线性代数教案 第二章 矩阵及其运算

合集下载

线性代数 2-2 第2章2讲-矩阵的运算(1)

线性代数 2-2 第2章2讲-矩阵的运算(1)

1
3 0
2 4
1
3 0
13
0
51,BA
1 2 4
1
3 0
1 2
0 1
1
3 0
8 4
1 3 0
3 6 . 12
注 当AB不是方阵时,AB 、BA 不是同型矩阵.
10
二、线性变换与矩阵乘法(1)
例2
求矩阵
A
1 1
11,B
2
2
11,C
2 1
33,D
1 2
11,
计算 AB 、BA、AC、AD.
线性代数(慕课版)
第二章 矩阵
第二讲 矩阵的运算(1)
主讲教师 |
本讲内容
01 矩阵的线性运算 02 线性变换与矩阵乘法(1)
一、矩阵的线性运算
定义2.2—矩阵的相等
设A (aij )mn , B (bij )mn 是两个同型矩阵, 规定A B aij bij , (i 1, 2,, m, j 1, 2,, n). 即完全一样的两个矩阵才相等.
bmn
即将两个矩阵的对应元素相加.
4
一、矩阵的线性运算 注 只有两个矩阵同型才能进行加法运算.
负矩阵 记 A (aij ,) 称 A为A 的负矩阵. 矩阵的减法 A B A (B)
性质2.1—矩阵加法运算规律
(1) 交换律 (2) 结合律
A B B A; (A B) C A (B C).
(3) ( A B) A B; (4) A n A
6
本讲内容
01 矩阵的线性运算 02 线性变换与矩阵乘法(1)
二、线性变换与矩阵乘法(1)
设变量x1 、x2与变量y1 、y2 、y3 关系

线性代数第2章矩阵

线性代数第2章矩阵

1 0
0 1
+ 00
2n
0
=
1 0
2n
1
.
2.2.12 转置矩阵
将 m n 矩阵
a11 a12
A
a21
a22
am1 a m2
a1n
a2n
amn
的行、列互换得到的矩阵,称为A的转置矩阵, 记为A T,即
a11 a21 AT a12 a22
am1
am
2
a1n a 2n
amn
其中 AT的第i行第j列的元素等于A的第j行第i列的
det
A
21
22
2n
a a a
n1
n2
nn
为方阵A的行列式,记为det A。
方阵行列式定理
定理1 设A、B是任意两个n阶方阵,则
det (AB) = det A det B。
这个定理告诉我们: 1. 两个同阶方阵相乘的行列式等于这两个方 阵的行列式相乘; 2. 两个同阶行列式相乘也可以先求相应的乘 积矩阵,然后求这个乘积矩阵的行列式。 一般地: (1) det (A+B)≠det A + det B (2) det( kA)≠k det A,若A为n阶方阵, 则有 det( kA) = k n det A。
例如 设
A
=
1 1
1 1 ,
B
=
1 1
1
1
,

1 1 1 1 0 0
AB = 1
1 1
1
=
0
0 .
称矩阵A是B的左零因子,矩阵B是A的右零因 子。
2.2.11 矩阵A的m次幂
设A为n阶方阵,m为正整数,则

第二章 矩阵及其运算

第二章 矩阵及其运算

a11 b11 a12 b12 a1n b1n a 22 b22 a 2 n b2 n a b 21 21 a b a s 2 bs 2 a sn bsn s1 s1
称为 A 和 B 的和,记为
C A B.
批注
表示出来。
§2 矩阵的运算
矩阵的意义不仅在于把一些数据根据一定的顺序排列成 阵列形式, 而且还在于对它定义了一些有理论意义和实际意义 的运算,使它真正成为有用的工具。 一、矩阵的加法 1、定义 定义 设
A aij sn

a11 a 21 a s1 b11 b21 bs1
定义:设 A a ij

m s
是 m s 矩阵, B bij

s n
是 s n 矩阵,则定
义一个新的 m n 矩阵 C :
C cij mn
s
其中
cij ai1b1 j ai 2 b2 j aik bkj ail blj aik bkj
批注
(2) 结合律 (A) (A) ( ) A (3) 分配律 ( A B) A B
A A
(4) 若 A 为 n 阶矩阵,则有 A n A 此外,还容易得到:
0 A 0,
A (1) A
矩阵相加与数乘矩阵合起来统称为矩阵的线性运算。 例
矩阵的乘法;方阵的行列式;伴随矩阵; 逆矩阵的概念;求逆方法; 分块求逆方法。
矩阵乘法不满足交律以及由此的问题;矩阵可逆性的讨论;分块求逆 方法
讲授 习题课 答疑
教 学 内 容
第二章 矩阵及其运算
矩阵是将一组有序的数据视为 “整体量” 进行表述和运算, 使得问题简洁和易于了解本质。 矩阵不仅是解线性方程组的有 力工具, 而且是线性空间内线性变换的表现形式, 因此有关矩 阵的理论构成了线性代数的基本内容。 本章介绍矩阵的概念;矩阵的线性运算、矩阵乘法;逆矩 阵及矩阵的初等变换;分块矩阵及其运算等内容。 §1 矩阵 1、矩阵的概念

