教育最新K12通用版2018年高考数学二轮复习课时跟踪检测二理
通用版2018学高考数学二轮复习练酷专题课时跟踪检测十八数列理201802062107

课时跟踪检测(十八) 数 列1.(2017· 长沙模拟)已知数列{a n }满足a 1=32,a n +1=3a n -1(n ∈N *). (1)若数列{b n }满足b n =a n -12,求证:{b n }是等比数列; (2)求数列{a n }的前n 项和S n .解:(1)证明:由已知得a n +1-12=3⎝ ⎛⎭⎪⎫a n -12(n ∈N *),从而有b n +1=3b n .又b 1=a 1-12=1, 所以{b n }是以1为首项,3为公比的等比数列.(2)由(1)得b n =3n -1,从而a n =3n -1+12,所以S n =1+12+3+12+…+3n -1+12=1+3+…+3n -1+n 2=1-3n 1-3+n 2=3n +n -12.2.(2017·云南模拟)已知数列{a n }中,a 2n +2a n -n 2+2n =0.(1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和S n .解:(1)由a 2n +2a n -n 2+2n =0,得(a n -n +2)(a n +n )=0.∴a n =n -2或a n =-n .∴{a n }的通项公式为a n =n -2或a n =-n .(2)①当a n =n -2时,易知{a n }为等差数列,且a 1=-1, ∴S n =n a 1+a n 2=n -1+n -2=n n -2.②当a n =-n 时,易知{a n }也为等差数列,且a 1=-1, ∴S n =n a 1+a n 2=n-1-n 2=-nn +2.故S n =⎩⎪⎨⎪⎧ n n -2a n =n -,-n n +2a n =-n3.(2017·南京模拟)已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n . 解:(1)设等差数列{a n }的公差为d ,由S 3+S 4=S 5,可得a 1+a 2+a 3=a 5,即3a 2=a 5, 所以3(1+d )=1+4d ,解得d =2.∴a n =1+(n -1)×2=2n -1.(2)由(1),可得b n =(-1)n -1·(2n -1). ∴T 2n =1-3+5-7+…+(4n -3)-(4n -1) =(1-3)+(5-7)+…+(4n -3-4n +1) =(-2)×n =-2n .4.已知等差数列{a n }的各项均为正数,a 1=1,前n 项和为S n .数列{b n }为等比数列,b 1=1,且b 2S 2=6,b 2+S 3=8.(1)求数列{a n }与{b n }的通项公式;(2)求1S 1+1S 2+…+1S n. 解:(1)设等差数列{a n }的公差为d ,d >0,等比数列{b n }的公比为q , 则a n =1+(n -1)d ,b n =q n -1.依题意有⎩⎪⎨⎪⎧ q +d =6,q +3+3d =8, 解得⎩⎪⎨⎪⎧ d =1,q =2或⎩⎪⎨⎪⎧ d =-43,q =9(舍去). 故a n =n ,b n =2n -1. (2)由(1)知S n =1+2+…+n =12n (n +1), 即1S n =2n n +=2⎝ ⎛⎭⎪⎫1n -1n +1, 故1S 1+1S 2+…+1S n =2⎣⎢⎡ ⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. 5.(2018届高三·惠州调研)已知数列{a n }中,点(a n ,a n +1)在直线y =x +2上,且首项a 1=1. (1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值.解:(1)根据已知a 1=1,a n +1=a n +2, 即a n +1-a n =2=d ,所以数列{a n }是首项为1,公差为2的等差数列, a n =a 1+(n -1)d =2n -1.(2)数列{a n }的前n 项和S n =n 2. 等比数列{b n }中,b 1=a 1=1,b 2=a 2=3, 所以q =3,b n =3n -1.数列{b n }的前n 项和T n =1-3n 1-3=3n -12. T n ≤S n 即3n -12≤n 2,又n ∈N *, 所以n =1或2.6.(2017·石家庄模拟)已知等差数列{a n }的前n 项和为S n ,若S m -1=-4,S m =0,S m +2=14(m ≥2,且m ∈N *).(1)求m 的值;(2)若数列{b n }满足a n 2=log 2b n (n ∈N *),求数列{(a n +6)·b n }的前n 项和. 解:(1)由已知得,a m =S m -S m -1=4, 且a m +1+a m +2=S m +2-S m =14, 设数列{a n }的公差为d ,则有2a m +3d =14, ∴d =2.由S m =0,得ma 1+m m -2×2=0, 即a 1=1-m ,∴a m =a 1+(m -1)×2=m -1=4, ∴m =5.(2)由(1)知a 1=-4,d =2,∴a n =2n -6, ∴n -3=log 2b n ,得b n =2n -3, ∴(a n +6)·b n =2n ×2n -3=n ×2n -2. 设数列{(a n +6)·b n }的前n 项和为T n , 则T n =1×2-1+2×20+…+(n -1)×2n -3+n ×2n -2,① 2T n =1×20+2×21+…+(n -1)×2n -2+n ×2n -1,② ①-②,得-T n =2-1+20+…+2n -2-n ×2n -1 =2-1-2n 1-2-n ×2n -1=2n -1-12-n ×2n -1, ∴T n =(n -1)×2n -1+12(n ∈N *).。
2018年高考数学二轮复习课时跟踪检测专题(通用版)(十八)立体几何文 Word版 含答案

课时跟踪检测(十八) 立体几何1.(2017·沈阳模拟)如图,在三棱柱ABC A 1B 1C 1中,侧面AA 1C 1C⊥底面ABC ,AA 1=A 1C =AC =AB =BC =2,且点O 为AC 的中点.(1)证明:A 1O ⊥平面ABC ;(2)求三棱锥C 1ABC 的体积.解:(1)证明:因为AA 1=A 1C ,且O 为AC 的中点,所以A 1O ⊥AC .又平面AA 1C 1C ⊥平面ABC ,平面AA 1C 1C ∩平面ABC =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABC .(2)∵A 1C 1∥AC ,A 1C 1⊄平面ABC ,AC ⊂平面ABC ,∴A 1C 1∥平面ABC ,即C 1到平面ABC 的距离等于A 1到平面ABC 的距离.由(1)知A 1O ⊥平面ABC 且A 1O =AA 21-AO 2=3,∴VC 1ABC =VA 1ABC =13S △ABC ·A 1O =13×12×2×3×3=1. 2.(2018届高三·西安八校联考)如图所示,该几何体是由一个直三棱柱ADE BCF 和一个正四棱锥P ABCD 组合而成,AD ⊥AF ,AE =AD =2.(1)证明:平面PAD ⊥平面ABFE ;(2)求正四棱锥P ABCD 的高h ,使得该四棱锥的体积是三棱锥P ABF 体积的4倍. 解:(1)证明:在直三棱柱ADE BCF 中,AB ⊥平面ADE ,∴AB ⊥AD .又AD ⊥AF ,AB ∩AF =A ,∴AD ⊥平面ABFE .又AD ⊂平面PAD ,∴平面PAD ⊥平面ABFE .(2)P 到平面ABF 的距离d =1.∴V P ABF =13S △ABF d =13×12×2×2×1=23. 而V P ABCD =13S 正方形ABCD h =13×2×2×h =4V P ABF =83,∴h =2.3.(2017·全国卷Ⅰ)如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,且四棱锥P ABCD 的体积为83,求该四棱锥的侧面积. 解:(1)证明:由∠BAP =∠CDP =90°,得AB ⊥AP ,CD ⊥PD .因为AB ∥CD ,所以AB ⊥PD .又AP ∩PD =P ,所以AB ⊥平面PAD .又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(2)如图所示,在平面PAD 内作PE ⊥AD ,垂足为E .由(1)知,AB ⊥平面PAD ,故AB ⊥PE ,可得PE ⊥平面ABCD .设AB =x ,则由已知可得AD =2x ,PE =22x . 故四棱锥P ABCD 的体积 V P ABCD =13AB ·AD ·PE =13x 3. 由题设得13x 3=83,故x =2. 从而PA =PD =AB =DC =2,AD =BC =22,PB =PC =2 2.可得四棱锥P ABCD 的侧面积为12PA ·PD +12PA ·AB +12PD ·DC +12BC 2sin 60°=6+2 3. 4.(2017·泰安模拟)如图,在正四棱柱ABCD A1B 1C 1D 1中,E 为AD 的中点,F 为B 1C 1的中点.(1)求证:A 1F ∥平面ECC 1;(2)在CD 上是否存在一点G ,使BG ⊥平面ECC 1?若存在,请确定点G的位置,并证明你的结论,若不存在,请说明理由.解:(1)证明:如图,在正四棱柱ABCD A1B 1C 1D 1中,取BC 的中点M ,连接AM ,FM ,所以B 1F ∥BM 且B 1F =BM ,所以四边形B 1FMB 是平行四边形,所以FM ∥B 1B 且FM =B 1B .因为B 1B ∥A 1A 且B 1B =A 1A ,所以FM∥A1A且FM=A1A,所以四边形AA1FM是平行四边形,所以A1F∥AM.因为E为AD的中点,所以AE∥MC且AE=MC.所以四边形AMCE是平行四边形,所以CE∥AM,所以CE∥A1F.因为A1F⊄平面ECC1,EC⊂平面ECC1,所以A1F∥平面ECC1.(2)在CD上存在一点G,使BG⊥平面ECC1.证明如下:取CD的中点G,连接BG.在正方形ABCD中,DE=GC,CD=BC,∠ADC=∠BCD,所以△CDE≌△BCG,所以∠ECD=∠GBC.因为∠CGB+∠GBC=90°,所以∠CGB+∠DCE=90°,所以BG⊥EC.因为CC1⊥平面ABCD,BG⊂平面ABCD,所以CC1⊥BG.又EC∩CC1=C,所以BG⊥平面ECC1.故当G为CD的中点时,满足BG⊥平面ECC1.5.(2017·福州模拟)如图①,在等腰梯形PDCB中,PB∥DC,PB=3,DC=1,∠DPB=45°,DA⊥PB于点A,将△PAD沿AD折起,得到如图②所示的四棱锥PABCD,点M在棱PB上,且PM=12MB.(1)求证:PD∥平面MAC;(2)若平面PAD⊥平面ABCD,求点A到平面PBC的距离.解:(1)证明:在四棱锥PABCD中,连接BD交AC于点N,连接MN,依题意知AB∥CD,∴△ABN∽△CDN,∴BNND=BACD=2,∵PM=12MB,∴BN ND =BM MP=2, ∴在△BPD 中,MN ∥PD ,又PD ⊄平面MAC ,MN ⊂平面MAC ,∴PD ∥平面MAC .(2)法一:∵平面PAD ⊥平面ABCD ,且两平面相交于AD ,PA ⊥AD ,PA ⊂平面PAD ,∴PA ⊥平面ABCD ,∴V P ABC =13S △ABC ·PA =13×⎝ ⎛⎭⎪⎫12×2×1×1=13. ∵AB =2,AC =AD 2+CD 2=2,∴PB =PA 2+AB 2=5,PC =PA 2+AC 2=3,BC =AD 2+ AB -CD 2=2,∴PB 2=PC 2+BC 2,故∠PCB =90°,记点A 到平面PBC 的距离为h ,∴V A PBC =13S △PBC ·h =13×⎝ ⎛⎭⎪⎫12×3×2h =66h . ∵V P ABC =V A PBC ,∴13=66h ,解得h =63. 故点A 到平面PBC 的距离为63. 法二:∵平面PAD ⊥平面ABCD ,且两平面相交于AD ,PA ⊥AD ,PA⊂平面PAD ,∴PA ⊥平面ABCD ,∵BC ⊂平面ABCD ,∴PA ⊥BC ,∵AB =2,AC =AD 2+CD 2=2,BC =AD 2+ AB -CD 2=2,∴AB 2=AC 2+BC 2,∴∠ACB =90°,即BC ⊥AC ,又PA ∩AC =A ,PA ⊂平面PAC ,AC ⊂平面PAC ,∴BC ⊥平面PAC ,过点A 作AE ⊥PC 于点E ,则BC ⊥AE ,∵PC ∩BC =C ,PC ⊂平面PBC ,BC ⊂平面PBC ,∴AE ⊥平面PBC ,∴点A 到平面PBC 的距离为AE =PA ·AC PC =1×23=63. 6.(2018届高三·衡水中学摸底)如图①所示,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB =1,BC =PC =2,进行如图②所示的折叠,折痕EF ∥DC .其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF.(1)证明:CF ⊥平面MDF ;(2)求三棱锥M CDE 的体积.解:(1)证明:∵PD ⊥平面ABCD ,PD ⊂平面PCD ,∴平面PCD ⊥平面ABCD ,又平面PCD ∩平面ABCD =CD ,MD ⊂平面ABCD ,MD ⊥CD , ∴MD ⊥平面PCD ,∵CF ⊂平面PCD ,∴CF ⊥MD .又CF ⊥MF ,MD ∩MF =M ,MD ⊂平面MDF ,MF ⊂平面MDF ,∴CF ⊥平面MDF .(2)∵CF ⊥平面MDF ,DF ⊂平面MDF ,∴CF ⊥DF .又易知∠PCD =60°,∴∠CDF =30°,∴CF =12CD =12, ∵EF ∥DC ,∴DE DP =CF CP ,即DE 3=122, ∴DE =34,∴PE =334, ∴S △CDE =12CD ·DE =38, ∵MD =ME 2-DE 2=PE 2-DE 2=⎝ ⎛⎭⎪⎫3342-⎝ ⎛⎭⎪⎫342=62,∴V M CDE =13S △CDE ·MD =13×38×62=216.。
【配套K12】通用版2018年高考数学二轮复习课时跟踪检测十一文

