概率论与数理统计第7章:参数估计
概率论与数理统计第七章-1矩估计法和极大似然估计法

μ1 h1 (θ1 , θ2 , μ j h j (θ1 , θ2 , μk hk (θ1 , θ2 ,
, θk ) , θk ) , θk )
, μk ) , μk ) , μk )
数理统计
从这 k 个方程中解出
θ1 g1 ( μ1 , μ2 , θ j g j ( μ1 , μ2 , θk gk ( μ1 , μ2 ,
数理统计
定义 用样本原点矩估计相应的总体原点矩 ,
用样本原点矩的连续函数估计相应的总体原点矩的 连续函数, 这种参数点估计法称为矩估计法 . 矩估计法的具体做法如下 设总体的分布函数中含有k个未知参数 θ1 , θ2 , 那么它的前k阶矩 μ1 , μ2 ,
, θk ,
, μk , 一般
l xi P{ X xi ;1 , 2 , , k } l E ( X l ) l 1 hl (1 , 2 , , k ) x l p ( x; , , , )dx 1 2 k
2 1
b μ1 3( μ2 μ12 )
于是 a , b 的矩估计量为
总体矩
a A1 3( A2 A12 ) 3 n 2 X ( X X ) , i n i 1
3 n 2 b X ( X X ) n i 1 i
样本矩
数理统计
例2 设总体 X 的均值 μ和方差 σ 2 ( 0) 都存
数理统计
点估计问题的一般提法 设总体 X 的分布函数 F ( x; )的形式为已
知, 是待估参数 . X 1 , X 2 ,, X n 是 X 的一个样 本, x1 , x2 ,, xn 为相应的一个样本值 .
概率论与数理统计复习笔记

概率论与数理统计复习第一章概率论的基本概念一.基本概念随机试验E:1可以在相同的条件下重复地进行;2每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;3进行一次试验之前不能确定哪一个结果会出现.样本空间S: E的所有可能结果组成的集合. 样本点基本事件:E的每个结果.随机事件事件:样本空间S的子集.必然事件S:每次试验中一定发生的事件. 不可能事件:每次试验中一定不会发生的事件.二. 事件间的关系和运算事件B包含事件A 事件A发生必然导致事件B发生.∪B和事件事件A与B至少有一个发生.3. A∩B=AB积事件事件A与B同时发生.4. A-B 差事件事件A 发生而B 不发生.5. AB= A 与B 互不相容或互斥事件A 与B 不能同时发生.6. AB=且A ∪B=S A 与B 互为逆事件或对立事件表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德摩根律 B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为PA,称为事件A 的概率.1非负性 PA ≥0 ; 2归一性或规范性 PS=1 ;3可列可加性 对于两两互不相容的事件A 1,A 2,…A i A j =φ, i ≠j, i,j=1,2,…,PA 1∪A 2∪…=P A 1+PA 2+…2.性质1 P = 0 , 注意: A 为不可能事件2有限可加性对于n个两两互不相容的事件A1,A2,…,An,PA1∪A2∪…∪An=PA1+PA2+…+PAn有限可加性与可列可加性合称加法定理3若A B, 则PA≤PB, PB-A=PB-PA .4对于任一事件A, PA≤1, PA=1-PA .5广义加法定理对于任意二事件A,B ,PA∪B=PA+PB-PAB .对于任意n个事件A1,A2,…,An…+-1n-1PA1A2…An四.等可能古典概型1.定义如果试验E满足:1样本空间的元素只有有限个,即S={e1,e2,…,en};2每一个基本事件的概率相等,即Pe1=Pe2=…= Pen.则称试验E所对应的概率模型为等可能古典概型.2.计算公式 PA=k / n 其中k是A中包含的基本事件数, n是S中包含的基本事件总数.五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率PB|A=PAB / PA PA>0.2.乘法定理 PAB=PA P B|A PA>0; PAB=PB P A|B PB>0.PA 1A 2…A n =PA 1PA 2|A 1PA 3|A 1A 2…PA n |A 1A 2…A n-1 n ≥2, PA 1A 2…A n-1 > 03. B 1,B 2,…,B n 是样本空间S 的一个划分B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S ,则当PB i >0时,有全概率公式 PA=()()i ni i B A P B P ∑=1当PA>0, PB i>0时,有贝叶斯公式P B i|A=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足PAB = PA PB 时,称A,B 为相互独立的事件.1两个事件A,B 相互独立 PB= P B|A .2若A 与B,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足PAB =PA PB, PAC= PA PC, PBC= PB PC,称A,B,C 三事件两两相互独立. 若再满足PABC =PA PB PC,则称A,B,C 三事件相互独立.个事件A 1,A 2,…,A n ,如果对任意k 1<k ≤n,任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X e 称为随机变量.2.随机变量X 的分布函数Fx=P{X ≤x} , x 是任意实数. 其性质为:10≤Fx≤1 ,F -∞=0,F∞=1. 2Fx 单调不减,即若x 1<x 2 ,则 Fx 1≤Fx 2.3Fx 右连续,即Fx+0=Fx. 4P{x 1<X≤x 2}=Fx 2-Fx 1.二.离散型随机变量 只能取有限个或可列无限多个值的随机变量1.离散型随机变量的分布律 P{X= x k }= p k k=1,2,… 也可以列表表示. 