线性代数第二章矩阵及其运算2-3PPT课件

线性代数第二章矩阵及其运算2-3PPT课件
例如,设实数k=2,矩阵A=[1 2; 3 4],则kA=[2 4; 6 8]。
CHAPTER 02
矩阵的乘法
矩阵乘法的定义
01
矩阵乘法是将两个矩阵对应位置的元素相乘,得到一个新的矩 阵。
02
矩阵乘法的结果是一个矩阵,其行数等于左矩阵的行数,列数
等于右矩阵的列数。
矩阵乘法的操作顺序是先进行行操作,再进行列操作。
CHAPTER 05
矩阵的秩
秩的定义
秩的定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
秩的Байду номын сангаас质
矩阵的秩是唯一的,且其值满足 特定的性质,如对于任何矩阵A, r(A)≤min(m,n),其中m和n分别 为矩阵A的行数和列数。
秩的计算方法
可以通过多种方法计算矩阵的秩, 如高斯消元法、行变换法、初等 行变换法等。
线性代数第二章矩阵及 其运算2-3ppt课件
CONTENTS 目录
• 矩阵的加法与数乘 • 矩阵的乘法 • 逆矩阵与伴随矩阵 • 矩阵的行列式 • 矩阵的秩 • 矩阵的应用
CHAPTER 01
矩阵的加法与数乘
矩阵的加法
矩阵加法定义
两个矩阵A和B的和记作A+B,定义 为满足以下条件的矩阵C,即C的元 素Cij=Aij+Bij(i,j=1,2,…,n)。
03
矩阵乘法的性质
1 2
结合律
$(AB)C=A(BC)$,即矩阵乘法满足结合律。
分配律
$A(B+C)=AB+AC$,即矩阵乘法满足分配律。
3
单位元
存在一个单位矩阵,使得任意矩阵与单位矩阵相 乘都等于原矩阵。

11、第二章 矩阵及其运算

11、第二章  矩阵及其运算

1 p1 2 p2
npn
a11 a21
a12 a22
a1n a2n
am1
am1
amn
n行数等于列数 n共有n2个元素
n行数不等于列数 n共有m×n个元素 n本质上就是一个数表
det(aij )
(aij )mn
三、特殊的矩阵
1. 行数与列数都等于 n 的矩阵,称为 n 阶方阵.可记作 An .
说明:只有当两个矩阵是同型矩阵时,才能进行加法运算.
知识点比较
a11 a12 a13 a11 b12 a13 a11 a12 b12 a13 a21 a22 a23 a21 b22 a23 a21 a22 b22 a23 a31 a32 a33 a31 b32 a33 a31 a32 b32 a33
b11
b21
b31 b41
b12 b11
b22
b21
b32 b42
b31 b41
b122 b222
b322 b422
其中bi 1 表示第 i 种货物的单价, bi 2 表示第 i 种货物的单件重量.
二、数与矩阵相乘
定义:数 与矩阵 A 的乘积记作 A 或 A ,规定为
A
A
a11
a21
a12 a22
a1n a2n
am1
am1
amn
数乘矩阵的运算规律
a, b, c R 结 合 (ab)c a(bc) 律 分 (a b) c ac bc 配 律 c (a b) ca cb
设 A、B是同型矩阵, , m 是数 (m) A (m A)
则称矩阵 A 与 B 相等,记作 A = B .
0 0 0 0
例如
0

线性代数第2章矩阵PPT课件

线性代数第2章矩阵PPT课件
线性代数第2章矩阵ppt 课件
目录 CONTENT
• 矩阵的定义与性质 • 矩阵的逆与行列式 • 矩阵的秩与线性方程组 • 矩阵的特征值与特征向量 • 矩阵的对角化与相似变换
01
矩阵的定义与性质
矩阵的基本概念
矩阵是一个由数字组 成的矩形阵列,行数 和列数可以不同。
矩阵的维度是指行数 和列数的数量。
矩阵的元素通常用方 括号括起来,并用逗 号分隔。
矩阵的运算规则
01
02
03
加法
两个矩阵的加法是将对应 位置的元素相加。
数乘
一个数乘以一个矩阵是将 该数乘以矩阵的每个元素。
乘法
两个矩阵的乘法只有在第 一个矩阵的列数等于第二 个矩阵的行数时才能进行。
特殊类型的矩阵
对角矩阵
对角线上的元素非零,其他元素为零的矩阵。
行列式的递推公式法
递推公式法是一种常用的计算行列式 的方法,它通过递推关系式将n阶行 列式转化为低阶行列式进行计算。这 种方法在计算较大行列式时非常有效。
03
矩阵的秩与线性方程组
矩阵的秩
矩阵的秩定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
矩阵的秩的性质
矩阵的秩是唯一的,且满足行秩 等于列秩。矩阵的秩等于其任何 子矩阵的秩。
02
特征值和特征向量与矩阵的乘法 运算有关,即如果Ax=λx,那么 (kA)x=(kλ)x,其中k是任意常数。
03
特征值和特征向量与矩阵的转置 运算有关,即如果Ax=λx,那么 A^Tx=(λ^T)x。
特征值与特征向量的计算方法
定义法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特
征值和特征向量。