课时跟踪检测(十一)一、选择题1.某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .30解析:选 C 由三视图知,该几何体是一个长方体的一半再截去一个三棱锥后得到的,如图所示,该几何体的体积V =12×4×3×5-13×12×4×3×(5-2)=24,故选C.2.(2017·西安模拟)湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下了一个直径为12 cm ,深2 cm 的空穴,则该球的表面积是( )A .100π cm 2B .200π cm 2C.400π3cm 2D .400π cm 2解析:选D 设球的半径为r ,如图所示阴影部分以上为浸入水中部分,由勾股定理可知,r 2=(r -2)2+62,解得r =10.所以球的表面积为4πr2=4π×100=400π cm 2.3.(2018届高三·湖南五市十校联考)圆锥的母线长为L ,过顶点的最大截面的面积为12L 2,则圆锥底面半径与母线长的比rL的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎣⎢⎡⎭⎪⎫12,1 C.⎝ ⎛⎭⎪⎫0,22 D.⎣⎢⎡⎭⎪⎫22,1 解析:选D 设圆锥的高为h ,过顶点的截面的顶角为θ,则过顶点的截面的面积S =12L 2sinθ,而0<sin θ≤1,所以当sin θ=1,即截面为等腰直角三角形时取最大值,故圆锥的轴截面的顶角必须大于或等于90°,得L >r ≥L cos 45°=22L ,所以22≤r L<1.4.(2017·太原模拟)如图,已知在多面体ABC DEFG 中,AB ,AC ,AD 两两互相垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1,则该多面体的体积为( )A .2B .4C .6D .8解析:选B 过点C 作CM ∥AB ,过点B 作BM ∥AC ,且BM ∩CM =M ,取DG 的中点N ,连接FM ,FN ,CN ,CF ,如图所示.易知ABMC DEFN 是长方体,且三棱锥F BCM 与三棱锥C FGN 的体积相等,故几何体的体积等于长方体的体积4.故选B.5.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺313寸,容纳米2 000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面圆周长约为( )A .1丈3尺B .5丈4尺C .9丈2尺D .48丈6尺解析:选B 设圆柱底面圆半径为r 尺,高为h 尺,依题意,圆柱体积V =πr 2h ≈3×r 2×1313=2 000×1.62,所以r 2≈81,即r ≈9,所以圆柱底面圆周长为2πr ≈54,54尺=5丈4尺,即圆柱底面圆周长约为5丈4尺,故选B.6.(2017·沈阳质检)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD 中,AB ⊥平面BCD ,且BD ⊥CD ,AB =BD=CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD 的面积为f (x ),则f (x )的图象大致是( )解析:选A 如图,作PQ ⊥BC 于Q ,作QR ⊥BD 于R ,连接PR ,则由鳖臑的定义知PQ ∥AB ,QR ∥CD ,PQ ⊥QR .设AB =BD =CD =1,CP =x (0≤x ≤1),则CP AC =x 3=PQ 1,即PQ =x 3,又QR 1=BQ BC =AP AC =3-x3,所以QR =3-x 3,所以PR =PQ 2+QR 2=⎝ ⎛⎭⎪⎫x 32+⎝⎛⎭⎪⎫3-x 32=332x 2-23x +3,又由题知PR ⊥BD ,所以f (x )=362x 2-23x +3=66⎝⎛⎭⎪⎫x -322+34,结合选项知选A.二、填空题7.有一个倒圆锥形容器,它的轴截面是顶角的余弦值为0.5的等腰三角形.在容器内放一个半径为r 的铁球,并注水,使水面与球正好相切,然后将球取出,则这时容器中水的深度为________.解析:如图所示,作出轴截面,因轴截面是顶角的余弦值为0.5的等腰三角形,所以顶角为60°,所以该轴截面为正三角形.根据切线性质知当球在容器内时,水的深度为3r ,水面所在圆的半径为3r ,则容器内水的体积V =13π·(3r )23r -43πr 3=53πr 3.将球取出后,设容器中水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积V ′=13π⎝ ⎛⎭⎪⎫33h 2·h =19πh 3,由V =V ′,得h =315r ,所以这时容器中水的深度为315r .答案:315r8.已知球O 的半径为R ,A ,B ,C 三点在球O 的球面上,球心O 到平面ABC 的距离为32R ,AB =AC =BC =23,则球O 的表面积为________.解析:设△ABC 外接圆的圆心为O 1,半径为r ,因为AB =AC =BC =23,所以△ABC 为正三角形,其外接圆的半径r =232sin 60°=2,因为OO 1⊥平面ABC ,所以OA 2=OO 21+r 2,即R 2=⎝ ⎛⎭⎪⎫32R 2+22,解得R 2=16,所以球O 的表面积为4πR 2=64π.答案:64π9.(2017·云南调研)已知四棱锥P ABCD 的所有顶点都在体积为500π81的球面上,底面ABCD是边长为2的正方形,则四棱锥P ABCD 体积的最大值为________.解析:依题意,设球的半径为R ,则有4π3R 3=500π81,R =53,正方形ABCD 的外接圆半径r =1,球心到平面ABCD 的距离h =R 2-r 2=⎝ ⎛⎭⎪⎫532-12=43,因此点P 到平面ABCD 的距离的最大值为h +R =43+53=3,因此四棱锥P ABCD 体积的最大值为13×(2)2×3=2.答案:2 三、解答题10.(2017·洛阳统考)如图,正方形ADEF 与梯形ABCD 所在的平面互相垂直,AB ∥CD ,AB ⊥BC ,DC =BC =12AB =1,点M 在线段EC 上.(1)证明:平面BDM ⊥平面ADEF ;(2)若AE ∥平面MDB ,求三棱锥E BDM 的体积.解:(1)证明:∵DC =BC =1,AB ∥CD ,AB ⊥BC ,∴BC ⊥CD ,BD = 2. 在梯形ABCD 中,AD =2,AB =2,∴AD 2+BD 2=AB 2,∴∠ADB =90°,∴AD ⊥BD . 又平面ADEF ⊥平面ABCD ,ED ⊥AD ,平面ADEF ∩平面ABCD =AD ,ED ⊂平面ADEF , ∴ED ⊥平面ABCD .∵BD ⊂平面ABCD ,∴BD ⊥ED . 又AD ∩ED =D ,∴BD ⊥平面ADEF . 又BD ⊂平面BDM ,∴平面BDM ⊥平面ADEF . (2)如图,连接AC 交BD 于点O ,连接MO ,∵平面EAC ∩平面MBD =MO ,AE ∥平面MDB ,AE ⊂平面EAC ,∴AE∥OM .又AB ∥CD ,∴EM MC =AO OC =ABCD=2,则S △EDM =23S △EDC =23×12×1×2=23.∵ED ⊥平面ABCD ,BC ⊂平面ABCD ,∴DE ⊥BC . 由(1)知,BC ⊥CD ,又ED ∩DC =D ,∴BC ⊥平面EDC .∴V E BDM =V B EDM =13S △EDM ·BC =13×23×1=29.11.(2017·石家庄质检)如图,四棱锥P ABCD 中,PA ⊥底面ABCD ,底面ABCD 为梯形,AD ∥BC ,CD ⊥BC ,AD =2,AB =BC =3,PA =4,M 为AD的中点,N 为PC 上一点,且PC =3PN .(1)求证:MN ∥平面PAB ; (2)求点M 到平面PAN 的距离.解:(1)证明:在平面PBC 内作NH ∥BC 交PB 于点H ,连接AH ,在△PBC 中,NH ∥BC ,且NH =13BC =1,AM =12AD =1.又AD ∥BC ,∴NH ∥AM 且NH =AM , ∴四边形AMNH 为平行四边形, ∴MN ∥AH ,又AH ⊂平面PAB ,MN ⊄平面PAB , ∴MN ∥平面PAB .(2)连接AC ,MC ,PM ,平面PAN 即为平面PAC ,设点M 到平面PAC 的距离为h . 由题意可得CD =22,AC =23,∴S △PAC =12PA ·AC =43,S △AMC =12AM ·CD =2,由V M PAC =V P AMC ,得13S △PAC ·h =13S △AMC ·PA ,即43h =2×4,∴h =63, ∴点M 到平面PAN 的距离为63. 12.(2018届高三·湖北七市(州)联考)《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形的直棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵ABM DCP 与刍童ABCD A 1B 1C 1D 1的组合体中,AB =AD ,A 1B 1=A 1D 1.(1)证明:直线BD ⊥平面MAC ;(2)若AB =1,A 1D 1=2,MA =3,三棱锥A A 1B 1D 1的体积V ′=233,求该组合体的体积.解:(1)证明:由题可知ABM DCP 是底面为直角三角形的直棱柱, ∴AD ⊥平面MAB ,∴AD ⊥MA , 又MA ⊥AB ,AD ∩AB =A , ∴MA ⊥平面ABCD , ∴MA ⊥BD ,又AB =AD ,∴四边形ABCD 为正方形,∴BD ⊥AC , 又MA ∩AC =A , ∴BD ⊥平面MAC .(2)设刍童ABCD A 1B 1C 1D 1的高为h ,则三棱锥A A 1B 1D 1的体积V ′=13×12×2×2×h =233,∴h =3,故该组合体的体积V =12×1×3×1+13×(12+22+12×22)×3=32+733=1736.。
通用2018高考数学二轮复习练酷专题课时跟踪检测十空间几何体的三视图表面积与体积理

课时跟踪检测(十) 空间几何体的三视图、表面积与体积[A 级——“12+4”保分小题提速练]1.(2017·福州模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是( )A .2B .3C .4D .5解析:选C 由三视图知,该几何体是如图所示的四棱锥P ABCD ,易知四棱锥P ABCD 的四个侧面都是直角三角形,即此几何体各面中直角三角形的个数是4.2.(2017·沈阳模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积是( )A .36+610B .36+310C .54D .27解析:选A 由三视图知,该几何体的直观图如图所示,故表面积为S =2×12×(2+4)×3+2×3+4×3+3×2×10=36+610.3.(2017·广州模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )解析:选D 由题意可得该几何体可能为四棱锥,如图所示,其高为2,底面为正方形,面积为2×2=4,因为该几何体的体积为13×4×2=83,满足条件,所以俯视图可以为一个直角三角形.故选D.4.(2018届高三·惠州摸底)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A .1 B. 2 C. 3D .2解析:选C 四棱锥的直观图如图所示,PC ⊥平面ABCD ,PC =1,底面四边形ABCD 为正方形且边长为1,故最长棱PA =12+12+12= 3.5.(2017·陕西模拟)如图,网格纸上的小正方形的边长为1,粗实线画出的是一个几何体的三视图,则该几何体的体积是( )A .4+6πB .8+6πC .4+12πD .8+12π解析:选B 该几何体为四棱锥与半个圆柱的上下组合体,其中半个圆柱的底面圆直径为4,母线长为3,四棱锥的底面是长为4,宽为3的矩形,高为2,所以组合体的体积为V =12×π×22×3+13×4×3×2=8+6π. 6.(2018届高三·皖南八校联考)某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .30解析:选C 由三视图知,该几何体是一个长方体的一半再截去一个三棱锥后得到的,该几何体的体积V =12×4×3×5-13×12×4×3×(5-2)=24.7.(2017·宝鸡模拟)已知A ,B ,C 三点都在以O 为球心的球面上,OA ,OB ,OC 两两垂直,三棱锥O ABC 的体积为43,则球O 的表面积为( )A.16π3 B .16π C.32π3D .32π解析:选B 设球O 的半径为R ,以球心O 为顶点的三棱锥三条侧棱两两垂直且都等于球的半径R ,另外一个侧面是边长为2R 的等边三角形.因此根据三棱锥的体积公式得13×12R 2·R =43,∴R =2,∴球的表面积S =4π×22=16π.8.(2017·湖北五校联考)如图为某几何体的三视图,则该几何体的外接球的表面积为( )A.272π B .27πC .273πD.2732π解析:选B 由三视图可知,该几何体是由一个正方体切割成的一个四棱锥,则该几何体的外接球的半径为12 32+32+32=332,从而得其表面积为4π×⎝ ⎛⎭⎪⎫3322=27π.9.(2018届高三·广州五校联考)某几何体的三视图如图所示,则该几何体的表面积为( )A.+22π2+1B.13π6C.+2π2+1D.+22π2+1解析:选C 由三视图可知该几何体是一个圆柱和半个圆锥的组合体,故其表面积为22π+1+2π×2+32π=+2π2+1.10.(2017·昆明模拟)某几何体的三视图如图所示,若这个几何体的顶点都在球O 的表面上,则球O 的表面积是( )A .2πB .4πC .5πD .20π解析:选C 由三视图知,该几何体为三棱锥,且其中边长为1的侧棱与底面垂直,底面为底边长为2的等腰直角三角形,所以可以将该三棱锥补形为长、宽、高分别为2,2,1的长方体,所以该几何体的外接球O 的半径R =22+22+122=52,所以球O 的表面积S =4πR 2=5π.11.(2017·合肥模拟)一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为( )A .72+6πB .72+4πC .48+6πD .48+4π解析:选A 由三视图知,该几何体由一个正方体的34部分与一个圆柱的14部分组合而成(如图所示),其表面积为16×2+(16-4+π)×2+4×(2+2+π)=72+6π.12.(2017·福州模拟)已知球O 的半径为R ,A ,B ,C 三点在球O 的球面上,球心O 到平面ABC 的距离为32R ,AB =AC =BC =23,则球O 的表面积为( ) A.163π B .16π C.643π D .64π解析:选D 设△ABC 外接圆的圆心为O 1,半径为r ,因为AB =AC =BC =23,所以△ABC 为正三角形,其外接圆的半径r =232sin 60°=2,所以OO 1⊥平面ABC ,所以OA 2=OO 21+r 2,所以R 2=⎝⎛⎭⎪⎫32R 2+22,解得R 2=16,所以球O 的表面积为4πR 2=64π. 13.(2017·青岛模拟)设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2,若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________.解析:设甲、乙两个圆柱的底面半径分别是r 1,r 2,母线长分别是l 1,l 2.则由S 1S 2=94可得r 1r 2=32.又两个圆柱的侧面积相等,即2πr 1l 1=2πr 2l 2,则l 1l 2=r 2r 1=23,所以V 1V 2=S 1l 1S 2l 2=94×23=32.答案:3214.(2018届高三·大连调研)高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的________.