第二章 矩阵及其运算(1)

合集下载

矩阵及其运算

矩阵及其运算

k 1
k 1
A* A D (di j ) (| A | ji ) | A | ( ji ) | A | E 。
六、共轭矩阵
A ai j 为复矩阵,aij 为aij 的共轭复数,则称 A aij A为
显然,
的共轭矩阵。
① A B A B ,② A A ,③AB AB 。
§1 矩阵
一、矩阵的定义
称 m 行、 n 列的数表
第二章 矩阵及其运算
a11 a12
ቤተ መጻሕፍቲ ባይዱa1n
a21 a22
a2n
am1 am2
a mn
为 m n 矩阵,或简称为矩阵;表示为
a11 a12
A
a21
a22
am1 am2
a1n
a2n
amn
或简记为 A (ai j )mn , 或 A (ai j ), 或 Amn ;其中 ai j 表示 A 中第 i 行,第 j 列的元素。
a11 a12 注:第一章中行列式 D a21 a21
a1n a2n 为按行列式的运算规则所得到的一个数,而
am1 am2
amn
m n 矩阵是m n 个数的整体,不对这些数作运算。
例如,公司的统计报表,学生成绩登记表等,都可写出相应的矩阵。
设 A (ai j )mn , B (bi j )mn , 都是m n 矩阵,当
x3 b31t1 b32t2
变量 x1, x2 , x3 到变量 y1, y2 的线性变换为
y1 y2
a11x1 a12 x2 a13 x3 a21x1 a22 x2 a23 x3
那么,变量t1, t2 到变量y1, y2 的线性变换应为
y1 y2
a11 a21

第二章 矩阵及其运算

第二章  矩阵及其运算

第二章 矩阵及其运算1.教学目的和要求:(1) 使学生了解矩阵的概念,掌握矩阵的基本运算. (2) 掌握可逆矩阵的求法(3) 熟练掌握矩阵的初等变换与秩的求法 2.教学重点: (1) 矩阵的基本运算. (2) 逆矩阵的求法(3) 矩阵的初等变换与初等矩阵3.教学难点:分块矩阵的运算,矩阵的初等变换与初等矩阵.4.本章结构: 通过实例引出矩阵的概念,并介绍矩阵的基本运算,包括逆矩阵的有关性质及求法,重点介绍矩阵的初等变换,并提出初等矩阵的概念,以及两者之间的联系。

最后介绍了矩阵的秩的定义及其求法。

5.教学内容:§2.1 矩阵一、线性变换与矩阵在许多问题中,我们会遇到一些变量用另外一些变量来线性表示。

设变量m y y y ,,,21 能用变量n x x x ,,,21 线性表示,即⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=n mn m m m n n n n x a x a x a y x a x a x a y x a x a x a y 22112222121212121111 (1)其中ij a 为常数(m i ,,2,1 =;n j ,,2,1 =)。

这种从变量n x x x ,,,21 到变量my y y ,,,21 的变换称为线性变换。

线性变换(1)中的系数可以排成m 行n 列的数表:mnm m n n a a a a a a a a a212222111211而线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111的系数也可以排成这样的数表,这种数表就叫做矩阵。

定义1 由n m ⨯个数ij a (m i ,,2,1 =;n j ,,2,1 =)排成m 行n 列的数表⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A 212222111211 (2)称为m 行n 列矩阵,简称n m ⨯矩阵。