其性质为:1非负性 0≤P k ≤1 ; 2归一性11=∑∞=k k p .2.离散型随机变量的分布函数 Fx=∑≤xX k k P 为阶梯函数,它在x=x kk=1,2,…处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布1X~0-1分布 P{X=1}= p ,P{X=0}=1–p 0<p<1 .2X~bn,p 参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1k=0,1,2,…,n 0<p<1 3X~参数为的泊松分布 P{X=k}=λλ-e k k !k=0,1,2,… >0 三.连续型随机变量1.定义 如果随机变量X 的分布函数Fx 可以表示成某一非负函数fx 的积分Fx=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f x 称为X 的概率密度函数.2.概率密度的性质1非负性 fx ≥0 ; 2归一性 ⎰∞∞-dx x f )(=1 ;3 P{x 1<X ≤x 2}=⎰21)(xx dx x f ; 4若f x 在点x 处连续,则f x=F/x .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布1X ~U a,b 区间a,b 上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . 2X 服从参数为的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 >0.3X~N ,2参数为,的正态分布222)(21)(σμσπ--=x e x f -<x<, >0.特别, =0, 2=1时,称X 服从标准正态分布,记为X~N 0,1,其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, -x=1-Φx .若X ~N ,2, 则Z=σμ-X ~N 0,1, P{x 1<X ≤x 2}=Φσμ-2x-Φσμ-1x .若P{Z>z }= P{Z<-z }= P{|Z|>z /2}= ,则点z ,-z , z / 2分别称为标准正态分布的上,下,双侧分位点. 注意:z =1- , z 1- = -z .四.随机变量X 的函数Y= g X 的分布1.离散型随机变量的函数若gx k k=1,2,…的值全不相等,则由上表立得Y=gX 的分布律.若gx k k=1,2,…的值有相等的,则应将相等的值的概率相加,才能得到Y=gX 的分布律.2.连续型随机变量的函数若X 的概率密度为f X x,则求其函数Y=gX 的概率密度f Y y 常用两种方法:1分布函数法 先求Y 的分布函数F Y y=P{Y ≤y}=P{gX ≤y}=()()dx x f ky Xk∑⎰∆其中Δk y 是与gX ≤y 对应的X 的可能值x 所在的区间可能不只一个,然后对y 求导即得f Y y=F Y/y .2公式法 若gx 处处可导,且恒有g /x>0 或g / x<0 ,则Y=g X 是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=yhyhfyf XY其它βα<<y其中hy是gx的反函数 , = min g -,g = max g -,g .如果f x在有限区间a,b以外等于零,则 = min g a,g b = max g a,g b .第三章二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义若X和Y是定义在样本空间S上的两个随机变量,则由它们所组成的向量X,Y称为二维随机向量或二维随机变量.对任意实数x,y,二元函数Fx,y=P{X≤x,Y≤y}称为X,Y的X和Y的联合分布函数.2.分布函数的性质1Fx,y分别关于x和y单调不减.20≤Fx,y≤1 , Fx,- =0, F-,y=0, F-,-=0, F,=1 .3 Fx,y关于每个变量都是右连续的,即 Fx+0,y= Fx,y, Fx,y+0= Fx,y .4对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= Fx 2,y 2- Fx 2,y 1- Fx 1,y 2+ Fx 1,y 1二.二维离散型随机变量及其联合分布律1.定义 若随机变量X,Y 只能取有限对或可列无限多对值x i ,y j i ,j =1,2,… 称X,Y 为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为X,Y 的联合分布律.也可列表表示.2.性质 1非负性 0≤p i j ≤1 .2归一性 ∑∑=i jijp 1 .3. X,Y 的X 和Y 的联合分布函数Fx,y=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f x,y,使对任意的x 和y,有Fx,y=⎰⎰∞-∞-y xdudv v u f ),(则称X,Y 为二维连续型随机变量,称fx,y 为X,Y 的X 和Y 的联合概率密度.2.性质 1非负性 f x,y ≥0 . 2归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .3若f x,y 在点x,y 连续,则yx y x F y x f ∂∂∂=),(),(2 4若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. X,Y 关于X 的边缘分布函数 F X x = P{X ≤x , Y<}= F x , .X,Y 关于Y 的边缘分布函数 F Y y = P{X<, Y ≤y}= F ,y2.二维离散型随机变量X,Y关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i · i =1,2,… 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }=∑∞=1i ij p = p·jj =1,2,… 归一性11=∑∞=•j j p .3.