解析:由侧视图、俯视图知该几何体是高为2、底面积为 12×2×(2+4)=6的四棱锥,其体积为4.易知直三棱柱的体积为8,则该几何体的体积是原直三棱柱的体积的12.答案:1215.(2017·合肥模拟)某几何体的三视图如图所示,其中俯视图是边长为1的等边三角形,则此几何体的体积为________.解析:由三视图可知,该几何体为一个四棱锥,将其还原在长方体中,为四棱锥P ABCD ,如图所示,故其体积V P ABCD =13×+2×32=34. 答案:3416.(2017·长春模拟)已知四棱锥P ABCD 的底面为矩形,平面PBC ⊥平面ABCD ,PE ⊥BC 于点E ,EC =1,AB =6,BC =3,PE =2,则四棱锥P ABCD 的外接球半径为________.解析:如图,由已知,设△PBC 的外接圆圆心为O 1,半径为r ,在△PBC 中,由正弦定理可得PC sin ∠PBC =2r ,即522=2r ,解得r =102,设F 为BC 边的中点,进而求出O 1F =12,设四棱锥P ABCD 的外接球球心为O ,外接球半径为R ,则R 2=⎝ ⎛⎭⎪⎫BD 22+O 1F 2=4,所以四棱锥P ABCD 的外接球半径为2.答案:2[B 级——中档小题强化练]1.某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2解析:选D 由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图所示.则该几何体的表面积为S =2×12×2×2+2×4×2+22×4=20+8 2.2.(2017·石家庄模拟)某几何体的三视图如图所示,则该几何体的体积是( )A .16B .20C .52D .60解析:选B 由三视图知,该几何体由一个底面直角边分别为3,4的直角三角形、高为6的三棱柱被截去两个等体积的四棱锥所得,且四棱锥的底面是边长分别为2,4的矩形、高是3,所以该几何体的体积V =12×3×4×6-2×13×2×4×3=20.3.(2017·南宁模拟)设点A ,B ,C 为球O 的球面上三点,O 为球心.球O 的表面积为100π,且△ABC 是边长为43的正三角形,则三棱锥O ABC 的体积为( )A .12B .12 3C .24 3D .36 3解析:选B ∵球O 的表面积为100π=4πr 2,∴球O 的半径为5.如图,取△ABC 的中心H ,连接OH ,连接并延长AH 交BC 于点M ,则AM =32-⎝⎛⎭⎪⎫4322=6,AH =23AM =4,∴OH =OA 2-AH 2=52-42=3,∴三棱锥O ABC 的体积为V =13×34×(43)2×3=12 3.4.(2018届高三·湖南东部六校联考)某三棱锥的三视图如图所示,该三棱锥的四个面的面积中,最大的是( )A .4 3B .8 3C .47D .8解析:选C 设该三棱锥为P ABC ,其中PA ⊥平面ABC ,PA =4,则由三视图可知△ABC 是边长为4的等边三角形,故PB =PC =42,所以S △ABC =12×4×23=43,S △PAB =S △PAC =12×4×4=8,S △PBC =12×4×22-22=47,故所有面中最大的面积为47.5.(2017·长春一检)已知三棱锥S ABC 中,SA ,SB ,SC 两两垂直,且SA =SB =SC =2,Q 是三棱锥S ABC 外接球上一动点,则点Q 到平面ABC 的距离的最大值为________.解析:将三棱锥S ABC 放入棱长为2的正方体中,则到平面ABC 的距离最大的点应在过球心且和平面ABC 垂直的直径上,因为正方体的外接球直径和正方体的体对角线长相等,所以2R =23(R 为外接球的半径),则点Q 到平面ABC 的距离的最大值为23×2R =23×23=433. 答案:4336.(2017·全国卷Ⅰ)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为________.解析:法一:由题意可知,折起后所得三棱锥为正三棱锥, 当△ABC 的边长变化时,设△ABC 的边长为a (a >0)cm , 则△ABC 的面积为34a 2,△DBC 的高为5-36a , 则正三棱锥的高为⎝⎛⎭⎪⎫5-36a 2-⎝ ⎛⎭⎪⎫36a 2=25-533a ,∴25-533a >0,∴0<a <53,∴所得三棱锥的体积V =13×34a 2×25-533a =312×25a 4-533a 5 .令t =25a 4-533a 5,则t ′=100a 3-2533a 4,由t ′=0,得a =43,此时所得三棱锥的体积最大,为415 cm 3.法二:如图,连接OD 交BC 于点G ,由题意知,OD ⊥BC .易得OG =36BC ,设OG =x ,则BC =23x ,DG =5-x ,S △ABC =12×23x ×3x =33x 2,故所得三棱锥的体积V =13×33x 2×-x2-x 2=3x 2×25-10x =3×25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈⎝ ⎛⎭⎪⎫0,52,则f ′(x )=100x 3-50x 4,令f ′(x )>0,即x 4-2x 3<0,得0<x <2,则当x ∈⎝ ⎛⎭⎪⎫0,52时,f (x )≤f (2)=80, ∴V ≤3×80=415.∴所求三棱锥的体积的最大值为415. 答案:415。
通用版2018年高考数学二轮复习课时跟踪检测十文

课时跟踪检测(十)1.(2018届高三·西安八校联考)如图,AC 是圆O 的直径,点B 在圆O 上,∠BAC =30°,AC ⊥BM ,且BM 交AC 于点M ,EA ⊥平面ABC ,CF ∥AE ,AE =3,AC =4,CF =1.(1)证明:BF ⊥EM ; (2)求三棱锥B EFM 的体积.解:(1)证明:∵EA ⊥平面ABC ,∴EA ⊥BM , 又BM ⊥AC ,AC ∩EA =A ,∴BM ⊥平面ACFE , ∴BM ⊥EM .①∵CF ∥AE ,∴CF ⊥平面ABC ,∴CF ⊥AC , ∴FM =MC 2+FC 2=2,又EM =AE 2+AM 2=32,EF =42+22=25, ∴FM 2+EM 2=EF 2,∴EM ⊥FM .②由①②并结合FM ∩BM =M ,得EM ⊥平面BMF ,∴EM ⊥BF . (2)由(1)知EM ⊥平面BMF ,∴V B EFM =V E BMF =13×S △BMF ×EM =13×⎝ ⎛⎭⎪⎫12×2×3×32= 3. 2.(2017·宝鸡质检)如图,四边形PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,又AC =1,∠ACB =120°,AB ⊥PC ,AM =2.(1)求证:平面PAC ⊥平面ABC ; (2)求三棱锥P MAC 的体积.解:(1)证明:由∠PCB =90° 得PC ⊥CB . 又AB ⊥PC ,AB ∩CB =B ,所以PC ⊥平面ABC . 又PC ⊂平面PAC ,所以平面PAC ⊥平面ABC .(2)在平面PCBM 内,过点M 作MN ⊥BC 交BC 于点N ,连接AN ,则CN =PM =1,又PM ∥BC ,所以四边形PMNC 为平行四边形,所以PC ∥MN且PC =MN ,由(1)得PC ⊥平面ABC ,所以MN ⊥平面ABC ,在△ACN 中,AN 2=AC 2+CN 2-2AC ·CN cos 120°=3,即AN = 3.又AM =2,所以在Rt △AMN 中,MN =1,所以PC =MN =1.在平面ABC 内,过点A 作AH ⊥BC 交BC 的延长线于点H ,则AH ⊥平面PMC , 因为AC =CN =1,∠ACB =120°,所以∠ANC =30°. 所以在Rt △AHN 中,AH =12AN =32,而S △PMC =12×1×1=12,所以V P MAC =V A PMC =13×S △PMC ×AH =13×12×32=312.3.(2017·云南检测)如图,在四棱锥P ABCD 中,PC ⊥平面ABCD ,底面ABCD 是平行四边形,AB =BC =2a ,AC =23a ,E 是PA 的中点.(1)求证:平面BED ⊥平面PAC ; (2)求点E 到平面PBC 的距离.解:(1)证明:在平行四边形ABCD 中,AB =BC , ∴四边形ABCD 是菱形,∴BD ⊥AC . ∵PC ⊥平面ABCD ,BD ⊂平面ABCD , ∴PC ⊥BD .又PC ∩AC =C ,∴BD ⊥平面PAC , ∵BD ⊂平面BED , ∴平面BED ⊥平面PAC .(2)设AC 交BD 于点O ,连接OE ,如图.在△PCA 中,易知O 为AC 的中点,又E 为PA 的中点, ∴EO ∥PC .∵PC ⊂平面PBC ,EO ⊄平面PBC ,∴EO ∥平面PBC . ∴点O 到平面PBC 的距离就是点E 到平面PBC 的距离. ∵PC ⊥平面ABCD ,PC ⊂平面PBC ,∴平面PBC ⊥平面ABCD ,且两平面的交线为BC . 在平面ABCD 内过点O 作OH ⊥BC 于点H , 则OH ⊥平面PBC .在Rt △BOC 中,BC =2a ,OC =12AC =3a ,∴OB =a .由S △BOC =12OC ·OB =12BC ·OH ,得OH =OB ·OC BC =a ·3a 2a =32a .∴点E 到平面PBC 的距离为32a . 4.(2017·郑州模拟)如图,已知四棱锥S ABCD ,底面梯形ABCD中,AD ∥BC ,平面SAB ⊥平面ABCD ,△SAB 是等边三角形,已知AC =2AB =4,BC =2AD =2CD =25,M 是SD 上任意一点,SM ―→=m MD ―→,且m >0.(1)求证:平面SAB ⊥平面MAC ;(2)试确定m 的值,使三棱锥S ABC 的体积为三棱锥S MAC 体积的3倍.解:(1)证明:在△ABC 中,由于AB =2,AC =4,BC =25,∴AB 2+AC 2=BC 2,故AB ⊥AC .又平面SAB ⊥平面ABCD ,平面SAB ∩平面ABCD =AB ,AC ⊂平面ABCD ,∴AC ⊥平面SAB ,又AC ⊂平面MAC ,故平面SAB ⊥平面MAC .(2)V S MAC =V M SAC =mm +1V D SAC =mm +1V S ACD ,∴V S ABC V S MAC =m +1m ·V S ABC V S ACD =m +1m ·S △ABC S △ACD =m +1m·2=3, ∴m =2,即当m =2时,三棱锥S ABC 的体积为三棱锥S MAC 体积的3倍. 5.(2017·石家庄质检)如图,在三棱柱ABC DEF 中,侧面ABED是边长为2的菱形,且∠ABE =π3,BC =212.点F 在平面ABED 内的正投影为G ,且点G在AE 上,FG =3,点M 在线段CF 上,且CM =14CF .(1)证明:直线GM ∥平面DEF ; (2)求三棱锥M DEF 的体积.解:(1)证明:∵点F 在平面ABED 内的正投影为G ,∴FG ⊥平面ABED ,∴FG ⊥GE ,又BC =212=EF ,FG =3,∴GE =32.∵四边形ABED 是边长为2的菱形,且∠ABE =π3,∴AE =2,∴AG =12.如图,过点G 作GH ∥AD 交DE 于点H ,连接FH .则GH AD =GEAE ,∴GH =32,由CM =14CF 得MF =32=GH .∵GH ∥AD ∥MF ,∴四边形GHFM 为平行四边形, ∴GM ∥FH .又GM ⊄平面DEF ,FH ⊂平面DEF ,∴GM ∥平面DEF .(2)由(1)知GM ∥平面DEF ,连接GD ,则有V M DEF =V G DEF .又V G DEF =V F DEG =13FG ·S △DEG =13FG ·34S△DAE =34,∴V MDEF=34.。
2018学高考理科数学通用版练酷专题二轮复习课时跟踪检测(十五)排列、组合与二项式定理含解析

课时跟踪检测(十五)排列、组合与二项式定理1.(2017·宝鸡模拟)我市正在建设最具幸福感城市,原计划沿渭河修建7个河滩主题公园.为提升城市品位、升级公园功能,打算减少2个河滩主题公园,两端河滩主题公园不在调整计划之列,相邻的两个河滩主题公园不能同时被调整,则调整方案的种数为( )A.12 B.8C.6 D.4解析:选C 由题意知除两端的2个河滩主题公园之外,从中间5个河滩主题公园中调整2个,保留3个,可以从这3个河滩主题公园的4个空中任选2个来调整,共有C错误!=6种方法.2.若错误!n(n∈N*)的展开式中第3项的二项式系数为36,则其展开式中的常数项为( )A.84 B.-252C.252 D.-84解析:选A 由题意可得C2n=36,∴n=9.∴错误!n=错误!9的展开式的通项为T r+1=C错误!·99-r·错误!r·x392 r,令9-错误!=0,得r=6.∴展开式中的常数项为C错误!×93×错误!6=84。
3.(2017·昆明一模)旅游体验师小李受某旅游网站的邀约,决定对甲、乙、丙、丁这四个景区进行体验式旅游,若甲景区不能最先旅游,乙景区和丁景区不能最后旅游,则小李旅游的方法数为()A.24 B.18C.16 D.10解析:选D 第一类,甲在最后一个体验,则有A错误!种方法;第二类,甲不在最后一个体验,则有A错误!A错误!种方法,所以小李旅游的方法共有A错误!+A错误!A错误!=10种.4.(2017·西安二检)将除颜色外完全相同的一个白球、一个黄球、两个红球分给三个小朋友,且每个小朋友至少分得一个球的分法种数为( )A.15 B.21C.18 D.24解析:选B 分两类,第一类:两个红球分给其中一个人,有A错误!种分法;第二类:白球和黄球分给一个人,有A1,3种分法;第三类:白球和一个红球分给一个人,有A33种分法;第四类:黄球和一个红球分给一个人,有A错误!种分法.总共有A错误!+A错误!+A错误!+A错误!=21种分法.5.将错误!n的展开式按x的降幂排列,若前三项的系数成等差数列,则n为( )A.6 B.7C.8 D.9解析:选C 二项式的展开式为T r+1=C错误!(错误!)n-r错误!r=C错误!r x324-n r,由前三项系数成等差数列得C错误!+C错误!错误!2=2C错误!错误!1,错误!即n2-9n+8=0,解得n=8或n=1(舍去),故n=8。
(通用版)2018年高考数学二轮复习课时跟踪检测(十二)文