第二章课件-1矩阵及其运算 山东建筑大学

第二章课件-1矩阵及其运算 山东建筑大学

从 i 市到 j市没有单向航线
0 1 1 1
A
aij
1 0 1
0 1 0
0 0 1
0
0 0
1
4
2
3Hale Waihona Puke 4例2 n个变量 x1, x2,xn 与 m 个变量 y1, y2,, ym 之间的关系式
y1 a11x1 a12 x2 a1n xn
y2
a21x1
a22x2
a2n
(ⅱ) ( AB ) = ( A )B = A( B ), (其中为常数) ;
(ⅲ) A( B + C ) = AB + AC, (B+C)A=BA+CA.
(5) 对于单位矩阵E, 容易验证
E m Amn Amn , Amn E n Amn .
或简记为 EA = AE = A.
可见单位矩阵 E 在矩阵乘法中的作用类似于数 1.
( 注意: X T X x12 x22 xn2 是一阶方阵,也就是一个数,
而 XX T 是 n 阶方阵).
证 H T (E 2XX T )T E T 2( XX T )T E 2XX T H 所以 H 是对称矩阵. HH T H 2 ( E 2 XX T )2 E 4XX T 4( XX T )( XX T )
那么 A 称为反对称矩阵 . 反对称矩阵的特点是:其元素以主对角线为对称轴的对应元素绝对
值相等,符号相反,且主对角线上的各元素均为零。
25
例7 设列矩阵 X ( x1, x2 , xn )T 满足 XT X 1, E 为 n 阶单位矩阵,
H E 2XX T , 证明 H 是对称矩阵, 且 HH T E.
规定 矩阵 A 与 B 的乘积 是一个 m n 矩阵 C (cij )mn ,

《线性代数》第二章矩阵及其运算精选习题及解答

《线性代数》第二章矩阵及其运算精选习题及解答

An
=
⎜⎜⎝⎛
0 C
⎜⎛ 1
B 0
⎟⎟⎠⎞
,
其中
C = (n) ,
B
=
⎜ ⎜ ⎜⎜⎝
0 M 0
0 L 0 ⎟⎞
2 M 0
L L
n
0
M −
⎟ ⎟ 1⎟⎟⎠

故 C −1 = ( 1 ) , n
⎜⎛1 0 L
0 ⎟⎞
B −1
=
⎜0
⎜ ⎜⎜⎝
M 0
12 M 0
L L
1
0⎟ (nM− 1) ⎟⎟⎟⎠

根据分块矩阵的逆矩阵公式
⎜⎛ 2 ⎜0
0 4
2⎟⎞ 0⎟
⎜⎝ 4 3 2⎟⎠
例 2.12 设 X(E − B −1 A)T BT = E , 求 X . 其中
⎜⎛1 −1 0 0 ⎟⎞
⎜⎛ 2 1 3 4⎟⎞
A
=
⎜ ⎜ ⎜⎜⎝
0 0 0
1 0 0
−1 1 0
0⎟ −11⎟⎟⎟⎠ ,
B
=
⎜ ⎜ ⎜⎜⎝
0 0 0
2 0 0
1 2 0
0⎟
0 8
⎟ ⎟⎟⎠
,
求B,
使 ABA −1
=
BA −1
+ 3E

解 根据 ABA −1 = BA−1 + 3E , 得到 (A − E )BA−1 = 3E
故 A − E, A 皆是可逆的, 并且
( ) [ ] B = 3(A − E )−1 A = 3(A − E )−1 A−1 −1 = 3 (A−1 )(A − E) −1 = 3(E − A−1 )−1
第二章 矩阵及其运算

矩阵及其运算课后习题答案(最新整理)

矩阵及其运算课后习题答案(最新整理)

用数学归纳法证明:
当 k 2 时,显然成立. 假设 k 时成立,则 k 1时,
k
Ak 1
Ak
A
0
0
kk 1
k 0
k
(k 1) k 2 kk 1 k
2
0 0
1 0
0 1
k1 0 0
k 由数学归纳法原理知: Ak 0 0
kk 1
k 0
k(k 1) k2
2 kk 1
k
(k 1)k1
k 1 0
(k 1)k k1
2 (k 1)k1
k 1
9.设 A, B 为 n 阶矩阵,且 A 为对称矩阵,证明 BT AB 也是对称矩阵.
证明 已知: AT A