二维连续型随机变量X,Y关于X 的边缘概率密度f X x=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y y=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义若对一切实数x,y,均有Fx,y= FX x FYy ,则称X和Y相互独立.2.离散型随机变量X和Y相互独立⇔p i j= p i··p·j i ,j =1,2,…对一切x i,y j成立.3.连续型随机变量X和Y相互独立⇔f x,y=f X xf Y y对X,Y所有可能取值x,y都成立.六.条件分布1.二维离散型随机变量的条件分布定义设X,Y是二维离散型随机变量,对于固定的j,若P{Y=yj}>0,则称P{X=xi |Y=yj}为在Y= yj条件下随机变量X的条件分布律.同样,对于固定的i,若P{X=xi}>0,则称P{Y=yj |X=xi}为在X=xi 条件下随机变量Y 的条件分布律.,}{},{jj ijjippyYPyYxXP•=====,}{},{•=====ij iijippxXPyYxXP第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i i =1,2,… 概率密度f x数学期望均值EX∑∞=1i i i p x 级数绝对收敛⎰∞∞-dx x xf )(积分绝对收敛方差DX=E{X-EX 2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=EX 2-EX 2 级数绝对收敛 积分绝对收敛函数数学期望EY=EgXi i i p x g ∑∞=1)(级数绝对收敛 ⎰∞∞-dx x f x g )()(积分绝对收敛标准差X=√DX .二.数学期望与方差的性质1. c 为为任意常数时, Ec = c , EcX = cEX , Dc = 0 , D cX = c 2 DX .,Y为任意随机变量时, E X±Y=EX±EY .3. X与Y相互独立时, EXY=EXEY , DX±Y=DX+DY .4. DX = 0 P{X = C}=1 ,C为常数.三.六种重要分布的数学期望和方差 EX DX~ 0-1分布P{X=1}= p 0<p<1 p p 1- p ~ b n,p 0<p<1 n p n p 1- p ~~ Ua,b a+b/2 b-a 2/12服从参数为的指数分布2~ N ,22四.矩的概念随机变量X的k阶原点矩EX k k=1,2,…随机变量X 的k 阶中心矩E{X-EX k}随机变量X 和Y 的k+l 阶混合矩EX k Y l l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{X-EX k Y-EY l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11 k=1,2,… 样本k 阶中心矩∑-==n i ki k X X n B 1)(1k=1,2,…二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E X = EX , D X = DX / n .特别,若X~ N ,2 ,则 X ~ N , 2 /n .分布 1定义 若X ~N 0,1,则Y =∑=ni i X 12~ 2n 自由度为n 的2分布.2性质 ①若Y~ 2n,则EY = n , DY = 2n .②若Y 1~ 2n 1 Y 2~ 2n 2 ,则Y 1+Y 2~ 2n 1 + n 2.③若X~ N ,2 , 则22)1(σS n -~ 2n-1,且X 与S 2相互独立.3分位点 若Y~ 2n,0< <1 ,则满足的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为2分布的上、下、双侧分位点.3. t 分布1定义 若X~N 0,1 ,Y~ 2 n,且X,Y 相互独立,则t=nY X~tn 自由度为n 的t 分布. 2性质①n →∞时,t 分布的极限为标准正态分布.②X ~N ,2 时,nS X μ-~ t n-1 . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N 1,12 且12=22=2 X 1 ,X 2 ,…,X n1 X S 12Y~ N 2,22 Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t n 1+n 2-2 , 其中 2)1()1(212222112-+-+-=n n S n S n S w3分位点 若t ~ t n ,0 < <1 , 则满足的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧分位点.注意: t 1- n = - t n.分布 1定义 若U~2n 1, V~ 2n 2, 且U,V 相互独立,则F =21n V n U ~Fn 1,n 2自由度为n 1,n 2的F 分布.2性质条件同3.2③22212221σσS S ~Fn 1-1,n 2-13分位点 若F~ Fn 1,n 2 ,0< <1,则满足的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧分位点. 注意: .).(1),(12211n n F n n F αα=- 第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数1, 2,…, k .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩 ll=1,2,…,k 得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值.2.