课时跟踪检测(十二)A 组——12+4提速练一、选择题1.(2017·南昌模拟)某校为了解学生学习的情况,采用分层抽样的方法从高一1 000人、高二1 200人、高三n 人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n =( )A .860B .720C .1 020D .1 040解析:选D 根据分层抽样方法,得 1 2001 000+1 200+n×81=30,解得n =1 040.2.(2018届高三·西安八校联考)某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60个同学按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是( )(注:下表为随机数表的第8行和第9行)⎭⎪⎬⎪⎫63 01 63 78 59 16 95 55 67 19 98 10 5071 75 12 86 73 58 07 44 39 52 38 79第8行⎭⎪⎬⎪⎫33 21 12 34 29 78 64 56 07 82 52 42 0744 38 15 51 00 13 42 99 66 02 79 54第9行 A .07 B .25 C .42D .52解析:选D 依题意得,依次选出的个体分别为12,34,29,56,07,52,…因此选出的第6个个体是52,故选D.3.(2017·宝鸡质检)对一批产品的长度(单位:毫米)进行抽样检测,样本容量为200,如图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则该样本中三等品的件数为( )A .5B .7C .10D .50解析:选D 根据题中的频率分布直方图可知,三等品的频率为1-(0.050 0+0.062 5+0.037 5)×5=0.25,因此该样本中三等品的件数为200×0.25=50,故选D.4.(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4n mB.2nmC.4m nD.2mn解析:选C 因为x 1,x 2,…,x n ,y 1,y 2,…,y n 都在区间[0,1]内随机抽取,所以构成的n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n )都在边长为1的正方形OABC 内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC 内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC 内的数对有m 个.用随机模拟的方法可得S 扇形S 正方形=m n ,即π4=m n,所以π=4mn.5.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A .-1B .0 C.12D .1解析:选D 因为所有样本点都在直线y =12x +1上,所以这组样本数据完全正相关,故其相关系数为1.6.甲、乙两位歌手在“中国新歌声”选拔赛中,5次得分情况如图所示.记甲、乙两人的平均得分分别为x 甲,x 乙,则下列判断正确的是( )A.x 甲<x 乙,甲比乙成绩稳定B.x 甲<x 乙,乙比甲成绩稳定C.x 甲>x 乙,甲比乙成绩稳定D.x 甲>x 乙,乙比甲成绩稳定 解析:选B x 甲=76+77+88+90+945=85,x 乙=75+88+86+88+935=86,s 2甲=15[(76-85)2+(77-85)2+(88-85)2+(90-85)2+(94-85)2]=52,s 2乙=15[(75-86)2+(88-86)2+(86-86)2+(88-86)2+(93-86)2]=35.6,所以x 甲<x 乙,s 2甲>s 2乙,故乙比甲成绩稳定,故选B.7.(2017·洛阳统考)若θ∈[0,π],则sin ⎝ ⎛⎭⎪⎫θ+π3>12成立的概率为( )A.13B.12C.23D .1 解析:选B 依题意,当θ∈[0,π]时,θ+π3∈⎣⎢⎡⎦⎥⎤π3,4π3,由sin ⎝ ⎛⎭⎪⎫θ+π3>12得π3≤θ+π3<5π6,即0≤θ<π2.因此,所求的概率为π2π=12. 8.将一枚骰子先后抛掷两次,并记朝上的点数分别为m ,n ,m 为2或4时,m +n >5的概率为( )A.227 B.29 C.13 D.23解析:选D 依题意得,先后抛掷两次骰子所得的点数对(m ,n )为:(1,1),(1,2),(1,3),(1,4),(1,5),…,(6,5),(6,6),共有36组,其中当m =2或4时,相应的点数对(m ,n )共有12组.当m =2时,满足m +n >5,即n >3的点数对(m ,n )共有3组;当m =4时,满足m +n >5,即n >1的点数对(m ,n )共有5组,因此所求的概率为3+512=23. 9.(2017·惠州调研)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中各随机选一匹进行一场比赛,则田忌的马获胜的概率为( )A.13B.14C.15D.16解析:选A 设田忌的上、中、下三个等次的马分别为A ,B ,C ,齐王的上、中、下三个等次的马分别为a ,b ,c ,从双方的马匹中各随机选一匹进行一场比赛的所有可能结果有Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,共9种,田忌马获胜有Ab ,Ac ,Bc ,共3种,所以田忌的马获胜的概率为13.10.(2018届高三·西安八校联考)在平面区域{(x ,y )|0≤x ≤1,1≤y ≤2}内随机投入一点P ,则点P 的坐标(x ,y )满足y ≤2x 的概率为( )A.34B.23C.12D.14解析:选D 依题意得,不等式组⎩⎪⎨⎪⎧0≤x ≤1,1≤y ≤2表示的平面区域为如图所示的正方形ABCD 的内部(含边界),其面积为1×1=1,不等式组⎩⎪⎨⎪⎧0≤x ≤1,1≤y ≤2,y ≤2x表示的平面区域为图中阴影部分(含边界),其面积为12×12×1=14,因此所求的概率为14.11.(2018届高三·广东五校联考)在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为( )A.12B.13C.24D.23解析:选C 若直线y =k (x +3)与圆x 2+y 2=1相交,则圆心到直线的距离d =|3k |1+k2<1,解得-24<k <24,故在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为P =222=24.12.已知样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ),若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数z =a x +(1-a )y ,其中0<a <12,则n ,m 的大小关系为( )A .n <mB .n >mC .n =mD .不能确定解析:选A 由题意可得,x =x 1+x 2+…+x nn,y =y1+y 2+…+y mm,则z =x 1+x 2+…+x n +y 1+y 2+…+y m n +m =n n +m ·x 1+x 2+…+x n n +m n +m ·y 1+y 2+…+y mm =n n +m·x +mn +m ·y =a x +(1-a )y ,所以nn +m=a ,mn +m =1-a ,又0<a <12,所以0<n n +m <12<mn +m,故n <m .二、填空题13.(2017·石家庄质检)设样本数据x 1,x 2,…,x 2 017的方差是4,若y i =2x i -1(i =1,2,…,2 017),则y 1,y 2,…,y 2 017的方差为________.解析:设样本数据的平均数为x -,则y i =2x i -1的平均数为2x --1,则y 1,y 2,…,y 2 017的方差为12 017[(2x 1-1-2x -+1)2+(2x 2-1-2x -+1)2+…+(2x 2 017-1-2x -+1)2]=4×12 017[(x 1-x -)2+(x 2-x -)2+…+(x 2 017-x -)2]=4×4=16.答案:1614.(2018届高三·广西三市联考)已知函数f (x )=log a x +log 1a8(a >0,且a ≠1),在集合⎩⎨⎧⎭⎬⎫14,13,12,3,4,5,6,7中任取一个数a ,则f (3a +1)>f (2a )>0的概率为________. 解析:∵3a +1>2a ,f (3a +1)>f (2a ),f (x )=log a x -log a 8,∴a >1.又f (2a )>0,∴2a >8,即a >4,符合条件的a 的值为5,6,7,故所求概率为38.答案:3815.(2017·张掖模拟)在区间[0,π]上随机取一个数θ,则使2≤2sin θ+2cos θ≤2成立的概率为________.解析:由2≤2sin θ+2cos θ≤2,得22≤sin ⎝⎛⎭⎪⎫θ+π4≤1,结合θ∈[0,π],得满足条件的θ∈⎣⎢⎡⎦⎥⎤0,π2,∴使2≤2sin θ+2cos θ≤2成立的概率为π2π=12.答案:1216.甲、乙两人在5次综合测评中成绩的茎叶图如图所示,其中一个数字被污损,记甲、乙的平均成绩分别为x -甲,x -乙,则x -甲>x -乙的概率是________.解析:设污损处的数字为m ,由15(84+85+87+90+m +99)=15(86+87+91+92+94),得m=5,即当m =5时,甲、乙两人的平均成绩相等.m 的取值有0,1,2,3,…,9,共10种可能,其中,当m =6,7,8,9时,x -甲>x -乙,故所求概率为410=25.答案:25B 组——能力小题保分练1.(2017·成都模拟)两位同学约定下午5:30~6:00在图书馆见面,且他们5:30~6:00之间到达的时刻是等可能的,先到的同学须等待,若15分钟后还未见面便离开.则这两位同学能够见面的概率是( )A.1136 B.14 C.12 D.34解析:选D 如图所示,以5:30作为原点O ,建立平面直角坐标系,设两位同学到达的时刻分别为x ,y ,设事件A 表示两位同学能够见面,所构成的区域为A ={(x ,y )||x -y |≤15},即图中阴影部分,根据几何概型概率计算公式得P (A )=30×30-2×12×15×1530×30=34.2.(2017·广州模拟)四个人围坐在一张圆桌旁,每个人面前放着一枚完全相同的硬币,所有人同时抛出自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么没有相邻的两个人站起来的概率为( )A.14B.716C.12D.916解析:选B 四个人按顺序围成一桌,同时抛出自己的硬币抛出的硬币正面记为0,反面记为1,则总的基本事件为(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1),(0,1,0,0),(0,1,0,1),(0,1,1,0),(0,1,1,1),(1,0,0,0),(1,0,0,1),(1,0,1,0),(1,0,1,1),(1,1,0,0)(1,1,0,1),(1,1,1,0),(1,1,1,1),共有16种情况.若四个人同时坐着,有1种情况;若三个人坐着,一个人站着,有4种情况;若两个人坐着,两个人站着,此时没有相邻的两个人站起来有2种情况.所以没有相邻的两个人站起来的情况共有1+4+2=7种,故所求概率为716.3.一个样本容量为10的样本数据,它们组成一个公差不为0的等差数列{a n },若a 3=8,且a 1,a 3,a 7成等比数列,则此样本的平均数和中位数分别是( )A .13,12B .13,13C .12,13D .13,14解析:选B 设等差数列{a n }的公差为d (d ≠0),a 3=8,a 1a 7=a 23=64,即(8-2d )(8+4d )=64,又d ≠0,所以d =2,故样本数据为:4,6,8,10,12,14,16,18,20,22,平均数为S 1010=+10=13,中位数为12+142=13.4.根据如下样本数据:得到的回归方程为y =bx +a .若样本点的中心为(5,0.9),则当x 每增加1个单位时,y 就( )A .增加1.4个单位B .减少1.4个单位C .增加7.9个单位D .减少7.9个单位解析:选B 依题意得,4.0+a -5.4-0.5+0.5+b -0.65=0.9,故a +b =6.5;①又样本点的中心为(5,0.9),故0.9=5b +a ,②联立①②,解得b =-1.4,a =7.9,则y ^=-1.4x +7.9, 所以当x 每增加1个单位时,y 就减少1.4个单位.5.正六边形ABCDEF 的边长为1,在正六边形内随机取点M ,则使△MAB 的面积大于34的概率为________.解析:如图所示,作出正六边形ABCDEF ,其中心为O ,过点O 作OG ⊥AB ,垂足为G ,则OG 的长为中心O 到AB 边的距离.易知∠AOB =360°6=60°,且OA =OB ,所以△AOB 是等边三角形,所以OA =OB =AB =1,OG=OA ·sin 60°=1×32=32,即对角线CF 上的点到AB 的距离都为32. 设△MAB 中AB 边上的高为h ,则由S △MAB =12×1×h >34,解得h >32.所以要使△MAB 的面积大于34,只需满足h >32,即需使M 位于CF 的上方.故由几何概型得,△MAB 的面积大于34的概率P =S 梯形CDEF S 正六边形ABCDEF =12. 答案:126.某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成(每人只参加一项),现从这些运动员中抽取一个容量为n 的样本,若分别采用系统抽样法和分层抽样法,则都不用剔除个体;当样本容量为n +1时,若采用系统抽样法,则需要剔除1个个体,那么样本容量n 为________.解析:总体容量为6+12+18=36.当样本容量为n 时,由题意可知,系统抽样的抽样距为36n,分层抽样的抽样比是n 36,则采用分层抽样法抽取的乒乓球运动员人数为6×n 36=n6,篮球运动员人数为12×n 36=n 3,足球运动员人数为18×n 36=n2,可知n 应是6的倍数,36的约数,故n =6,12,18.当样本容量为n +1时,剔除1个个体,此时总体容量为35,系统抽样的抽样距为35n +1,因为35n +1必须是整数,所以n 只能取6,即样本容量n 为6.答案:6。
【K12教育学习资料】通用版2018年高考数学二轮复习课时跟踪检测二十二文