《线性代数及其应用》第二章 矩阵代数

若矩阵的行数等于列数, 则称为方阵, 或者直接称n阶矩阵.
对于方阵, 若除了对角线上的元素外, 其余元素全为零, 则
称为对角阵, 即形如:
a11 0 L 0
0
a22 L
0
L L L L
0 0 L ann
两矩阵A,B若维数相同(即有相同的行数和列数), 且对应元素 相等, 则称其相等. 并记为A = B.
1 3
,
B
1
1
0
2
,
求( AB)T .
所以
1 AB 0
2
311
1 1
0 2
0 1 5
2 2 6
( AB)T
0 2
1 2
5 6
解二
( AB)T
BT AT
1 0
21
1 1
0 1
2 3
0 2
1 2
5 6
§2.2 矩阵的逆
定义 6 设 A是n阶矩阵, 若有n 阶矩阵 B , 使 AB = BA = I, 则称 A 是可逆矩阵, 且称 B 为 A 的逆矩阵.
d
e
f
g 4a h 4b i 4c
d e f
E2 A
=
a
b
c
g h i
a b c
E3 A =
d
5g
e 5h
f
5i
观察发现: E1由对单位矩阵的第一行乘(-4)加到第三行得到. E1A的结果则恰好是对矩阵A的第一行乘(-4)加到第三行. 类似的结论对另外两个初等矩阵同样成立.
如果
A
1 3
2 4
,Bຫໍສະໝຸດ 2 31 2,
C
1 2
01,求AB AC.

线性代数第二章矩阵及其运算第二节矩阵的运算

k 1
p
则称矩阵 C 为矩阵 A 与矩阵 B 的乘积, 记作
C = AB.
注意:
只有当第一个矩阵(左矩阵)的列数等于第
二个矩阵(右矩阵)的行数时,两个矩阵才能相乘.
例 利用下列模型计算两个矩阵的乘积.
矩阵乘法模型之:A2 2 B2 2
23 2 1 -9 15 -197
矩阵乘积模型之: A2 3 B3 3
例设 例 设
A A0 0
1 1

0
0 1 , 1 ,
这一步很关键 也很巧妙!
计算 A2, A3, An (n>3). 计算 A2, A3, An (n>3).
解 设
A = E + B,
0 1 0 其中 E 为三阶单位矩阵, B 0 0 1 , 0 0 0
设 设 2 5 3 2 2 5 3 2 9 5 1 0 , B 4 5 , C 9 5 . A A 1 0 , B 4 5 , C 4 3. 4 3 3 7 3 9 3 7 3 9 (1) 问三个矩阵中哪些能进行加法运算, 并求 (1) 问三个矩阵中哪些能进行加法运算, 并求
的乘积 AB 及 BA.
解 由定义有
法模型之:A2 2 24 2 2 B2 AB
2 4
4 16 1 2 3 6 8 1 -9 15 -197 0 4 2 4 2 -4 BA 5 -13 -7 0 3 6 1 2
清 空
32 , 16 0 . 0

线性代数第二章 矩阵代数 S2矩阵的代数运算


(1) h( A) f ( A) g( A), s( A) f ( A)g( A).
(2) f ( A)g( A) g( A) f ( A).
24
4、n阶矩阵乘积的行列式
方阵对应着行列式,于是有如下定理:
定理:若 A,B是n阶方阵,则 |AB| = |A| |B|.
(此定理可以推广到有限个同阶矩阵的情况)
或 Al .
la11
lA
Al
la21
la12
la22
la1n
la2n
.
lam1 lam1 lamn
特别的,lE 称为数量矩阵.
6
2、线性运算的运算性质
矩阵的加(减)法和数乘统称为矩阵的线性 运算,这些运算都归结为数(元)的加法与乘法.
运算性质
设A, B为同型矩阵,l, m为数,则 ➢ l(A + B) = l A + l B ➢ (l + m)A = l A+ m A ➢ l (m A) = (lm) A
0 bn2
bnn
29
a11 a12 a21 a22
A 0 an1 an2 E B 1 0
0 1
a1n c11 c12
c1n
a2n
c21
Cc22
c2n
ann cn1 cn2
cnn
0 00
0
0 00
0
00
1 0 0
0
AC
E 0
再利用拉普拉斯定 理按后n行展开
E (1)[(n1)(n2) 2n](12 n) C
(2) 由AB=O不能得出A、B至少有一个零矩阵.
如前面的A, B矩阵
A 1 1 ≠O, B 1 1 ≠ O,