最大似然估计法若总体分布形式可以是分布律或概率密度为px, 1, 2,…, k ,称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数1, 2,…,k 的最大似然估计值,代入样本得到最大似然估计量.若L 1, 2,…, k 关于1, 2,…, k 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ i =1,2,…,k 求出最大似然估计. 3.估计量的标准(1)无偏性 若E ∧θ=,则估计量∧θ称为参数的无偏估计量.不论总体X 服从什么分布, E X = EX , ES 2=DX, EA k =k =EX k ,即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值EX,方差DX,总体k 阶矩k 的无偏估计,2有效性 若E ∧θ1 =E ∧θ2= , 而D ∧θ1< D ∧θ2, 则称估计量∧θ1比∧θ2有效.3一致性相合性 若n →∞时,θθP →∧,则称估计量∧θ是参数的相合估计量.二.区间估计1.求参数的置信水平为1-的双侧置信区间的步骤1寻找样本函数W=WX 1 ,X 2 ,…,X n ,,其中只有一个待估参数未知,且其分布完全确定.2利用双侧分位点找出W 的区间a,b,使P{a<W <b}=1-.3由不等式a<W<b 解出θθθ<<则区间θθ,为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间2已知 nX σμ-~N 0,1 2/ασz n X ±2未知 nS X μ-~ t n-1 )1((2/-±n t n S X α 2未知22)1(σS n -~ 2n-1 ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体1均值差 1- 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N0,1 )(2221212n n z Y Xσσα+±-未知22221σσσ==212111)(n n S Y X w +---μμ~tn 1+n 2-2)11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 2③.2 1, 2未知, W=22212221σσS S ~ Fn 1-1,n 2-1,方差比12/22的置信区间为注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上下限中的下标/2改为,另外的下上限取为- 即可.。
概率论与数理统计讲义 (27)

原点矩
由矩法,
0
X 1
2
总体矩
样本矩
2
从中解得 ˆ 2X 1 , 即为 的矩估计.
1 X
例2 设X1,X2,…Xn是取自总体X的一个样本
X
~
f
(
x)
1
e( x
)
,
x
, 为未知参数
0,
其它
其中 >0,求 , 的矩估计.
解: 由密度函数知
X 具有均值为 的指数分布
故 E(X- )= 即 E(X)=
缺点是,当总体类型已知时,没有 充分利用分布提供的信息 . 一般场合下, 矩估计量不具有唯一性 .
其主要原因在于建立矩法方程时, 选取那些总体矩用相应样本矩代替带 有一定的随意性 .
第 七 章第一节 矩估计
矩是基于一种简单的“替换” 思想建立起来的一种估计方法 .
是英国统计学家K.皮尔逊最早提出的 .
其基本思想是用样本矩估计总体矩 . 理论依据: 大数定律
记总体k阶矩为 k E( X k )
样本k阶矩为
Ak
1 n
n i 1
X
k i
记总体k阶中心矩为 k E[ X E( X )]k
参数估计问题的一般提法
设有一个统计总体,总体的分布函数
为 F(x, ),其中为未知参数 ( 可以是
向量) . 现从该总体抽样,得样本 X1, X2 , … , Xn
要依据该样本对参数 作出估计,或估计 的某个已知函数 g( ) .
这类问题称为参数估计.
点估计
参数估计
区间估计
假如我们要估计某队男生的平均身高.
1
n
n i 1
X
m i
概率论与数理统计 第七章2

P{θ1 ≤ θ ≤ θ 2 } ≥ 1 − α , (0 < α < 1)
称区间(θ1,θ 2 )为θ的置信水平为1 − α 该区间的置信区间 。
区间(θ1,θ2)是一个随机区间; α给出该区间含真 1− 值θ的可靠程度。α表示该区间不包含真值θ的可能性。
ch7-1 2
上海理工大学
University of Shanghai for Science and Technology
( X −u1−α
σ
2
n
,
X + u1−α
σ
2
n
)
可得所求的置信区间为
2 (12.35 ± 1.96 × ) = (12.35 ± 1.307) = (11.043,13.657) 9
ch7-1 8
上海理工大学
University of Shanghai for Science and Technology
上海理工大学
University of Shanghai for Science and Technology
College of Science
理学院
概率论与数理统计
区 间 估 计
ch7-1
1
上海理工大学
University of Shanghai for Science and Technology
1001,1004,1003,997,999,1000, , , , , , , 1004,1000,996, 1002,998,999. , , , , ,
求σ2的置信水平为 的置信水平为0.95的置信区间 的置信区间. 的置信区间 −α的置信区间如 解:本例中 µ未知, σ2的置信水平为 −α的置信区间如 本例中 未知, 的置信水平为1−α的置信区间如. (n −1)S2 (n −1)S2 2 , 2 χ1−α (n −1) χα (n −1) 其中n=12,计算得:(n−1)s2=11×6.932=76.25.又 计算得: − 其中 计算得 × 又 查自由度为11的 分布分位数表,得 α=1− 0.95=0.05, 查自由度为 的 χ 2分布分位数表 得 −
《概率论与数理统计》第七章假设检验.