课时跟踪检测(二十二)A 组——12+4提速练一、选择题1.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)解析:选A 由题意得,f (1)=3,所以f (x )>f (1),即f (x )>3.当x <0时,x +6>3,解得-3<x <0;当 x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1.综上,不等式的解集为(-3,1)∪(3,+∞).2.在R 上定义运算:x ⊗y =x (1-y ).若不等式(x -a )⊗(x -b )>0的解集是(2,3),则a +b =( )A .1B .2C .4D .8解析:选C 由题知(x -a )⊗(x -b )=(x -a )[1-(x -b )]>0,即(x -a )[x -(b +1)]<0,由于该不等式的解集为(2,3),所以方程(x -a )[x -(b +1)]=0的两根之和等于5,即a +b +1=5,故a +b =4.3.已知正数a ,b 的等比中项是2,且m =b +1a ,n =a +1b,则m +n 的最小值是( )A .3B .4C .5D .6解析:选C 由正数a ,b 的等比中项是2,可得ab =4,又m =b +1a ,n =a +1b,所以m+n =a +b +1a +1b =a +b +a +b ab =54(a +b )≥54×2ab =5,当且仅当a =b =2时等号成立,故m +n 的最小值为5.4.(2017·合肥质检)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +y ≤4,y ≥2,则目标函数z =x +2y的最大值为( )A .5B .6 C.132D .7解析:选C 作出不等式组表示的平面区域,如图中阴影部分所示,由图易知,当直线z =x +2y 经过直线x -y =-1与x +y =4的交点,即⎝ ⎛⎭⎪⎫32,52时,z 取得最大值,z max =32+2×52=132,故选C.5.(2017·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解析:选B 作出不等式组表示的可行域如图中阴影部分所示,作出直线l 0:y =x ,平移直线l 0,当直线z =x -y 过点A (2,0)时,z 取得最大值2,当直线z =x -y 过点B (0,3)时,z 取得最小值-3, 所以z =x -y 的取值范围是[-3,2].6.(2017·全国卷Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是( )A .-15B .-9C .1D .9解析:选A 作出不等式组表示的可行域如图中阴影部分所示.易求得可行域的顶点A (0,1),B (-6,-3),C (6,-3),当直线z =2x +y 过点B (-6,-3)时,z 取得最小值,z min =2×(-6)-3=-15.7.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( ) A .8 B .4 C .2D .1解析:选B ∵a 2+b 2+c 2=4,∴2ab +2bc +2ac ≤(a 2+b 2)+(b 2+c 2)+(a 2+c 2)=2(a 2+b 2+c 2)=8,∴ab +bc +ac ≤4(当且仅当a =b =c =233时等号成立),∴ab +bc +ac 的最大值为4.8.(2017·惠州调研)已知实数x ,y 满足:⎩⎪⎨⎪⎧x +3y +5≥0,x +y -1≤0,x +a ≥0,若z =x +2y 的最小值为-4,则实数a =( )A .1B .2C .4D .8解析:选B 作出不等式组表示的平面区域,如图中阴影部分所示,当直线z =x +2y 经过点C ⎝⎛⎭⎪⎫-a ,a -53时,z 取得最小值-4,所以-a +2·a -53=-4,解得a =2,故选B.9.当x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y ≤2,y -4≤x ,x -7y ≤2时,-2≤kx-y ≤2恒成立,则实数k 的取值范围是( )A .[-1,1]B .[-2,0]C.⎣⎢⎡⎦⎥⎤-15,35D.⎣⎢⎡⎦⎥⎤-15,0解析:选D 作出不等式组表示的平面区域,如图中阴影部分所示,设z =kx -y ,由⎩⎪⎨⎪⎧ x +2y =2,y -4=x ,得⎩⎪⎨⎪⎧x =-2,y =2,即B (-2,2),由⎩⎪⎨⎪⎧ x +2y =2,x -7y =2,得⎩⎪⎨⎪⎧x =2,y =0,即C (2,0),由⎩⎪⎨⎪⎧y -4=x ,x -7y =2,得⎩⎪⎨⎪⎧x =-5,y =-1,即A (-5,-1),要使不等式-2≤kx -y ≤2恒成立,则⎩⎪⎨⎪⎧-2≤-2k -2≤2,-2≤2k ≤2,-2≤-5k +1≤2,即⎩⎪⎨⎪⎧-2≤k ≤0,-1≤k ≤1,-15≤k ≤35,所以-15≤k ≤0,故选D.10.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )A.12万元C .17万元D .18万元解析:选D 设该企业每天生产甲产品x 吨,乙产品y 吨,每天获得的利润为z 万元, 则有z =3x +4y ,由题意得x ,y 满足⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出可行域如图中阴影部分所示,根据线性规划的有关知识,知当直线z =3x +4y 过点B (2,3)时,z 取最大值18,故该企业每天可获得的最大利润为18万元.11.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞) 解析:选B 由题可知,1=1x +4y ≥24xy=4xy,即xy ≥4,于是有m 2-3m >x +y4≥xy≥4,故m 2-3m >4,化简得(m +1)(m -4)>0,解得m <-1或m >4,即实数m 的取值范围为(-∞,-1)∪(4,+∞).12.(2017·天津高考)已知函数f (x )=⎩⎪⎨⎪⎧x 2-x +3,x ≤1,x +2x,x >1.设a ∈R ,若关于x 的不等式f (x )≥⎪⎪⎪⎪⎪⎪x2+a 在R 上恒成立,则a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-4716,2 B.⎣⎢⎡⎦⎥⎤-4716,3916 C .[-23,2]D.⎣⎢⎡⎦⎥⎤-23,3916 解析:选A 法一:根据题意,作出f (x )的大致图象,如图所示.当x ≤1时,若要f (x )≥⎪⎪⎪⎪⎪⎪x2+a 恒成立,结合图象,只需x 2-x +3≥-⎝ ⎛⎭⎪⎫x 2+a ,即x 2-x 2+3+a ≥0,故对于方程x 2-x 2+3+a =0,Δ=⎝ ⎛⎭⎪⎫-122-4(3+a )≤0,解得a ≥-4716;当x >1时,若要f (x )≥⎪⎪⎪⎪⎪⎪x 2+a 恒成立,结合图象,只需x +2x ≥x 2+a ,即x 2+2x ≥a ,又x 2+2x ≥2,当且仅当x 2=2x,即x =2时等号成立,所以a ≤2. 综上,a 的取值范围是⎣⎢⎡⎦⎥⎤-4716,2.法二:关于x 的不等式f (x )≥⎪⎪⎪⎪⎪⎪x 2+a 在R 上恒成立等价于-f (x )≤a +x2≤f (x ),即-f (x )-x 2≤a ≤f (x )-x2在R 上恒成立,令g (x )=-f (x )-x2.若x ≤1,则g (x )=-(x 2-x +3)-x2=-x 2+x2-3=-⎝ ⎛⎭⎪⎫x -142-4716,当x =14时,g (x )max =-4716;若x >1,则g (x )=-⎝ ⎛⎭⎪⎫x +2x -x 2=-⎝ ⎛⎭⎪⎫3x 2+2x ≤-23,当且仅当3x 2=2x ,且x >1,即x =233时,等号成立,故g (x )max =-2 3. 综上,g (x )max =-4716.令h (x )=f (x )-x2,若x ≤1,则h (x )=x 2-x +3-x 2=x 2-32x +3=⎝ ⎛⎭⎪⎫x -342+3916, 当x =34时,h (x )min =3916;若x >1,则h (x )=x +2x -x 2=x 2+2x≥2,当且仅当x 2=2x,且x >1,即x =2时,等号成立,故h (x )min =2. 综上,h (x )min =2.故a 的取值范围为⎣⎢⎡⎦⎥⎤-4716,2. 二、填空题13.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为________.解析:由x >a ,知x -a >0,则2x +2x -a =2(x -a )+2x -a+2a ≥2 x -a ·2x -a+2a =4+2a ,由题意可知4+2a ≥7,解得a ≥32,即实数a 的最小值为32.答案:3214.若2x +4y=4,则x +2y 的最大值是________. 解析:因为4=2x +4y =2x +22y ≥22x ×22y =22x +2y,所以2x +2y≤4=22,即x +2y ≤2,所以当且仅当2x=22y=2,即x =2y =1时,x +2y 取得最大值2.答案:215.如果实数x ,y 满足条件⎩⎪⎨⎪⎧x +y -2≥0,x -1≤0,y -2≤0,且z =yx +a 的最小值为12,则正数a 的值为________.解析:根据约束条件画出可行域如图中阴影部分所示,经分析可知当x =1,y =1时,z 取最小值12,即11+a =12,所以a =1.答案:116.对于问题:“已知关于x 的不等式ax 2+bx +c >0的解集为(-1,2),解关于x 的不等式ax 2-bx +c >0”,给出如下一种解法:解:由ax 2+bx +c >0的解集为(-1,2),得a (-x )2+b (-x )+c >0的解集为(-2,1),即关于x 的不等式ax 2-bx +c >0的解集为(-2,1).参考上述解法,若关于x 的不等式kx +a +x +b x +c <0的解集为⎝⎛⎭⎪⎫-1,-13∪⎝ ⎛⎭⎪⎫12,1,则关于x的不等式kx ax +1+bx +1cx +1<0的解集为________. 解析:不等式kx ax +1+bx +1cx +1<0,可化为k a +1x +b +1xc +1x <0,故得-1<1x <-13或12<1x<1,解得-3<x <-1或1<x <2,故kx ax +1+bx +1cx +1<0的解集为(-3,-1)∪(1,2).答案:(-3,-1)∪(1,2)B 组——能力小题保分练1.已知x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -3y +5≥0,x ≥0,y ≥0,则z =8-x·⎝ ⎛⎭⎪⎫12y 的最小值为( )A .1 B.324C.116D.132解析:选D 不等式组表示的平面区域如图中阴影部分所示,而z=8-x·⎝ ⎛⎭⎪⎫12y =2-3x -y ,欲使z 最小,只需使-3x -y 最小即可.由图知当x =1,y =2时,-3x -y 的值最小,且-3×1-2=-5,此时2-3x-y最小,最小值为132.故选D.2.设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,4x -y -4≤0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为6,则1a +2b的最小值为( )A .1B .3C .2D .4解析:选B 依题意画出不等式组表示的平面区域,如图中阴影部分.∵a >0,b >0,∴当直线z =ax +by 经过点(2,4)时,z 取得最大值6, ∴2a +4b =6,即a +2b =3.∵1a +2b =⎝ ⎛⎭⎪⎫1a +2b (a +2b )×13=53+2b 3a +2a3b ≥3,当且仅当a =b =1时等号成立, ∴1a +2b的最小值为3.故选B.3.设不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n所表示的平面区域为D n ,记D n 内的整点(横坐标和纵坐标均为整数的点)个数为a n (n ∈N *),若m >1a 1a 2+1a 2a 3+…+1a n a n +1对于任意的正整数恒成立,则实数m 的取值范围是( )A.⎣⎢⎡⎭⎪⎫19,+∞B.⎝ ⎛⎭⎪⎫19,+∞C.⎝⎛⎦⎥⎤-∞,19D.⎝⎛⎭⎪⎫-∞,19解析:选 A 不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n表示的平面区域为直线x =0,y =0,y =-nx+3n 围成的直角三角形(不含直角边),区域内横坐标为1的整点有2n 个,横坐标为2的整点有n 个,所以a n =3n ,所以1a n a n +1=13nn +=19⎝ ⎛⎭⎪⎫1n -1n +1,所以1a 1a 2+1a 2a 3+…+1a n a n +1=19⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=19⎝ ⎛⎭⎪⎫1-1n +1,数列⎩⎨⎧⎭⎬⎫19⎝⎛⎭⎪⎫1-1n +1为单调递增数列,故当n 趋近于无穷大时,19⎝ ⎛⎭⎪⎫1-1n +1趋近于19,所以m ≥19.故选A. 4.在平面直角坐标系中,点P 是由不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1所确定的平面区域上的动点,Q 是直线2x +y =0上任意一点,O 为坐标原点,则|OP ―→+OQ ―→|的最小值为( )A.255 B.55 C.233D.33解析:选B 作出不等式组对应的可行域,如图中阴影部分所示.设P (x ,y ),Q (a ,-2a ),则OP ―→+OQ ―→=(x +a ,y -2a ),则|OP ―→+OQ ―→|=x +a2+y -2a2,设z =|OP ―→+OQ ―→|,则z 的几何意义为可行域内的动点P 到动点M (-a,2a )的距离,其中M 也在直线2x +y =0上,由图可知,当点P 为(0,1),M 为P 在直线2x +y =0上的垂足时,z 取得最小值d =122+1=15=55.5.设二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ).若∀x ∈R ,不等式f (x )≥f ′(x )恒成立,则b 2a +2c 的最大值为( )A.6+2 B .6-2 C .22+2D .22-2解析:选B 由题意得f ′(x )=2ax +b ,由f (x )≥f ′(x )在R 上恒成立,得ax 2+(b -2a )x+c -b ≥0在R 上恒成立,则a >0且Δ≤0,可得b 2≤4ac -4a 2,则b2a 2+2c 2≤4ac -4a 2a 2+2c 2=4⎝ ⎛⎭⎪⎫ca -12⎝ ⎛⎭⎪⎫c a 2+1,又4ac -4a 2≥0,∴4·c a -4≥0,∴c a -1≥0,令t =c a -1,则t ≥0.当t >0时,b 2a 2+2c 2≤4t2t 2+4t +3=42t +3t+4≤426+4=6-2(当且仅当t =62时等号成立),当t =0时,b2a 2+2c 2=0<6-2,故b 2a 2+2c 2的最大值为6-2,故选B.6.(2017·广州模拟)满足不等式组⎩⎪⎨⎪⎧x -y +x +y -,0≤x ≤a 的点(x ,y )组成的图形的面积是5,则实数a 的值为________.解析:不等式组⎩⎪⎨⎪⎧x -y +x +y -,0≤x ≤a等价于⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,0≤x ≤a或⎩⎪⎨⎪⎧x -y +1≤0,x +y -3≤0,0≤x ≤a .画出不等式组⎩⎪⎨⎪⎧x -y +1≤0,x +y -3≤0,x ≥0所表示的平面区域如图中△ABC 及其内部,易知A (1,2),因为S△ABC=12×1×2=1<5,所以a >1.画出不等式组⎩⎪⎨⎪⎧x -y +x +y -,0≤x ≤a 所表示的平面区域, 如图中的△ABC 和△ADE 所示.不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,0≤x ≤a所对应的平面区域是△ADE 及其内部,易知D (a ,a +1),E (a,3-a ),所以S △ADE =12×(a -1)×(a +1-3+a )=5-1,解得a =3(a =-1舍去).答案:3。
