能量,因此在传输过程中必然有一部分被介质所吸收,转化为自身的热能。比如太阳以光的形式向地球传输能量,在阳光经过大气层时,由于大气层具有吸收光的作用,因此造成海拔不同的地方,空气含量发生变化,温度也随之变化。这是吸收损耗的一个最典型的例子。

光纤传输基础知识

光纤传输基础知识 光纤通信的优点 ●通信容量大 ●中继距离长 ●不受电磁干扰 ●资源丰富 ●光纤重量轻、体积小 光通信发展简史 2000多年前 烽火台——灯光、旗语 1880年 光电话——无线光通信 1970年 光纤通信 ●1966年―光纤之父‖高锟博士首次提出光纤通信的想法。 ●1970年贝尔研究所林严雄在室温下可连续工作的半导体激光器。 ●1970年康宁公司的卡普隆(Kapron)作出损耗为20dB/km光纤。 ●1977年芝加哥第一条45Mb/s的商用线路。 电磁波谱

通信波段划分及相应传输媒介

光的折射/反射和全反射 因光在不同物质中的传播速度是不同的,所以光从一种物质射向另一种物质时,在两种物质的交界面处会产生折射和反射。而且,折射光的角度会随入射光的角度变化而变化。当入射光的角度达到或超过某一角度时,折射光会消失,入射光全部被反射回来,这就是光的全反射。不同的物质对相同波长光的折射角度是不同的(即不同的物质有不同的光折射率),相同的物质对不同波长光的折射角度也是不同。光纤通讯就是基于以上原理而形成的。 反射率分布:表征光学材料的一个重要参数是折射率,用N表示,真空中的光速C与材料中光速V 之比就是材料的折射率。 N=C/V 光纤通信用的石英玻璃的折射率约为1.5 光通信的发展过程 光的基本知识

光纤结构 光纤裸纤一般分为三层: 第一层:中心高折射率玻璃芯(芯径一般为9-10μm,(单模)50或62.5(多模)。第二层:中间为低折射率硅玻璃包层(直径一般为125μm)。 第三层:最外是加强用的树脂涂层。

1)纤芯core:折射率较高,用来传送光; 2)包层coating:折射率较低,与纤芯一起形成全反射条件; 3)保护套jacket:强度大,能承受较大冲击,保护光纤。 3mm光缆橘色MM多模 黄色SM单模 光纤的尺寸 外径一般为125um(一根头发平均100um) 内径:单模9um 多模50/62.5um 数值孔径 入射到光纤端面的光并不能全部被光纤所传输,只是在某个角度范围内的入射光才可以。这个角度就称为光纤的数值孔径。光纤的数值孔径大些对于光纤的对接是有利的。不同厂家生产的光纤的数值孔径不同

光缆的基本知识及常识

光缆的基本知识及常识

光缆小常识 光缆基本知识介绍 一、光纤的组成与分类 1、光纤按其制造材料的不同可分为石英光纤和塑料光纤,石英光纤即通常使用的光纤,石英光纤按其传输模式的不同分为单模光纤和多模光纤。塑料光纤全部由塑料组成,通常为多模短距离应用,还处于起步阶段,未有大规模应用。 2、石英光纤的结构:石英光纤由纤芯、包层及涂覆层组成,其结构如图: 光纤中光的传输在纤芯中进行,因包层与纤芯石英的折射率不同,使光在纤芯与包层表面产生全反射,使光始终在纤芯中传输,而塑料涂覆层起保护石英光纤及增加光纤强度的作用,因石英很脆,若没有塑料的保护则无法在实际中得到应用,正因为光纤的结构如此,所以光纤易折断,但有一定的抗拉力。 3、石英光纤的分类 单模光纤 G.652A(B1.1简称B1) G.652B(B1.1简称B1) G.652C(B1.3) G.652D(B1.3) G.655A光纤(B4)(长途干线使用) G.655B光纤(B4)(长途干线使用) 多模光纤 50/125(A1a简称A1) 62.5/125(A1b) 二、光缆的结构 1、室外光缆主要有中心管式光缆、层绞式光缆及骨架式光缆三种结构,按使用光纤束与光纤带又可分为普通光缆与光纤带光缆等6种型式。每种光缆的结构特点: ①中心管式光缆(执行标准:YD/T769-2003):光缆中心为松套管,加强构件位于松套管周围的光缆结构型式,如常见的GYXTW型光缆及GYXTW53型光缆,光缆芯数较小,通常为12芯以下。 ②层绞式光缆(执行标准:YD/T901-2001):加强构件位于光缆的中心,5~12根松套管以绞合的方式绞合在中芯加强件上,绞合通常为SZ绞合。此类光缆如GYTS等,通过对松套管的组合可以得到较大芯数的光缆。绞合层松套管的分色通常采用红、绿领示色谱来分色,用以区分不同的松套管及不同的光纤。层绞式光缆芯数可较大,目前层绞式光缆芯数可达216芯或更高。松套层绞式普通光缆 (GYTA - GYTS - GYTA53 - GYTY53 - GYTA33 - GYTA(Y)533) ③骨架式光缆:加强构件位于光缆中心,在加强构件上由塑料组成的骨架槽,光纤或光纤带位于骨架槽中,光纤或光纤带不易受压,光缆具有良好的抗压扁性能。该种结构光缆在国内较少见,所占的比例较小。 ④ 8字型自承式结构,该种结构光缆可以并入中心管式与层绞式光缆中,把它单独列出主要是因为该光缆结构与其它光缆有较大的不同。通常有中心管式与层绞式8字型自承式光缆。 5 煤矿用阻燃光缆(执行标准:Q/M01-2004 企业标准):与普通光缆相比,提高了光缆阻燃性能的要求,并经过特殊的设计使光缆适用于矿井环境下使用,

相关文档
最新文档