《概率论与数理统计》第七章假设检验.第七章假设检验学习⽬标知识⽬标:理解假设检验的基本概念⼩概率原理;掌握假设检验的⽅法和步骤。
能⼒⽬标:能够作正态总体均值、⽐例的假设检验和两个正态总体的均值、⽐例之差的假设检验。
参数估计和假设检验是统计推断的两种形式,它们都是利⽤样本对总体进⾏某种推断,然⽽推断的⾓度不同。
参数估计是通过样本统计量来推断总体未知参数的取值范围,以及作出结论的可靠程度,总体参数在估计前是未知的。
⽽在假设检验中,则是预先对总体参数的取值提出⼀个假设,然后利⽤样本数据检验这个假设是否成⽴,如果成⽴,我们就接受这个假设,如果不成⽴就拒绝原假设。
当然由于样本的随机性,这种推断只能具有⼀定的可靠性。
本章介绍假设检验的基本概念,以及假设检验的⼀般步骤,然后重点介绍常⽤的参数检验⽅法。
由于篇幅的限制,⾮参数假设检验在这⾥就不作介绍了。
第⼀节假设检验的⼀般问题关键词:参数假设;检验统计量;接受域与拒绝域;假设检验的两类错误⼀、假设检验的基本概念(⼀)原假设和备择假设为了对假设检验的基本概念有⼀个直观的认识,不妨先看下⾯的例⼦。
例7.1 某⼚⽣产⼀种⽇光灯管,其寿命X 服从正态分布)200 ,(2µN ,从过去的⽣产经验看,灯管的平均寿命为1550=µ⼩时,。
现在采⽤新⼯艺后,在所⽣产的新灯管中抽取25只,测其平均寿命为1650⼩时。
问采⽤新⼯艺后,灯管的寿命是否有显著提⾼?这是⼀个均值的检验问题。
灯管的寿命有没有显著变化呢?这有两种可能:⼀种是没有什么变化。
即新⼯艺对均值没有影响,采⽤新⼯艺后,X 仍然服从)200 ,1550(2N 。
另⼀种情况可能是,新⼯艺的确使均值发⽣了显著性变化。
这样,1650=X 和15500=µ之间的差异就只能认为是采⽤新⼯艺的关系。
究竟是哪种情况与实际情况相符合,这需要作检验。
假如给定显著性⽔平05.0=α。
在上⾯的例⼦中,我们可以把涉及到的两种情况⽤统计假设的形式表⽰出来。
中国矿业大学周圣武概率论与数理统计_图文

定义2 设 都是参数θ的无偏估计量,若有
则称
有效。
例:160页,例7、例8
定义3 设
为参数θ的估计量,
若对于任意θ∈Θ,当
则称
的一致估计量。
例:由大数定律知
一致性说明:对于大样本,由一次抽样得到的估 计量 的值可作θ的近似值
例5 设 X1, X2, …, Xn 是取自总体 X 的一个样本,
⑴ 验证
试求θ的极大似然估计值。 解
极大似然估计的不变性
练习
1.设总体X在
上服从均匀分布,
X1 , X 2 ,L X n是来自X的样本,试求 q 的矩估计量
和最大似然估计.
2.设X1,X2,…Xn是取自总体X的一个样本
其中 >0, 求 的极大似然估计.
课堂练习
P156:5,6
作业
P178:1,2,5,6
Fisher
最大似然法的基本思想:
问题:请推断兔子 是谁打中的?