通用版2018年高考数学二轮复习课时跟踪检测十二文201802063107
课时跟踪检测(十二)A 组——12+4提速练一、选择题1.(2017·南昌模拟)某校为了解学生学习的情况,采用分层抽样的方法从高一1 000人、高二1 200人、高三n 人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n =( )A .860B .720C .1 020D .1 040解析:选D 根据分层抽样方法,得 1 2001 000+1 200+n×81=30,解得n =1 040.2.(2018届高三·西安八校联考)某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60个同学按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是( )(注:下表为随机数表的第8行和第9行)⎭⎪⎬⎪⎫63 01 63 78 59 16 95 55 67 19 98 10 5071 75 12 86 73 58 07 44 39 52 38 79第8行⎭⎪⎬⎪⎫33 21 12 34 29 78 64 56 07 82 52 42 0744 38 15 51 00 13 42 99 66 02 79 54第9行 A .07 B .25 C .42D .52解析:选D 依题意得,依次选出的个体分别为12,34,29,56,07,52,…因此选出的第6个个体是52,故选D.3.(2017·宝鸡质检)对一批产品的长度(单位:毫米)进行抽样检测,样本容量为200,如图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则该样本中三等品的件数为( )A .5B .7C .10D .50解析:选D 根据题中的频率分布直方图可知,三等品的频率为1-(0.050 0+0.062 5+0.037 5)×5=0.25,因此该样本中三等品的件数为200×0.25=50,故选D.4.(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4n mB.2nmC.4m nD.2mn解析:选C 因为x 1,x 2,…,x n ,y 1,y 2,…,y n 都在区间[0,1]内随机抽取,所以构成的n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n )都在边长为1的正方形OABC 内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC 内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC 内的数对有m 个.用随机模拟的方法可得S 扇形S 正方形=m n ,即π4=m n,所以π=4mn.5.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A .-1B .0 C.12D .1解析:选D 因为所有样本点都在直线y =12x +1上,所以这组样本数据完全正相关,故其相关系数为1.6.甲、乙两位歌手在“中国新歌声”选拔赛中,5次得分情况如图所示.记甲、乙两人的平均得分分别为x 甲,x 乙,则下列判断正确的是( )A.x 甲<x 乙,甲比乙成绩稳定B.x 甲<x 乙,乙比甲成绩稳定C.x 甲>x 乙,甲比乙成绩稳定D.x 甲>x 乙,乙比甲成绩稳定 解析:选B x 甲=76+77+88+90+945=85,x 乙=75+88+86+88+935=86,s 2甲=15[(76-85)2+(77-85)2+(88-85)2+(90-85)2+(94-85)2]=52,s 2乙=15[(75-86)2+(88-86)2+(86-86)2+(88-86)2+(93-86)2]=35.6,所以x 甲<x 乙,s 2甲>s 2乙,故乙比甲成绩稳定,故选B.7.(2017·洛阳统考)若θ∈[0,π],则sin ⎝ ⎛⎭⎪⎫θ+π3>12成立的概率为( )A.13B.12C.23D .1 解析:选B 依题意,当θ∈[0,π]时,θ+π3∈⎣⎢⎡⎦⎥⎤π3,4π3,由sin ⎝ ⎛⎭⎪⎫θ+π3>12得π3≤θ+π3<5π6,即0≤θ<π2.因此,所求的概率为π2π=12. 8.将一枚骰子先后抛掷两次,并记朝上的点数分别为m ,n ,m 为2或4时,m +n >5的概率为( )A.227 B.29 C.13 D.23解析:选D 依题意得,先后抛掷两次骰子所得的点数对(m ,n )为:(1,1),(1,2),(1,3),(1,4),(1,5),…,(6,5),(6,6),共有36组,其中当m =2或4时,相应的点数对(m ,n )共有12组.当m =2时,满足m +n >5,即n >3的点数对(m ,n )共有3组;当m =4时,满足m +n >5,即n >1的点数对(m ,n )共有5组,因此所求的概率为3+512=23. 9.(2017·惠州调研)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中各随机选一匹进行一场比赛,则田忌的马获胜的概率为( )A.13B.14C.15D.16解析:选A 设田忌的上、中、下三个等次的马分别为A ,B ,C ,齐王的上、中、下三个等次的马分别为a ,b ,c ,从双方的马匹中各随机选一匹进行一场比赛的所有可能结果有Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,共9种,田忌马获胜有Ab ,Ac ,Bc ,共3种,所以田忌的马获胜的概率为13.10.(2018届高三·西安八校联考)在平面区域{(x ,y )|0≤x ≤1,1≤y ≤2}内随机投入一点P ,则点P 的坐标(x ,y )满足y ≤2x 的概率为( )A.34B.23C.12D.14解析:选D 依题意得,不等式组⎩⎪⎨⎪⎧0≤x ≤1,1≤y ≤2表示的平面区域为如图所示的正方形ABCD 的内部(含边界),其面积为1×1=1,不等式组⎩⎪⎨⎪⎧0≤x ≤1,1≤y ≤2,y ≤2x表示的平面区域为图中阴影部分(含边界),其面积为12×12×1=14,因此所求的概率为14.11.(2018届高三·广东五校联考)在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为( )A.12B.13C.24D.23解析:选C 若直线y =k (x +3)与圆x 2+y 2=1相交,则圆心到直线的距离d =|3k |1+k2<1,解得-24<k <24,故在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为P =222=24.12.已知样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ),若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数z =a x +(1-a )y ,其中0<a <12,则n ,m 的大小关系为( )A .n <mB .n >mC .n =mD .不能确定解析:选A 由题意可得,x =x 1+x 2+…+x nn,y =y1+y 2+…+y mm,则z =x 1+x 2+…+x n +y 1+y 2+…+y m n +m =n n +m ·x 1+x 2+…+x n n +m n +m ·y 1+y 2+…+y mm =n n +m·x +mn +m ·y =a x +(1-a )y ,所以nn +m=a ,mn +m =1-a ,又0<a <12,所以0<n n +m <12<mn +m,故n <m .二、填空题13.(2017·石家庄质检)设样本数据x 1,x 2,…,x 2 017的方差是4,若y i =2x i -1(i =1,2,…,2 017),则y 1,y 2,…,y 2 017的方差为________.解析:设样本数据的平均数为x -,则y i =2x i -1的平均数为2x --1,则y 1,y 2,…,y 2 017的方差为12 017[(2x 1-1-2x -+1)2+(2x 2-1-2x -+1)2+…+(2x 2 017-1-2x -+1)2]=4×12 017[(x 1-x -)2+(x 2-x -)2+…+(x 2 017-x -)2]=4×4=16.答案:1614.(2018届高三·广西三市联考)已知函数f (x )=log a x +log 1a8(a >0,且a ≠1),在集合⎩⎨⎧⎭⎬⎫14,13,12,3,4,5,6,7中任取一个数a ,则f (3a +1)>f (2a )>0的概率为________. 解析:∵3a +1>2a ,f (3a +1)>f (2a ),f (x )=log a x -log a 8,∴a >1.又f (2a )>0,∴2a >8,即a >4,符合条件的a 的值为5,6,7,故所求概率为38.答案:3815.(2017·张掖模拟)在区间[0,π]上随机取一个数θ,则使2≤2sin θ+2cos θ≤2成立的概率为________.解析:由2≤2sin θ+2cos θ≤2,得22≤sin ⎝⎛⎭⎪⎫θ+π4≤1,结合θ∈[0,π],得满足条件的θ∈⎣⎢⎡⎦⎥⎤0,π2,∴使2≤2sin θ+2cos θ≤2成立的概率为π2π=12.答案:1216.甲、乙两人在5次综合测评中成绩的茎叶图如图所示,其中一个数字被污损,记甲、乙的平均成绩分别为x -甲,x -乙,则x -甲>x -乙的概率是________.解析:设污损处的数字为m ,由15(84+85+87+90+m +99)=15(86+87+91+92+94),得m=5,即当m =5时,甲、乙两人的平均成绩相等.m 的取值有0,1,2,3,…,9,共10种可能,其中,当m =6,7,8,9时,x -甲>x -乙,故所求概率为410=25.答案:25B 组——能力小题保分练1.(2017·成都模拟)两位同学约定下午5:30~6:00在图书馆见面,且他们5:30~6:00之间到达的时刻是等可能的,先到的同学须等待,若15分钟后还未见面便离开.则这两位同学能够见面的概率是( )A.1136 B.14 C.12 D.34解析:选D 如图所示,以5:30作为原点O ,建立平面直角坐标系,设两位同学到达的时刻分别为x ,y ,设事件A 表示两位同学能够见面,所构成的区域为A ={(x ,y )||x -y |≤15},即图中阴影部分,根据几何概型概率计算公式得P (A )=30×30-2×12×15×1530×30=34.2.(2017·广州模拟)四个人围坐在一张圆桌旁,每个人面前放着一枚完全相同的硬币,所有人同时抛出自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么没有相邻的两个人站起来的概率为( )A.14B.716C.12D.916解析:选B 四个人按顺序围成一桌,同时抛出自己的硬币抛出的硬币正面记为0,反面记为1,则总的基本事件为(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1),(0,1,0,0),(0,1,0,1),(0,1,1,0),(0,1,1,1),(1,0,0,0),(1,0,0,1),(1,0,1,0),(1,0,1,1),(1,1,0,0)(1,1,0,1),(1,1,1,0),(1,1,1,1),共有16种情况.若四个人同时坐着,有1种情况;若三个人坐着,一个人站着,有4种情况;若两个人坐着,两个人站着,此时没有相邻的两个人站起来有2种情况.所以没有相邻的两个人站起来的情况共有1+4+2=7种,故所求概率为716.3.一个样本容量为10的样本数据,它们组成一个公差不为0的等差数列{a n },若a 3=8,且a 1,a 3,a 7成等比数列,则此样本的平均数和中位数分别是( )A .13,12B .13,13C .12,13D .13,14解析:选B 设等差数列{a n }的公差为d (d ≠0),a 3=8,a 1a 7=a 23=64,即(8-2d )(8+4d )=64,又d ≠0,所以d =2,故样本数据为:4,6,8,10,12,14,16,18,20,22,平均数为S 1010=+10=13,中位数为12+142=13.4.根据如下样本数据:得到的回归方程为y =bx +a .若样本点的中心为(5,0.9),则当x 每增加1个单位时,y 就( )A .增加1.4个单位B .减少1.4个单位C .增加7.9个单位D .减少7.9个单位解析:选B 依题意得,4.0+a -5.4-0.5+0.5+b -0.65=0.9,故a +b =6.5;①又样本点的中心为(5,0.9),故0.9=5b +a ,②联立①②,解得b =-1.4,a =7.9,则y ^=-1.4x +7.9, 所以当x 每增加1个单位时,y 就减少1.4个单位.5.正六边形ABCDEF 的边长为1,在正六边形内随机取点M ,则使△MAB 的面积大于34的概率为________.解析:如图所示,作出正六边形ABCDEF ,其中心为O ,过点O 作OG ⊥AB ,垂足为G ,则OG 的长为中心O 到AB 边的距离.易知∠AOB =360°6=60°,且OA =OB ,所以△AOB 是等边三角形,所以OA =OB =AB =1,OG=OA ·sin 60°=1×32=32,即对角线CF 上的点到AB 的距离都为32. 设△MAB 中AB 边上的高为h ,则由S △MAB =12×1×h >34,解得h >32.所以要使△MAB 的面积大于34,只需满足h >32,即需使M 位于CF 的上方.故由几何概型得,△MAB 的面积大于34的概率P =S 梯形CDEF S 正六边形ABCDEF =12. 答案:126.某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成(每人只参加一项),现从这些运动员中抽取一个容量为n 的样本,若分别采用系统抽样法和分层抽样法,则都不用剔除个体;当样本容量为n +1时,若采用系统抽样法,则需要剔除1个个体,那么样本容量n 为________.解析:总体容量为6+12+18=36.当样本容量为n 时,由题意可知,系统抽样的抽样距为36n,分层抽样的抽样比是n 36,则采用分层抽样法抽取的乒乓球运动员人数为6×n 36=n6,篮球运动员人数为12×n 36=n 3,足球运动员人数为18×n 36=n2,可知n 应是6的倍数,36的约数,故n =6,12,18.当样本容量为n +1时,剔除1个个体,此时总体容量为35,系统抽样的抽样距为35n +1,因为35n +1必须是整数,所以n 只能取6,即样本容量n 为6.答案:6。
2018学高考数学二轮复习练酷专题课时跟踪检测(十三)算法推理与证明文