( ) ( ) BT AB T BT BT A T BT AT B BT AB
从而 BT AB 也是对称矩阵.
2 y3,
x3 4 y1 y2 5 y3,
y1 y2
3z1 z2 2z1 z3 ,
,
y3 z2 3z3,
求从 z1, z2 , z3 到 x1, x2 , x3 的线性变换.
解 由已知
x1 x2 x3
2 2 4
0 3 1
152
y1 y2 y2
2 2 4
0 3 1
y2 y2

y1 y2 y2
2 3 3
2 1 2
11 x1
53
x2 x3
7 6 3
4 3 2
9 7 4
y1 y2 y3
y1 y2
7x1 4x2 9x3 6x1 3x2 7x3
y3 3x1 2x2 4x3
2.已知两个线性变换
x1 x2

工程数学-线性代数第五版答案02

工程数学-线性代数第五版答案02

工程数学-线性代数第五版答案02第二章矩阵及其运算1已知线性变换某12y12y2y3某23y1y25y3某33y12y23y3求从变量某1某2某3到变量y1y2y3的线性变换解由已知某1221y1某2315y2某323y23y1221某1749y1故y2315某2637y2y323某3243y32y17某14某29某3y26某13某27某3y33某12某24某3某12y1y3某22y13y22y3某34y1y25y3y13z1z2y22z1z3y3z23z32已知两个线性变换求从z1z2z3到某1某2某3的线性变换解由已知某1201y120221某2232y223220某415y4150123613z11249z210116z30z11z23z3某16z1z23z3所以有某212z14z29z3某310z1z216z31111233设A111B124求3AB2A及ATB 111051*********解3AB2A311112421111110511110581112132230562111217202901114292111123058TAB1111240561110512904计算下列乘积4317(1)12325701解123217(2)2316 5701577202293(2)(123)213解(123)2(132231)(10) 2(3)1(12)32(1)22242解1(12)1(1)121233(1)32361310122140(4)131 11344021310126782140解131**** ****402a11a12a13某1(5)(某1某2某3)a12a22a23某2aaa132333某3解a11a12a13某1(某1某2某3)a12a22a23某2aaa132333某3某1(a11某1a12某2a13某3a12某1a22某2a23某3a13某1a23某2a33某3)某2某35设A22a11某12a22某2a33某32a12某1某22a13某1某32a23某2某312B1130问2(1)ABBA吗解ABBA因为AB344BA1362所以ABBA8(2)(AB)2A22ABB2吗解(AB)2A22ABB2因为AB但222522252(AB)2228141429538681A22ABB241181230101615274所以(AB)2A22ABB2(3)(AB)(AB)A2B2吗解(AB)(AB)A2B2因为AB而222AB0052220226(AB)(AB)250109381028A2B24113417故(AB)(AB)A2B26举反列说明下列命题是错误的(1)若A20则A0解取A00101则A20但A001则A2A但A0且AE0(2)若A2A则A0或AE解取A(3)若A某AY且A0则某Y解取1A00某11Y111001则A某AY且A0但某Y7设A解10求A2A3Ak101010A21121101A3A2A2101013110Akk1108设A01求Ak00解首先观察1010221A2022102200000023323A3A2A033200344362A4A3A0443004554103A5A4A0554005kkk1k(k1)k22kAk0kk100k用数学归纳法证明当k2时显然成立假设k时成立,则k1时,kkk1k(k1)k2102Ak1AkA0kkk1010000kk1(k1)k1(k1)kk120k1(k1)k1k100kkk1k(k