线性代数第二章矩阵及其运算2-3


二、逆矩阵的概念
定义 7 设 A是 n 阶方阵,若存在 n 阶方
阵B,使得 AB=BA=E (3) 则称矩阵 A 可逆,且称 B 是 A 的逆矩阵,记作 B=A-1.
如果不存在满足(3)的矩阵 B,则称矩阵
A 是不可逆的.
现在的问题是,矩阵 A 满足什么条件时可逆? 可逆方阵的逆阵是否唯一,如何求逆阵?可逆 矩阵有什么性质?这是本节要讨论的问题.
A A 2E O,
2
4 移项 得 A 1 1 分解因式 得
2 1 2
3 2 A 2E, A AB A 2 B, 求 B. 0 , AB A 2 B, 求 B. 3
A( 得 解 已知方程变形A E) 2E,
例 3 设 n 阶矩阵 A, B, A + B 均可逆, 证明
练习: 设n阶方阵A满足A2+2A-4E=0,则必有( A) A=E C) A-E可逆 B)A=-3E D) A+3E不可逆 )
解答:因为A与E是可交换的,依题意可得: A2+2A-4E=0 A2+2A-3E=E (A-E)(A+3E)=E, 根据逆矩阵的定义,(A-E)与(A+3E)互逆。故选C
伴随矩阵法.
练习: A,B均为n(n≥3)阶方阵,且AB=0,则A与B( A) 均为零矩阵 C) 至少有一个奇异阵 B) 至少有一个零矩阵 D) 均为奇异阵 )
解答:可以等式两边同取行列式 AB=0 |AB|=0 |A||B|=0,故选C
练习: A,B,C为同阶方阵,A可逆,则下列命题正确的是( A) 若AB=0,则B=0 C) 若AB=CB,则A=C 解答:可以等式两边同乘A-1 AB=0 A-1AB = A-10 EB=0,故选A B)若BA=BC,则A=C D) 若BC=0,则B=0或C=0 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
2
m m mn
a a a 矩阵。

为了表示它是一个整体,总是加一个括号将它界起来,并通常用大写字母表示它。

记做
12m m mn a a a ⎥
⎦12
m m mn a a a a ⎛⎪⎭。

切记不允许使用11
12121
22
212
n n m m mn
a a a a a a a a a =
A 。

矩阵的横向称行,纵向称列。

矩阵中的每个数称为元素,所有元素都是实数的矩阵称为实矩阵,所有元素都是复数的矩阵称为复矩阵。

本课中的矩阵除特殊说明外,都指12n n nn a a a ⎥⎦
不是方阵没有主对角线。

在方阵中,
00nn a ⎥⎦
1121
2212000n n nn a a a a a a ⎤⎥⎥⎥⎥⎦
(主对角线以上均为零)1122
00000
0nn a a
a ⎡⎤⎢⎥⎢
⎥⎥⎥⎦
(既}nn a .
对角元素为1的对角矩阵,记作E 或001⎡⎢⎥⎦
()11a ,此时矩阵退化为一个数矩阵的引进为许多实际的问题研究提供方便。

a x +)1(+⨯n 矩阵:
12
m m mn
m a b a a a b ⎥⎦
任何一个方程组都可以用这样一个矩阵来描述;反之,一个矩阵也完全刻划了一个方
1
22
m m m mn mn b a b a b ⎥
+++⎦



⎢⎣⎡-=4012B ,计算 B A +。

122
m m m mn mn b a b a b ⎥
---⎦
与矩阵n m ij a A ⨯=}{的乘积(称之为数乘),
12
m m mn a a a λλ⎥⎦
以上运算称为矩阵的线性运算,它满足下列运算法则:
n b ⎪⎭
上述几个例子显示,当有意义时,不一定有意义(例6),即便有相同的阶数,也不一定相等(例A = O 或B
a x +12
m m mn a a a ⎥⎦
为系数矩阵; m b ⎥⎦,称b 为常数项矩阵;12n x x x ⎡⎢⎢=⎥⎦
X = b 。

四、矩阵的转置 5 (转置矩阵12m m mn a a a ⎥⎦12n
n
mn a a a ⎢⎥⎣⎦
矩阵,称它为A 的转置矩阵,记作T
A 。

41-
12
n n nn ⎪⎭
A A A
)上的元素是矩阵A在位置(。

相关文档
最新文档