课时跟踪检测(十三) 算法、推理与证明1.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③教室内有一把椅子坏了,则猜想该教室内的所有椅子都坏了;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸n 边形的内角和是(n -2)·180°(n ∈N *,且n ≥3).A .①②B .①③④C .①②④D .②④解析:选C ①是类比推理;②④是归纳推理, ∴①②④都是合情推理.2.(2017·山东高考)执行两次如图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为( )A .0,0B .1,1C .0,1D .1,0解析:选D 当输入x =7时,b =2,因为b 2>x 不成立且x 不能被b 整除,故b =3,这时b 2>x 成立,故a =1,输出a 的值为1.当输入x =9时,b =2,因为b 2>x 不成立且x 不能被b 整除,故b =3,这时b 2>x 不成立且x 能被b 整除,故a =0,输出a 的值为0.3.(2017·惠州模拟)执行如图所示的程序框图,则输出的结果为( )A .7B .9C .10D .11解析:选B 法一:i =1,S =lg 13=-lg 3>-1;i =3,S =lg 13+lg 35=lg 15=-lg 5>-1;i =5,S =lg 15+lg 57=lg 17=-lg 7>-1;i =7,S =lg 17+lg 79=lg 19=-lg 9>-1;i =9,S =lg 19+lg 911=lg 111=-lg 11<-1,故输出的i =9.法二:因为S =lg 13+lg 35+…+lg i i +2=lg 1-lg 3+lg 3-lg 5+…+lg i -lg(i +2)=-lg(i +2),当i =9时,S =-lg(9+2)<-lg 10=-1,所以输出的i =9.4.通过圆与球的类比,由结论“半径为r 的圆的内接四边形中,正方形的面积最大,最大值为2r 2”猜想关于球的相应结论为“半径为R 的球的内接六面体中,______”.( )A .长方体的体积最大,最大值为2R 3B .正方体的体积最大,最大值为3R 3C .长方体的体积最大,最大值为43R39D .正方体的体积最大,最大值为83R39解析:选D 类比可知半径为R 的球的内接六面体中,正方体的体积最大,设其棱长为a ,正方体体对角线的长度等于球的直径,即3a =2R ,得a =2R3,体积V =a 3=83R39.5.对于大于1的自然数m的三次幂可用奇数进行以下方式的“分裂”:23=⎩⎪⎨⎪⎧3,5,33=⎩⎪⎨⎪⎧7,9,11,43=⎩⎪⎨⎪⎧13,15,17,19,……,若m 3的“分裂”中有一个数是2 017,则m =( )A .44B .45C .46D .47解析:选 B 由题意不难找出规律,23=3+5,33=7+9+11,43=13+15+17+19,……,m 增加1,累加的奇数个数便多1,易得2 017是第1 009个奇数,由⎩⎪⎨⎪⎧1+2+3+…+m -<1 009,1+2+3+…+m -+m ≥1 009,得⎩⎪⎨⎪⎧m m -2<1 009,m m +2≥1 009,又m ∈N *,所以m =45.6.若数列{a n }是等差数列,则数列{b n }⎝⎛⎭⎪⎫b n =a 1+a 2+…+a n n也为等差数列.类比这一性质,可知若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c nnB .d n =c 1·c 2·…·c nnC .d n = n c n 1+c n 2+…+c n nnD .d n =nc 1·c 2·…·c n解析:选D 若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n n -2d ,∴b n =a 1+n -12d =d2n+a 1-d2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2·…·c n =c n 1·q1+2+…+(n -1)=c n 1·qn n -2,∴d n =(c 1·c 2·…·c n )1n =c 1·q n -12,即{d n }为等比数列,故选D.7.(2018届高三·湖北八校二联)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A .甲B .乙C .丙D .丁解析:选D 根据题意,6名选手比赛结果甲、乙、丙、丁猜测如下表:8.在平面几何中,有“若△ABC 的三边长分别为a ,b ,c ,内切圆半径为r ,则三角形面积为S △ABC =12(a +b +c )r ”,拓展到空间,类比上述结论,若四面体A BCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为R ,则四面体的体积为( )A.13(S 1+S 2+S 3)R B.14(S 1+S 2+S 3+S 4)R 2C.13(S 1+S 2+S 3+S 4)R 2 D.13(S 1+S 2+S 3+S 4)R解析:选D 三角形面积类比为四面体的体积,三角形的边长类比为四面体四个面的面积,内切圆半径类比为内切球的半径,二维图形中的12类比为三维图形中的13,从而得出结论.所以V A BCD=13(S 1+S 2+S 3+S 4)R . 9.(2017·成都模拟)对于数25,规定第1次操作为23+53=133,第2次操作为13+33+33=55,如此反复操作,则第2 017次操作后得到的数是( )A .25B .250C .55D .133解析:选D 由规定:第1次操作为23+53=133,第2次操作为13+33+33=55,第3次操作为53+53=250,第4次操作为23+53+03=133,…,故操作得到的数值周期出现,且周期为3.又2 017=3×672+1,相当于操作了1次,故选D.10.定义运算a ⊗b 为执行如图所示的程序框图输出的S 值,则⎝ ⎛⎭⎪⎫2cos 5π3⊗⎝ ⎛⎭⎪⎫2tan 5π4的值为( )A .4B .3C .2D .-1解析:选A 由程序框图可知,S =⎩⎪⎨⎪⎧a a -b ,a ≥b ,ba +,a <b ,因为2cos 5π3=1,2tan 5π4=2,1<2,所以⎝⎛⎭⎪⎫2cos 5π3⊗⎝ ⎛⎭⎪⎫2tan 5π4=2(1+1)=4. 11.(2018届高三·西安八校联考)如图给出的是计算12+14+16+…+12 014+12 016的值的程序框图,其中判断框内应填入的是( )A .i ≤2 014?B .i ≤2 016?C .i ≤2 018?D .i ≤2 020?解析:选B 依题意得,S =0,i =2;S =0+12,i =4;…;S =0+12+14+…+12 014+12 016,i =2 018,输出的S =12+14+16+…+12 014+12 016,所以题中的判断框内应填入的是“i ≤2 016”.12.(2018届高三·武汉调研)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中有一人是罪犯,由此可判断罪犯是( )A .甲B .乙C .丙D .丁解析:选B 由题可知,乙、丁两人的观点一致,即同真同假,假设乙、丁说的是真话,那么甲、丙两人说的是假话,由乙说的是真话,推出丙是罪犯,由甲说假话,推出乙、丙、丁三人不是罪犯,显然两结论相互矛盾,所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙供述可得,乙是罪犯.13.(2018届高三·安溪三校联考)已知点A (x 1,ax 1),B (x 2,ax 2)是函数y =a x(a >1)的图象上任意不同两点,依据图象可知,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有结论ax 1+ax 22>a x 1+x 22成立.运用类比思想方法可知,若点A (x 1,sin x 1),B (x 2,sin x 2)是函数y =sinx (x ∈(0,π))的图象上任意不同两点,则类似地有________成立.解析:对于函数y =sin x (x ∈(0,π))的图象上任意不同的两点A (x 1,sin x 1),B (x 2,sin x 2),线段AB 总是位于A ,B 两点之间函数图象的下方,类比可知应有sin x 1+sin x 22<sin x 1+x 22成立.答案:sin x 1+sin x 22<sin x 1+x 2214.(2017·合肥模拟)观察下列等式:S 1=12n 2+12n , S 2=13n 3+12n 2+16n , S 3=14n 4+12n 3+14n 2, S 4=15n 5+12n 4+13n 3-130n , S 5=An 6+12n 5+512n 4+Bn 2,…可以推测,A -B =________.解析:由S 1,S 2,S 3,S 4,S 5的特征,推测A =16.又S k 的各项系数的和为1,∴A +12+512+B=1,∴B =-112.故推测A -B =16+112=14.答案:1415.(2017·江西师大附中期末考试)对于集合{a 1,a 2,…,a n }和常数a 0,定义: ω=sin 2a 1-a 0+sin 2a 2-a 0+…+sin 2a n -a 0n为集合{a 1,a 2,…,a n }相对a 0的“正弦方差”,则集合⎩⎨⎧⎭⎬⎫π2,5π6,7π6相对a 0的“正弦方差”为________.解析:由题意,得集合⎩⎨⎧⎭⎬⎫π2,5π6,7π6相对a 0的“正弦方差”为ω=sin 2⎝ ⎛⎭⎪⎫π2-a 0+sin 2⎝ ⎛⎭⎪⎫5π6-a 0+sin 2⎝ ⎛⎭⎪⎫7π6-a 03.即3ω=cos 2a 0+1-cos ⎝ ⎛⎭⎪⎫5π3-2a 02+1-cos ⎝ ⎛⎭⎪⎫7π3-2a 02,所以6ω=2cos 2a 0+1-cos ⎝ ⎛⎭⎪⎫π3+2a 0+1-cos π3-2a 0,即6ω=2cos 2a 0+2-2cos π3cos 2a 0,所以6ω=2cos 2a 0+2-(2cos 2a 0-1),于是ω=12.答案:1216.执行如图所示的程序框图,输出的S 的值为________.解析:S =sin 1×π3+sin 2×π3+sin 3×π3+sin 4×π3+sin 5×π3+sin 6×π3+…+sin2 017×π3=sin 1×π3+sin 2×π3+sin 3×π3+sin 4×π3+sin 5×π3+sin 6×π3×336+sin 1×π3=32.答案:32。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(二)A 组——12+4提速练一、选择题1.(2017·宝鸡质检)函数f(x)=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z)B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z)D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z)得,k π2-π12<x<k π2+5π12(k ∈Z),所以函数f(x)=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12 (k ∈Z),故选B. 2.函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫x ∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f(x)的解析式为( )A .f(x)=sin ⎝ ⎛⎭⎪⎫2x +π4B .f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4C .f(x)=sin ⎝⎛⎭⎪⎫4x +π4 D .f(x)=sin ⎝⎛⎭⎪⎫4x -π4 解析:选A 由题图可知, 函数f(x)的最小正周期为T =2πω=⎝ ⎛⎭⎪⎫3π8-π8×4=π,所以ω=2,即f(x)=sin(2x +φ).又函数f(x)的图象经过点⎝⎛⎭⎪⎫π8,1,所以sin ⎝ ⎛⎭⎪⎫π4+φ=1,则π4+φ=2k π+π2(k ∈Z),解得φ=2k π+π4(k ∈Z),又|φ|<π2,所以φ=π4,即函数f(x)=sin ⎝⎛⎭⎪⎫2x +π4,故选A.3.(2017·天津高考)设函数f(x)=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f(x)的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24解析:选A 法一:由f ⎝ ⎛⎭⎪⎫5π8=2,得5π8ω+φ=π2+2k π(k ∈Z),①由f ⎝⎛⎭⎪⎫11π8=0,得11π8ω+φ=k′π(k′∈Z),②由①②得ω=-23+43(k′-2k).又最小正周期T =2πω>2π,所以0<ω<1,ω=23.又|φ|<π,将ω=23代入①得φ=π12.选项A 符合.法二:∵f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f(x)的最小正周期大于2π, ∴f(x)的最小正周期为4⎝⎛⎭⎪⎫11π8-5π8=3π,∴ω=2π3π=23,∴f(x)=2sin ⎝ ⎛⎭⎪⎫23x +φ.由2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z.又|φ|<π,∴取k =0,得φ=π12.故选A.4.(2017·湖北荆州质检)函数f(x)=2x -tan x 在⎝ ⎛⎭⎪⎫-π2,π2上的图象大致为( )解析:选C 因为函数f(x)=2x -tan x 为奇函数,所以函数图象关于原点对称,排除选项A ,B ,又当x→π2时,y<0,排除选项D ,故选C.5.(2017·安徽芜湖模拟)若将函数y =sin 2⎝⎛⎭⎪⎫x +π6的图象向右平移m(m>0)个单位长度后所得的图象关于直线x =π4对称,则m 的最小值为( )A.π12B.π6C.π4D.π3解析:选B 平移后所得的函数图象对应的解析式是y =sin 2⎝ ⎛⎭⎪⎫x -m +π6,因为该函数的图象关于直线x =π4对称,所以2⎝ ⎛⎭⎪⎫π4-m +π6=k π+π2(k ∈Z),所以m =π6-k π2(k ∈Z),又m>0,故当k =0时,m 最小,此时m =π6.6.(2017·云南检测)函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则f(x)的单调递增区间为( )A .(-1+4k π,1+4k π),k ∈ZB .(-3+8k π,1+8k π),k ∈ZC .(-1+4k,1+4k),k ∈ZD .(-3+8k,1+8k),k ∈Z解析:选D 由题图,知函数f(x)的最小正周期为T =4×(3-1)=8,所以ω=2πT =π4,所以f(x)=sin ⎝⎛⎭⎪⎫π4x +φ.把(1,1)代入,得sin ⎝ ⎛⎭⎪⎫π4+φ=1,即π4+φ=π2+2k π(k ∈Z),又|φ|<π2,所以φ=π4,所以f(x)=sin ⎝ ⎛⎭⎪⎫π4x +π4.由2k π-π2≤π4x +π4≤2k π+π2(k∈Z),得8k -3≤x≤8k+1(k ∈Z),所以函数f(x)的单调递增区间为(8k -3,8k +1)(k ∈Z),故选D.7.