1)k22Ak0kkk100k由数学归纳法原理知9设AB为n阶矩阵,且A为对称矩阵,证明BTAB也是对称矩阵证明因为ATA所以(BTAB)TBT(BTA)TBTATBBTAB从而BTAB是对称矩阵10设AB都是n阶对称矩阵,证明AB是对称矩阵的充分必要条件是ABBA证明充分性因为ATABTB且ABBA所以(AB)T(BA)TATBTAB即AB是对称矩阵必要性因为ATABTB且(AB)TAB所以AB(AB)TBTATBA11求下列矩阵的逆矩阵(1)解2252|A|1故A1存在因为51A2A11A2152A某AA211222故(2)52A11A某21|A|coinincocoin|A|10故A1存在因为解Ainco所以A11A21coinA某AAinco1222coinA11A某inco|A|121(3)342541121解A342|A|20故A1存在因为541A11A21A314201361A某AAA12223232142A13A23A3321013111所以A3A某22|A|1671a1a02(4)(a1a2an0)0ana10a2解A由对角矩阵的性质知0an1a101a12A10an12解下列矩阵方程(1) 215某4621354635462232112210832解某1211113(2)某210432111解211113210某432111(3)101113123234323302218253314某2210311011解某431201122431101121101121166101101230124010100143(4)100某001201001010120010143100解某100202201 001120010 010143100210100202202234 00112001010213利用逆矩阵解下列线性方程组11某2某23某311(1)2某12某25某323某15某2某33解方程组可表示为123某11225某22351某33某112311故某222520某351303某11从而有某20某30某某某2123(2)2某1某23某313某12某25某30解方程组可表示为111某12213某21325某031某111125故某221310某325033故有某51某20某3314设AkO(k为正整数)证明(EA)1EAA2Ak1证明因为AkO所以EAkE又因为EAk(EA)(EAA2Ak1)所以(EA)(EAA2Ak1)E由定理2推论知(EA)可逆且(EA)1EAA2Ak1证明一方面有E(EA)1(EA)另一方面由AkO有E(EA)(AA2)A2Ak1(Ak1Ak)(EAA2Ak1)(EA)故(EA)1(EA)(EAA2Ak1)(EA)两端同时右乘(EA)1就有(EA)1(EA)EAA2Ak115设方阵A满足A2A2EO证明A及A2E都可逆并求A1及(A2E)1证明由A2A2EO得A2A2E即A(AE)2E或A1(AE)E21(AE)2由定理2推论知A可逆且A1由A2A2EO得A2A6E4E即(A2E)(A3E)4E或(A2E)1(3EA)E41(3EA)4由定理2推论知(A2E)可逆且(A2E)1证明由A2A2EO得A2A2E两端同时取行列式得|A2A|2即|A||AE|2故|A|0所以A可逆而A2EA2|A2E||A2||A|20故A2E也可逆由A2A2EOA(AE)2E A1A(AE)2A1EA11(AE)2又由A2A2EO(A2E)A3(A2E)4E(A2E)(A3E)4E所以(A2E)1(A2E)(A3E)4(A2E)1(A2E)11(3EA)4116设A为3阶矩阵|A|求|(2A)15A某|21A某所以解因为A1|A||(2A)15A某||1A15|A|A1||1A15A1|222|2A1|(2)3|A1|8|A|1821617设矩阵A可逆证明其伴随阵A某也可逆且(A 某)1(A1)某证明由A11A某得A某|A|A1所以当A可逆时有|A||A某||A|n|A1||A|n10从而A某也可逆因为A某|A|A1所以(A某)1|A|1A又A1(A1)某|A|(A1)某所以|A1|(A某)1|A|1A|A|1|A|(A1)某(A1)某18设n阶矩阵A的伴随矩阵为A 