例6 袋中放有白球和黑球共4个,今进行3次有放回 抽样,每次抽取1个,结果抽得2次白球1次黑球,试 估计袋中白球个数。 解 设袋中白球个数为m,
X为3次抽样中抽得的白球数,则
当袋中白球数m分别为1,2,3时, p对应的值分别为1/4,2/4,3/4, X对应的分布律见下表
中国矿业大学周圣武概率论与数理统计_图文 .ppt
第七章 参数估计
§7.1 点估计 §7.2 估计量的评选标准 §7.3 区间估计 §7.4 单个正态总体参数的区间估计 §7.4 两个正态总体参数的区间估计
统计推断
矩估计 点估计 最大似然估计
参数估计
最小二乘估计
区间估计
参数假设检验
假设检验 非参数假设检验
《概率论与数理统计》第七章
n
n
ln xi
(4)的极大似然估计量为:ˆ
n
n2 i1
lnX
i
2
i1
第七章 参数估计 ‹#›
例 9 设X~b(1,p), X1,X2,…,Xn是来自X的一个样本, 试求参数p的最大似然估计量
解: 设x1, x2,, xn,是相应于样本X1,X2,…,Xn 的一个样本值,X
的分布律为:
(3)以样本各阶矩A1, ,Ak代替总体各阶矩1,
得各参数的矩估计
ˆi gi(A1, ,Ak ), i 1, , k
, k,
第七章 参数估计 ‹#›
注意:
在实际应用时,为求解方便,也可以用
中心矩 i 代替原点矩i,相应地以样本中心矩Bi 估计 i.
(二)最大似然估计法
最(极)大似然估计的原理介绍
第七章
参数估计
目录/Contents
第1章 随机事件与 2 概率
§ 1 点估计
§3
估计量的评选标准
第七章 参数估计 ‹#›
问题的提出:
在实际进行统计时,有不少总体的(我们关心的某 确定指标)概率分布是已知的。比如
例 1 产品寿命服从的分布
X~
f
(
x)
1
x
e
x0
0
其他
但其中有参数是未知的: θ
n
似然函数 L f xi , 。 i 1
, xn ,
极大似然原理:L(ˆ( x1 ,
,
xn
))
max
L(
).
计算简化方法:
在求L 的最大值时,通常转换为求:lnL 的最大值,
lnL 称为对数似然函数.
利用
概率论第7章
频率分布直方图
步骤如下: (1)决定组距与组数
选取起点与终点。起点a选得比最小值略小些, 终点b选得比最大值略大些,确定组距:d=(b-a)/m
将[a,b]进行等分,即在[a,b]内插入 m-1个分点:
a x1' x2' xm' 1 b
把[a,b]分成m个组(即小区间)。 通常在试验数据较多(即样本容量n较大)
时,可分成10~20组,数据在100以内可分成 5~12组。这里的起点、终点、组距、组数可视 具体情况来定。
(2)数出频数,列出分组频率分布 数出样本值x1,x2,…,xn 落在每个组的数目,
计算每个组的频数与频率。
(3)绘出频率分布直方图 以样本值为横轴,以(频率÷组距)为纵轴,
在横轴上标出各分组的点,以各组的组距为底, 画出高度等于(频率÷组距)的小矩形。整个图 形称为频率分布直方图,简称为直方图。
F n1
n2
服从第一自由度为n1、第二自由度为n2的F分布。 记为F~F(n1,n2)。
如F~F(n1,n2),则其密度函数为
f
(x)
( n1
n2 2
)
(
n1 2
)(
n2 2
)
(
n1
)
n1 2
n2
n1 1
x 2 (1
n1 n2
n1 n2
x) 2
0
x0 x0
下图描绘了F(10,50),F(10,10),F(10,4)的密度曲线。
数理统计研究的是:一个随机变量所服从的分布是 未知的,或者知其分布而不知其中所含的参数,需 要确定这个随机变量的分布或参数。 数理统计的研究方法是归纳法,同概率论相反。
例如,通过检查某厂家一批产品中的100个产品, 从而设法估计这批产品的合格率。
概率论与数理统计课后习题答案 第七章
习题 7.2 1. 证明样本均值 是总体均值
证:
的相合估计
由定理
知 是 的相合估计
2. 证明样本的 k 阶矩
是总体 阶矩
证:
的相合估计量
3. 设总体 (1)
(2)
是
的相合估计
为其样品 试证下述三个估计量
(3)
都是 的无偏估计,并求出每一估计量的方差,问哪个方差最小? 证:
都是 的无偏估计
故 的方差最小.
大?(附
)
解: (1) 的置信度为 的置信区间为
(2) 的置信度为 故区间长度为
的置信区间为
解得
四、某大学从来自 A,B 两市的新生中分别随机抽取 5 名与 6 名新生,测其身高(单位:厘米)后,算的
.假设两市新生身高分别服从正态分布:
,
其中 未知 试求
的置信度为 0.95 的置信区间.(附:
解:
.从该车床加工的零件中随机抽取
4 个,测得长度分别为:12.6,13.4,12.8,13.2.
试求: (1)样本方差 ;(2)总体方差 的置信度为 95%的置信区间.