(2017·全国卷Ⅲ)函数f(x)=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( ) A.65 B .1 C.35D.15解析:选 A 因为cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π3-π2=sin ⎝ ⎛⎭⎪⎫x +π3,所以f(x)=65sin ⎝ ⎛⎭⎪⎫x +π3,于是f(x)的最大值为65.8.(2017·武昌调研)若f(x)=cos 2x +acos ⎝ ⎛⎭⎪⎫π2+x 在区间⎝ ⎛⎭⎪⎫π6,π2上是增函数,则实数a 的取值范围为( )A .[-2,+∞)B .(-2,+∞)C .(-∞,-4)D .(-∞,-4]解析:选D f(x)=1-2sin 2x -asin x ,令sin x =t ,t ∈⎝ ⎛⎭⎪⎫12,1,则g(t)=-2t 2-at +1,t ∈⎝ ⎛⎭⎪⎫12,1,因为f(x)在⎝ ⎛⎭⎪⎫π6,π2上单调递增,所以-a 4≥1,即a≤-4,故选D. 9.已知函数f(x)=sin(2x +φ)(0<φ<π),若将函数f(x)的图象向左平移π6个单位长度后所得图象对应的函数为偶函数,则φ=( )A.5π6B.2π3C.π3D.π6解析:选D 函数f(x)的图象向左平移π6个单位长度后所得图象对应的函数解析式为y=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+φ=sin ⎝ ⎛⎭⎪⎫2x +π3+φ,由于该函数是偶函数,∴π3+φ=π2+k π(k ∈Z),即φ=π6+k π(k ∈Z),又0<φ<π,∴φ=π6,故选D.10.若函数f(x)=sin ωx +3cos ωx(ω>0)满足f(α)=-2,f(β)=0,且|α-β|的最小值为π2,则函数f(x)的解析式为( )A .f(x)=2sin ⎝ ⎛⎭⎪⎫x +π3B .f(x)=2sin ⎝ ⎛⎭⎪⎫x -π3C .f(x)=2sin ⎝ ⎛⎭⎪⎫x +π6D .f(x)=2sin ⎝⎛⎭⎪⎫x -π6 解析:选A f(x)=sin ωx +3cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π3.因为f(α)=-2,f(β)=0,且|α-β|min =π2,所以T 4=π2,得T =2π(T 为函数f(x)的最小正周期),故ω=2πT=1,所以f(x)=2sin ⎝⎛⎭⎪⎫x +π3,故选A.11.(2018届高三·广西三市联考)已知x =π12是函数f(x)=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f(x)的图象向右平移3π4个单位长度后得到函数g(x)的图象,则函数g(x)在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为( ) A .-2 B .-1C .- 2D .- 3解析:选B f(x)=3sin(2x +φ)+cos(2x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ.∵x =π12是f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ图象的一条对称轴,∴2×π12+π6+φ=k π+π2(k ∈Z),即φ=π6+k π(k ∈Z),∵0<φ<π,∴φ=π6,则f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴g(x)=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -3π4+π3=-2sin ⎝ ⎛⎭⎪⎫2x -π6,则g(x)在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为g ⎝ ⎛⎭⎪⎫π6=-1,故选B.12.(2017·广州模拟)已知函数f(x)=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f(x)在⎝ ⎛⎭⎪⎫0,π4上单调递减B .f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递减C .f(x)在⎝ ⎛⎭⎪⎫0,π4上单调递增D .f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递增 解析:选D f(x)=sin(ωx +φ)+cos(ωx +φ)=2sin ⎝ ⎛⎭⎪⎫ωx +φ+π4,因为0<φ<π且f(x)为奇函数,所以φ=3π4,即f(x)=-2sin ωx ,又直线y =2与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f(x)的最小正周期为π2,由2πω=π2,可得ω=4,故f(x)=-2sin 4x ,由2k π+π2≤4x≤2k π+3π2,k ∈Z ,得k π2+π8≤x≤k π2+3π8,k ∈Z ,令k =0,得π8≤x≤3π8,此时f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递增,故选D.二、填空题13.(2017·全国卷Ⅱ)函数f(x)=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.解析:依题意,f(x)=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝ ⎛⎭⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f(x)max =1. 答案:114.已知函数f(x)=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6=________.解析:函数f(x)=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则其图象的一条对称轴为x =π6,所以f ⎝ ⎛⎭⎪⎫π6=±2.答案:±215.(2017·深圳调研)已知函数f(x)=cos xsin x(x ∈R),则下列四个结论中正确的是________.(写出所有正确结论的序号)①若f(x 1)=-f(x 2),则x 1=-x 2; ②f(x)的最小正周期是2π;③f(x)在区间⎣⎢⎡⎦⎥⎤-π4,π4上是增函数;④f(x)的图象关于直线x =3π4对称. 解析:因为f(x)=cos xsin x =12sin 2x ,所以f(x)是周期函数,且最小正周期为T =2π2=π,所以①②错误;由2k π-π2≤2x≤2k π+π2(k ∈Z),解得k π-π4≤x≤k π+π4(k ∈Z),当k =0时,-π4≤x≤π4,此时f(x)是增函数,所以③正确;由2x =π2+k π(k ∈Z),得x =π4+k π2(k ∈Z),取k =1,则x =3π4,故④正确.答案:③④16.已知函数f(x)=Acos 2(ωx +φ)+1⎝ ⎛⎭⎪⎫A>0,ω>0,0<φ<π2的最大值为3,f(x)的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f(1)+f(2)+…+f(2 016)+f(2 017)=________.解析:∵函数f(x)=Acos 2(ωx +φ)+1=A·1+ωx +2φ2+1=A2cos(2ωx +2φ)+1+A 2⎝ ⎛⎭⎪⎫A>0,ω>0,0<φ<π2的最大值为3,∴A 2+1+A2=3,∴A =2.根据函数图象相邻两条对称轴间的距离为2,可得函数的最小正周期为4,即2π2ω=4,∴ω=π4.再根据f(x)的图象与y 轴的交点坐标为(0,2),可得cos 2φ+1+1=2,∴cos 2φ=0,又0<φ<π2,∴2φ=π2,φ=π4.故函数f(x)的解析式为f(x)=cos ⎝ ⎛⎭⎪⎫π2x +π2+2=-sin π2x +2,∴f(1)+f(2)+…+f(2016)+f(2017)=-⎝ ⎛⎭⎪⎫sin π2+sin 2π2+sin 3π2+…+sin 2 016π2+sin 2 017π2+2×2 017=504×0-sin π2+4034=0-1+4 034=4 033.答案:4 033B 组——能力小题保分练1.曲线y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4和直线y =12在y 轴右侧的交点的横坐标按从小到大的顺序依次记为P 1,P 2,P 3,…,则|P 3P 7|=( )A .πB .2πC .4πD .6π解析:选B y =2cos ⎝⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4=cos 2x -sin 2x =cos 2x ,故曲线对应的函数为周期函数,且最小正周期为π,直线y =12在y 轴右侧与函数y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4在每个周期内的图象都有两个交点,又P 3与P 7相隔2个周期,故|P 3P 7|=2π,故选B.2.已知函数f(x)=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,则φ的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤-π3,π6C.⎣⎢⎡⎭⎪⎫-π4,0 D.⎣⎢⎡⎦⎥⎤-π3,0 解析:选D 因为函数f(x)=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,又-π6+φ<2x +φ≤π3+φ,所以2×π6+φ≤π3,且2×⎝ ⎛⎭⎪⎫-π12+φ≥-π2,解得-π3≤φ≤0,故选D.3.已知函数f(x)=Asin(ωx +φ)⎝ ⎛⎭⎪⎫A>0,ω>0,|φ|<π2的部分图象如图所示,则( )A .f(x)的图象关于直线x =-2π3对称B .f(x)的图象关于点⎝ ⎛⎭⎪⎫-5π12,0对称 C .若方程f(x)=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m 的取值范围是(-2,- 3 ]D .将函数y =2sin ⎝ ⎛⎭⎪⎫2x -π6的图象向左平移π6个单位长度得到函数f(x)的图象解析:选C 根据题中所给的图象,可知函数f(x)的解析式为f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴当x =-2π3时,2×⎝ ⎛⎭⎪⎫-2π3+π3=-π,f ⎝ ⎛⎭⎪⎫-2π3=2sin(-π)=0,从而f(x)的图象关于点⎝ ⎛⎭⎪⎫-2π3,0对称,而不是关于直线x =-2π3对称,故A 不正确;当x =-5π12时,2×⎝ ⎛⎭⎪⎫-5π12+π3=-π2,∴f(x)的图象关于直线x =-5π12对称,而不是关于点⎝ ⎛⎭⎪⎫-5π12,0对称,故B 不正确;当x ∈⎣⎢⎡⎦⎥⎤-π2,0时,2x +π3∈⎣⎢⎡⎦⎥⎤-2π3,π3,f(x)∈[-2, 3 ],结合正弦函数图象的性质,可知若方程f(x)=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m的取值范围是(-2,- 3 ],故C 正确;根据图象平移变换的法则,可知应将y =2sin ⎝⎛⎭⎪⎫2x -π6的图象向左平移π4个单位长度得到f(x)的图象,故D 不正确.故选C.4.如果两个函数的图象平移后能够重合,那么称这两个函数互为生成函数.给出下列四个函数:①f(x)=sin x +cos x ;②f(x)=2(sin x +cos x); ③f(x)=sin x ;④f(x)=2sin x + 2. 其中互为生成函数的是( ) A .①② B .①④ C .③④D .②④解析:选B 首先化简题中①②两个函数解析式可得:①f(x)=2sin ⎝ ⎛⎭⎪⎫x +π4,②f(x)=2sin ⎝⎛⎭⎪⎫x +π4,可知③f(x)=sin x 的图象要与其他函数的图象重合,只经过平移不能完成,还必须经过伸缩变换才能实现,∴③f(x)=sin x 不与其他函数互为生成函数;同理①f(x)=2sin ⎝ ⎛⎭⎪⎫x +π4(④f(x)=2sin x +2)的图象与②f(x)=2sin ⎝⎛⎭⎪⎫x +π4的图象也必须经过伸缩变换才能重合,而④f(x)=2sin x +2的图象向左平移π4个单位长度,再向下平移2个单位长度即可得到①f(x)=2sin ⎝⎛⎭⎪⎫x +π4的图象,∴①④互为生成函数,故选B.5.已知函数f(x)=Asin(ωx +φ)(A ,ω,φ均为正常数)的最小正周期为π,且当x =2π3时,函数f(x)取得最小值,则( ) A .f(1)<f(-1)<f(0) B .f(0)<f(1)<f(-1) C .f(-1)<f(0)<f(1) D .f(1)<f(0)<f(-1)解析:选C 因为函数f(x)=Asin(ωx +φ)的最小正周期为π,所以ω=2ππ=2,故f(x)=Asin(2x +φ),因为当x =2π3时,函数f(x)取得最小值,所以2×2π3+φ=2k π-π2,k ∈Z ,解得φ=2k π-11π6,k ∈Z ,又φ>0,故可取k =1,则φ=π6,故f(x)=Asin ⎝ ⎛⎭⎪⎫2x +π6,所以f(-1)=Asin ⎝ ⎛⎭⎪⎫-2+π6<0,f(1)=Asin ⎝ ⎛⎭⎪⎫2+π6>0,f(0)=Asin π6=12A>0,故f(-1)最小.又sin ⎝ ⎛⎭⎪⎫2+π6=sin ⎝ ⎛⎭⎪⎫π-2-π6=sin ⎝ ⎛⎭⎪⎫5π6-2>sin π6,故f(1)>f(0).综上可得f(-1)<f(0)<f(1),故选C.6.若函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g(x)=cos(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,则φ=________. 解析:因为函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g(x)=cos(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,故它们的最小正周期相同,即2πω=2π2,所以ω=2,故函数f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π4.令2x +π4=k π+π2,k ∈Z ,则x =k π2+π8,k ∈Z ,故函数f(x)的图象的对称轴为x =k π2+π8,k ∈Z.令2x +φ=m π,m ∈Z ,则x =m π2-φ2,m∈Z ,故函数g(x)的图象的对称轴为x =m π2-φ2,m ∈Z ,故k π2+π8-m π2+φ2=n π2,m ,n ,k ∈Z ,即φ=(m +n -k)π-π4,m ,n ,k ∈Z ,又|φ|<π2,所以φ=-π4.答案:-π4。