某证明(1)若|A|0则|A某|0(2)|A某||A|n1证明(1)用反证法证明假设|A某|0则有A某(A某)1E由此得AAA某(A某)1|A|E(A某)1O所以A某O这与|A某|0矛盾,故当|A|0时有|A某|0(2)由于A1 1A某则AA某|A|E取行列式得到|A||A||A某||A|n若|A|0则|A某||A|n1若|A|0由(1)知|A某|0此时命题也成立因此|A某||A|n103319设A110ABA2B求B123解由ABA2E可得(A2E)BA故23303B(A2E)A110111211210120设A020且ABEA2B求B101303301231103解由ABEA2B得(AE)BA2E即(AE)B(AE)(AE)001因为|AE|01010所以(AE)可逆从而100201BAE03010221设Adiag(121)A某BA2BA8E求B解由A某BA2BA8E得(A某2E)BA8EB8(A某2E)1A18[A(A某2E)]18(AA某2A)18(|A|E2A)18(2E2A)14(EA)14[diag(212)]11,1,1)4dia(22103001000082diag(121)22已知矩阵A的伴随阵A某10且ABA1BA13E求B解由|A某||A|38得|A|2由ABA1BA13E得ABB3A B3(AE)1A3[A(EA1)]1A3(E1A某)16(2EA某)120600006000060600301614123设P1AP其中P1100610010300100求A112解由P1AP得APP1所以A11A=P11P1.|P|3 1P某14P111411131而110故0100211211142731273214101133A021*********1133111124设APP其中P10211115求(A)A8(5E6AA2)解()8(5E62)diag(1158)[diag(555)diag(6630)diag(1125)]diag(1158)diag(1200)12 diag(100)(A)P()P11P()P某|P|1111002222102000303111000121111411111125设矩阵A、B及AB都可逆证明A1B1也可逆并求其逆阵证明因为A1(AB)B1B1A1A1B1而A1(AB)B1是三个可逆矩阵的乘积所以A1(AB)B1可逆即A1B1可逆(A1B1)1[A1(AB)B1]1B(AB)1A1026计算0021001020011010030311210230032A2201AEEB1A1则1OBOOA22解设A1而1B31B231212033A1B1B2A2B21ABB11202A2B20231235221032411234303093252124043009A1EEB1A1A1B1B20所以OBOAB0OA22220 10即0021001020011010300311********003025212404300927取ABCD00验证AB|A||B|1CD|C||D0100 20224020221AB0解CD1而故01011010021010|A||B|0|C||DAB|A||B|CD|C||D 34O4328设A求|A8|及A420O22解令A1则34A22243A1OAOA282OA18O8A1故AOA8OA22888816|A8||A||A||A||A|101212540O4O0544A1A44OA202O642229设n阶矩阵A及阶矩阵B都可逆求OA(1)BOC1C2则OA解设BOC3C4OAC1C2AC3AC4EnOBOCCBCBCOE3412AC3EnC3A1AC4OC4O由此得BC1OC1OBCECB122OAOB1所以BOAOAO(2)CBD1D2则AO解设CBD3D4AD2EnOAOD1D2AD1CBDDCDBDCDBDOE 341324D1A1AD1EnDOAD2O由此得2CD1BD3OD3B1CA1CDBDEDB12441AOA11O所以1CBBCAB30求下列矩阵的逆阵52(1)00210000850032解设A522B83则521212B1825515A1232358252于是0011(2)2102122100003100850120010AA1250000233BB100582004解设A10030B3120C2141则2202200A0COA1OBB1CA1B11 124110001220011126301851241124。