(附:
解: (1)
(2) 置信度 的置信区间为
三、设总体
抽取样本
为样本均值
(1) 已知
求 的置信度为 的置信区间
(2) 已知
问 要使 的置信度为 的置信区间长度不超过 ,样本容量 n 至少应取多
施磷肥的
620 570 650 600 630 580 570 600 600 580
设不施磷肥亩产和施磷肥亩产均服从正态分布,其方差相同.试对施磷肥平均亩产与不施磷肥平均
亩产之差作区间估计(
).
解:
查表知
《概率论与数理统计》第三版--课后习题答案.-
习题一:1.1 写出下列随机试验的样本空间:(1)某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故;(2)掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:;(3)观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以;(4)从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品;解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:(5)检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则;(6)观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2);解:用表示最低气温, 表示最高气温;考虑到这是一个二维的样本空间,故:;(7)在单位圆内任取两点, 观察这两点的距离;解:;(8)在长为的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:;1.2(1)A 与B 都发生, 但C 不发生; ;(2)A 发生, 且B 与C 至少有一个发生;;(3)A,B,C 中至少有一个发生; ;(4)A,B,C 中恰有一个发生;;(5)A,B,C 中至少有两个发生; ;(6) A,B,C 中至多有一个发生;;(7) A;B;C 中至多有两个发生;(8) A,B,C 中恰有两个发生. ;注意:此类题目答案一般不唯一,有不同的表示方式。
1.3 设样本空间, 事件=,具体写出下列各事件:(1); (2) ; (3) ; (4)(1);(2) =;(3) =;(4) =1.6 按从小到大次序排列, 并说明理由.解:由于故,而由加法公式,有:1.7解:(1) 昆虫出现残翅或退化性眼睛对应事件概率为:(2)由于事件可以分解为互斥事件,昆虫出现残翅, 但没有退化性眼睛对应事件概率为:(3) 昆虫未出现残翅, 也无退化性眼睛的概率为:.1.8解:(1) 由于,故显然当时P(AB) 取到最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 313031 23 2 , 8
由 x EX ,即 2 3 4 ,故解得 的矩估计值为ˆ 1 .
4
例 1.4
设总体
X
的密度函数为
f
(x, )
e(x ) ,
0,
x , x ,
其中 为未知参数.从总体 X 中取得样本 ( X1, X 2,L , X n ) ,
一、点估计的概念
所谓点估计就是要构造一个合适的统计量 $ $( X1, X 2 ,L , X n )
作为未知参数 的估计.统计学上称$为 的估计量.对应于
样本 (X1, X2,L , Xn ) 的每个观察值 (x1, x2 ,L , xn ) ,估计量$的值
$(x1, x2 ,L , xn ) 称为 的估计值.
称 L(x1, x2,L , xn; ) 为似然函数,有时也简记为 L( ) .
定义 1.3 如果$ ($1,$2,L ,$k ) ($) 满足
L(X1, X2,L
,
X
n
;
$)
max
L(
X1
,
X
2
,L
, Xn;) ,
就称$ ($1,$2,L ,$k ) 为未知参数 (1,2 ,L ,k ) 的极大
计法,由矩估计法得到的估计量叫做矩估计量.
【思想与方法】 样本矩代替理论矩,建立 k 个方程,从 中解出 k 个未知参数的矩估计量.(重点)
当 k 1时,方程 X EX 最为常用.
但有时 EX 中不含有未知参数 ,因此从 X EX 中不能 求得$,故此时根据低阶矩优先的原则,如改用二阶原点矩建
极大似然估计法是依据“概率最大的事件最有可能出现”的 “实际推断”原理产生的估计法.其基本思想是:如果在一次试
验中事件 A 已出现,则一般说来,当时的试验条件应更有利于事 件 A 的出现.
例 1.5 设在一个罐内装有白色球和黑色球共 4 个,今用有 放回抽样方法从罐内取球 3 次,得到 2 次取白球,1次取黑
(1,2 ) 的点估计量.
二、矩估计法
矩估计法是英国统计学家 K 皮 尔逊 (K Pearson) 在1894 年提出的
方法.矩估计法的原理是来自第五章
的大数定律.
设 (X1, X2,L , Xn ) 为来自总体 X 的一个样本,且
E( X
r)
r
,则 lim n
1 n
求 的矩估计量$.
解
由于 EX
xf (x, )dx
xe(x )dx 1 ,
故由 X EX 1 ,解得$ X 1.
三、极大似然估计
极大似然估计法是由英国统计学家
R A 费歇尔于1912 年提出,并在1921年的
工作中又加以发展的一种重要且普遍使用的 点估计法.
1 n
n i 1
Xi
X
,¶ 2
1 n
n i 1
(Xi
X )2
.