线性代数(同济大学第六版)-第二章答案

线性代数(同济大学第六版)-第二章答案

线性代数(同济大学第六版)课后答案第二章 矩阵及其运算1. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.2. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故 (A +B )(A -B )≠A 2-B 2.5. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .6(1). 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 6(2). 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎪⎭⎫⎝⎛=⋅=4342343404064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅, ⎝⎛=kA kk kk k kk k k k λλλλλλ021121----)(⎪⎪⎪⎭⎫ . 用数学归纳法证明略. 7(1). 设⎪⎪⎭⎫⎝⎛-=3113A ,求50A 和51A . 解:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-=100010311331132A⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=311310311323A A⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-=100110100010103113234A A 归纳得:为奇数)(n A n n ⎪⎪⎭⎫ ⎝⎛-=-31131021,为偶数)(n E A nn 210= 因此, ,E A 255010= .⎪⎪⎭⎫⎝⎛-=3113102551A 用数学归纳法证明略. 7(2).设.,,,100421312A ab A b a T 求=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=解:T T T T T T b a b a ab ab ab ab A 99100100)(...)(===.)(⎪⎪⎪⎭⎫⎝⎛---=-=1263421842889999T ab8(1). 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵. 8(2). 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵. 必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以AB =(AB )T =B T A T =BA . 9. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i n s i n c o s A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎪⎭⎫⎝⎛---145243121;解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 10. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知: ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .11. 设J 是元素全为1的n 阶方阵. 证明E-J 是可逆矩阵,且J n E J E 111--=--)(,这里E 是与J 同阶的单位矩阵.解:因为0≠-)(J E , 所以)(J E -可逆. 由于22111111J n J J n E J n E J E -+---=---))(( 又nJ J =2因此 上式=.E nJ n J J n E =-+---1111 12. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.13. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)()(A E E A -=+-34121.14. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ;解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X ;解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111.(4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 11010100001021102341100001010--⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.15. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有⎪⎩⎪⎨⎧===001321x x x . (2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有⎪⎩⎪⎨⎧===305321x x x . 16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16.17. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫⎝⎛-=011321330.18. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .19. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1). 20. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由AA *=|A |E 可得:|A |.|A *|=|A |4.即:|A *|=|A |3=8, 得|A |=2.由ABA -1=BA -1+3E 得 AB =B +3A , B =3(A -E )-1A =3[A (E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161.21. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 22. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫ ⎝⎛=1111111114.23. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*. 证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A .又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*. 24. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到|A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1. 25. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 26. 设⎪⎪⎪⎭⎫⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫ ⎝⎛=21A O O A A , 故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A , 1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 27. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ; 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413BC OC O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A . 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nEBD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 28. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.。

《线性代数》课件-第二章 矩阵及其运算

《线性代数》课件-第二章 矩阵及其运算

a11
A
A
a21
am1
a12 a22
am1
a1n
a2n
amn
数乘矩阵的运算规律
a, b, c R 结 合 (ab)c a(bc) 律 分 (a b) c ac bc 配 律 c (a b) ca cb
设 A、B是同型矩阵, , m 是数 (m)A (m A)
a11
a12
a13
a14
4
c11 a1kbk1
b11
b21
b31
b41
k 1
4
c12 a11b12 a12b22 a13b32 a14b42 a1k bk 2 k 1
一般地,
4
cij ai1b1 j ai 2b2 j ai 3b3 j ai4b4 j aikbkj k 1
行列式
矩阵
a11 a12
a1n
a21 a22
a2n
an1 an2
ann
(1) a a t( p1 p2 pn ) 1 p1 2 p2
p1 p2 pn
行数等于列数
共有n2个元素
a11 a12
a21
a22
am1 am1
anpn
a1n
a2n
amn
行数不等于列数 共有m×n个元素 本质上就是一个数表
第二章 矩阵及其运算
§1 矩阵
一、矩阵概念的引入 二、矩阵的定义 三、特殊的矩阵 四、矩阵与线性变换
B
一、矩阵概念的引入
例 某航空公司在 A、B、C、D 四座 A
城市之间开辟了若干航线,四座城市 之间的航班图如图所示,箭头从始发 地指向目的地.
城市间的航班图情况常用表格来表示:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注意:只有两个矩阵阶数相同时才能相加. 例1 设
1 2 3 1 0 2 A , B , 4 5 6 1 3 0
2 2 5 则 A B 3 8 6
元素全为零的矩阵称为零矩阵, 记为0. 注意:阶数不同 的零矩阵是不同的. 设A=(aij)m×n, 称矩阵(aij)m×n为A的负矩阵, 记 A. 定义两个矩阵的减法为: BA=B+( A). 矩阵加法满足下列运算规律(设A、B、C是同阶矩阵): (ⅰ)交换律:A+B=B+A
aij=bij (i=1,2,…,m,j=1,2,…,n), 则称矩阵A与B相等, 记为
A=B. 两个矩阵相等, 是指两个矩阵完全一样, 即阶数相同 而且对应的元素完全相等.
二、加法 设A=(aij)m×n, B=(bij)m×n, 则矩阵C=(cij)m×n (其中cij =aij+bij , i=1,2,…,m, j=1,2,…,n) 称为A与B的和记作A+B.
n
... c1 p ... c2 p ... ... ... cmp
其中
cij ai1b1 j ai 2b2 j ... ainbnj aik bkj
k 1
注意: 矩阵A, B能够乘积的条件是矩阵A的列数等于矩阵B 的行数, 且乘积矩阵与A,2,3; j=1,2,3,4).
容易知道, X厂关于材料费, 劳动力及管理费的一月份
总成本为: 材料费: 1 2000 2 1500 11800 2 2200 11200元) ( 劳动力成本: 3 2000 2 1500 2 1800 1 2200 14800(元)
其中矩阵B的第i行, 第j列元素表示第j个工厂二月份生 产第i个产品的数量(i=1,2,3,4; j=1,2,3).
则, 前两个月公司的总产量可表示为
3800 3100 C A B 3800 4600 5600 4600 3400 3200 3000 4800 3800 3000
称为m行n列矩阵,简称m×n矩阵,记为:
a11 a 21 A ... a m1 a12 a 22 ... am 2 ... a1n ... a 2 n ... ... ... a mn
组成矩阵的这m×n个数称为矩阵A的元素, aij称为矩阵A的
其中矩阵C的第i行, 第j列元素表示第j个工厂前二个月
生产第i个产品的数量(i=1,2,3,4; j=1,2,3).
如果公司每个月的产量都和一月份产量相同,则公司 半年的产量可用矩阵表示为
12000 9000 D 6A 10800 13200 18000 14400 9600 10800 9600 13200 12000 8400
a11 a21 ... am1 a12 a22 ... am 2 ... a1n b11 b12 b ... a2 n 21 b22 ... ... ... ... ... amn bn1 bn 2 ... b1 p c11 c12 ... b2 p c21 c22 ... ... ... ... ... bnp cm1 cm 2
数乘矩阵满足下列运算规律(设A、B是同阶矩阵)
(ⅰ)1A= A
( ⅱ )结合律:(kl)A=k(l A) ( ⅲ )数的分配律: (k+l) A=kA+lA ( ⅳ )矩阵的分配律: k(A+B)=kA+kB.
例如, 前面提到公司一月份的产量矩阵可表示成:
2000 1500 A 1800 2200 3000 2400 1600 1800 1600 2200 2000 1400
管理费: 2 2000 11500 2 1800 2 2200 13500元) ( 于是可得, 三个工厂一月份关于材料费, 劳动力成本,管
理费的总成本可用下述矩阵表示
11200 14800 13500 Q 13000 18800 15200 10800 14600 12200
2000 1500 上面的产量表可以用矩阵表示为 A 1800 2200
3000 2400 1600 1800
1600 2200 2000 1400
其中矩阵A的第i行, 第j列元素表示第j个工厂一月份生 产第i个产品的数量(i=1,2,3,4; j=1,2,3).
第二章


§1 矩阵的概念及其基本运算 矩阵是线性代数中一个重要的数学概念,在线性代数 定义2.1 由m×n个数aij (i=1,2,…,m,j=1,2,…,n)组成 中起着极其重要的作用,本章将引进矩阵的概念,并讨论
的m行n列的数表 矩阵的基本运算、逆矩阵、分块矩阵以及初等变换和初等
a11 a12 ... a1n 矩阵。重点是逆矩阵的计算和矩阵方程的求解以及初等变 a21 a22 ... a2 n 换和初等矩阵之间的关系。 ... ... ... ... a m1 am 2 ... amn
例如, 前例中的成本矩阵
11200 14800 13500 Q 13000 18800 15200 10800 14600 12200
就是单位成本矩阵
1 2 1 2 P 3 2 2 1 2 1 2 2
2000 1500 A 1800 2200 3000 2400 1600 1800 1600 2200 2000 1400
a11 a21 A ... am1 a12 a22 ... am 2 ... a1n ... a2 n ... ... ... amn a11 T a12 A ... a1n a21 ... am1 a22 ... am 2 ... ... ... a2 n ... amn
其中矩阵A的第i行, 第j列元素表示第j个工厂一月份生 产第i个产品的数量(i=1,2,3,4; j=1,2,3). 类似地, 如果将该公司二月份产量表示成矩阵
1800 1600 B 2000 2400 2600 2200 1800 1400 1400 2600 1800 1600