例 1.8
设总体
X
的分布律为
ห้องสมุดไป่ตู้
0
2
1
2 (1 )
2
2
3
1 2
,其中
是未知参数,利用总体 X 的样本值 (3, 1, 3, 0, 3, 1, 2, 3) ,求 的极大似然估计值$,其中设 0 1 .
, n 2
n 2n
n
1 2
1n 2 2
i1
n
( xi(xi)2 )2
i1
i1 i122
所所以以lnlnLL((2 ))
nnllnn((22))
22
nn 2
ln(
2)
1 1 n
222i21
n
( xi(
i 1
xi
)2
⑶ 如果 , 2 均未知,求 和 2 的极大似然估计量 µ 和¶ 2 .
解解 ⑵⑴由于由于 已 知2 已,知,2 未知未,知似,然似函然数函为数为
L()( L ) n n
2 (
(1
1e e ) )(2 (2) ) e e , (x2i (2x)2i22)2
¶ 2
1 n
n i 1
(Xi
X )2 .
例 1.3 设总体 X
0
X
~
2
1
2 (1 )
2
2
3
1 2
,其中
是
未知参数,利用总体 X 的样本值 (3, 1, 3, 0, 3, 1, 2, 3) ,求
的矩估计值$.
解 由题意知,
EX 0 2 1 2 (1 ) 2 2 3 (1 2 ) 3 4 ,
),2 ,
d
ln L(
d
)dldn1(L2 (2in)1
2) ( xi
n)
2
1122
( in211xi4inn1()xi,
)2
,
令令d
ldn lLn(L(2 ))
d (d2 )
0,0 解,得解¶得2
µ
11
nn
1nn n
原点矩建立方程:
1 n
n i 1
X
2 i
E(X 2)
2
2 ,解得
¶ 2
1 n
n i 1
X
2 i
2 .
⑶ 属 k 2 的情形,故需要建立二个方程.由
X EX ,
1
n
n i 1
(Xi
X )2
DX
2,
解得: µ X ,
2
2
2 2
n
( xi
i 1
)2
,
令
ln L(, 2 )
1
2
n
( xi
i 1
) 1 2
n
(
i 1
xi
n) 0 ,
ln L(, 2 )
( 2 )
n 2
1
2
1
2
4
n
( xi
i 1
)2
0,
解得 µ
P{X x} p(x; ) , x a1, a2,L , an ,L ,
n
则记 L(x1, x2,L , xn; ) p(xi ; ) . i 1 如果总体 X 为连续型随机变量,其密度函数为
f (x; ) , x ,
n
则记 L(x1, x2,L , xn; ) f (xi; ) . i 1
解 似然函数为
n
L() L(x1, x2,L
, xn; )
n i 1
(
xi
e
)
i1
xi
(
n
xi !
i 1
xi !)1en
,
n
n
所以 ln L() xi ln ln(xi !) n ,
i 1
i 1
d
ln L()
d
n i 1
解 由于样本值为 (3, 1, 3, 0, 3, 1, 2,23) ,故似然函数为
立方程
1
n
n i 1
X
2 i
E(X 2) ,
“=”为形式上记号,实质上应该为“ ”
当 k 2 时,最常用的二个方程为
X EX ,
1
n
n i 1
X
2 i
E(X 2) .
由于此方程组与下列方程组
X EX ,
1
n
n i 1
(Xi
X )2
3
被估计的未知参数可以是 k 维向量 (1,2,L ,k ) , 并称 (1,2,L ,k ) 的取值范围为参数空间,记为 .通
常 k 1, 2 .
当 k 1时,$ $( X1, X 2 ,L , X n ) 作为 的点估计量;
当 k 2 时,$( X1, X 2 ,L , X n ) ($1( X1, X 2 ,L , X n ),$2 ( X1, X 2 ,L , X n ))
X 的可
能取值
罐内白
0
1
2
3
球总数 p 值
1
27
27
9
1
1
4
64
64
64
64
2
8
24
24
8
2
4
64
64
64
64
3
3
1
9
27
27
4
64
64
64
64
由于事件{X 2} 已经发生,且 9 ,24 ,27 中 27 最大, 64 64 64 64
因此估计罐内有 3 个白球的可能性最大.
定义 1.2 如果总体 X 为离散型随机变量,其分布律为
则ˆ 即为 的极大似然估计;
非常规方法
第三步:如果上述方程无解,则通过单调性的讨论,在某边界点
处求出 (1,2,L ,k ) 的极大似然估计量.
例 1.6 设总体 X ~ P() ,其中 为未知参数.(X1, X2,L , Xn ) 为来自总体 X 的样本,试求 的极大似然估计量 $.
xi
1
n,
令