12 24 AB 12 6
0 0 BA 0 0
由例题可见,即使AB与BA都是2阶方阵, 但它们还是 可以不相等。所以,在一般情况下AB≠BA。 另外,虽然 A≠O,B≠O,但是BA=O。从而,由AB=O,不能推出 A和B中有一个是零矩阵的结论。而若A≠O,由AX=AY 也不能得到X=Y的结论。
组成矩阵的这m×n个数称为矩阵A的元素, aij称为矩阵A的
第i行第j列元素, 矩阵A也简记为(aij)或(aij) m×n或A m×n 。
元素是实数的矩阵称为实矩阵, 元素为复数的矩阵称
为复矩阵,本课除特殊说明外都讨论实矩阵。
下面介绍矩阵的基本关系及运算 一、相等 设有两个矩阵A=(aij)m×n, B=(bij)s×t, 如果m=s, n=t,
矩阵的乘法满足下列运算规律(设运算都是可行的): (ⅰ)结合律:(AB)C= A(BC) ; ( ⅱ )分配律:A(B+C)= AB+AC ;
(B+C)A= BA+CA;
( ⅲ )数的结合律:k(AB)=(kA)B=A( kB);
五 矩阵的转置
设矩阵A=(aij)m×n, 则矩阵B=(bij)n×m(其中bij =aji , i=1,2,…,n, j=1,2,…,m) 称为A的转置, 记作B=AT,或A, 即
与产量矩阵
的乘积, 即: Q=PA.
例2 设
1 2 3 A , 4 5 6
求AB. 解
1 0 1 B 0 1 2 3 1 0
1 0 2 1 3 1) 1 (1) 22223300 11 2 0 3 3 1 0 2 1 3 ((1) 11((1)2230 1) AB 0 4 1 5 0 6 3 4 0 5 1 6 (1) 4 (1) 5 2 6 10 1 3 22 1 6
(ⅱ) 结合律: (A+B)+C=A+(B+C)
(ⅲ) A+0=A (ⅳ) A+( A)=0
三、数乘法 设k为数, A=(aij)m×n为矩阵, 则矩阵(kaij)m×n 称为k与 A的乘积记作kA或Ak. 即
ka11 ka21 kA Ak ... kam1 ka12 ka22 ... kam 2 ... ka1n ... ka2 n ... ... ... kamn

a11 b11 a 21 b21 AB ... a b m1 m1 a12 b12 a 22 b22 ... a m 2 bm 2 ... a1n b1n ... a 2 n b2 n ... ... ... a mn bmn
如果生产四种产品P, Q, R, S每种产品的材料、劳动力
及管理费的单位成本为(单位:元):
成本 P
材料费 劳动力成本 1 3
产 Q
2 2
品 R
1 2
S
2 1
管理费
2
1
2
2
可以用矩阵表示为
1 2 1 2 P 3 2 2 1 2 1 2 2
其中矩阵P的第i行, 第j列元素表示生产第j种单件产品的
其中矩阵Q的第i行, 第j列元素表示第j个工厂一月份第i 项总成本费用. (i, j=1,2,3).
四、乘法 设矩阵A=(aij)m×n, B=(bij)n×p, 则矩阵C=(cij)m×p (其 中cij =aikbkj , i=1,2,…,m, j=1,2,…,p) 称为A与B的乘积, 记作C=AB. 即
相关文档
最新文档