飞行器设计技术手册

合集下载

空间飞行器总体设计

空间飞行器总体设计

第一章—绪论1.各国独立发射首颗卫星时间。

表格 1 各国独立发射首颗卫星时间表2.航天器的分类?答:航天器按是否载人可分为无人航天器和载人航天器两大类。

其中,无人航天人按是否环绕地球运行又分为人造地球卫星和空间探测器两大类;载人航天器可以分为载人飞船、空间站和航天飞机。

3.什么是航天器设计?答:航天器设计就是要解决每一个环节的具体设计,其中主要的几个关键内容为:航天任务分析与轨道设计、航天器构形设计、服务与支持分系统的具体设计。

4.画图说明航天器系统设计的层次关系并简述各组成部分的作用。

答:图 1 航天器系统设计的层次关系图(1).有效载荷分系统:航天器上直接完成特定任务的仪器、设备和核心部分;(2).航天器结构平台:整个航天器的结构体(3).服务和支持系统:有效载荷正常工作的必要条件。

①结构分系统:提供其他系统的安装空间;满足各设备安装方位,精度要求;确保设备安全;满足刚度,强度,热防护要求,确保完整性;提供其他特定功能②电源分系统:向航天器各系统供电③测控与通信系统:对航天器进行跟踪,测轨,定位,遥控,通信;④热控系统:对内外能量管理和控制,实现航天器上废热朝外部空间的排散,满足在飞行各阶段,星船各阶段、仪器设备、舱内壁及结构所要求的温度条件;⑤姿态与轨道控制系统:姿态控制--姿态稳定,姿态机动;轨道控制--用于保持或改变航天器的运行轨道,包括轨道确定(导航)和轨道控制(制导)两方面,使航天器遵循正确的航线飞行。

、⑥推进系统:向地球静轨道转移时的近地点与远地点点火;低轨道转移时,低轨到高轨的提升与离轨再入控制;星际航行向第二宇宙速度的加速过程;在轨运行⑦数据管理系统:将航天器遥控管理等综合在微机系统中⑧环境控制与生命保障:维持密闭舱内大气环境,保证航天员生命安全5.航天器的特点及其设计的特点?答:航天器的特点有5个,(1).系统整体性;(2).系统层次性;(3).航天器经受的环境条件:运载器环境、外层空间环境、返回环境;(4).航天器的高度自动化性质;(5).航天器长寿面高可靠性。

飞行器结构设计(打印版)

飞行器结构设计(打印版)

在弹体坐标系下,由受力平衡和力矩方程得
Ra Rb G cos Ral1 Gl2 cos 0 fRa Fa
两坐标轴方向过载为:
nx ( P Fa) / mg 0 ny ( Ra Rb) / mg 0
可得
nx P / mg 0 fGl2 cos / mg 0l1 ny G cos / mg0
M N Yi Ji Fj
——舱段剖面上的正应力;
M ——由弯矩 M 产生的正应力;
N ——由轴向力 N 产生的正应力;
M ——作用在舱段剖面上的弯矩; N ——作用在舱段剖面上的轴向力;
J i ——减缩剖面的惯性矩;
Yi ——第 i 个元件到减缩剖面中性轴的距离;
F j ——减缩剖面的面积。
可知,从 0 至 90 度,随 增大, nx 变大, n y 变小。 4 波动系数 K:反映当舵面偏角发生变化时,导弹的过载系数变化的程度。 第四次课(教材 23 页-35 页) 1 地空导弹典型弹道上所选的特征点有:最大推力点,导弹进入控制飞行的初始点,机动飞行段的速 压点,机动飞行的终点。 2 压心:作用在物体上空气动力合力的作用点。 3 刚心:一个剖面上,所有作用力的合力,只产生纯弯曲的作用点。 4 设计载荷:使用载荷乘以安全系数。 P des
R ——连接框外径;
q ——连接框的支反剪流。
第八次课(教材 52 页—61 页) 1 梁式翼面结构中,翼梁一般沿翼面最大厚度线布置或沿翼弦的等百分比线布置,翼肋按顺气流方向 排列或沿垂直于翼梁弹性轴方向布置。 2 玻璃钢蜂窝夹层结构中,弹翼主体上蜂窝纵向沿展向排列,翼前后缘蜂窝纵向沿翼弦方向排列。 3 展弦比:展向长/弦向长。 4 翼面的相对厚度:翼面最厚位置厚度/弦长长度。 第九次课(教材 62 页—70 页) 1 普通肋开减轻孔是因为腹板剩余强度一般较大,减轻孔边缘翻边是为提高腹板的抗弯能力。 2 铆缝设计与计算主要是确定铆钉的直径,间距,边距与排距。 第十次课(教材 70 页—76 页) 1 第一强度理论是最大拉应力准则; 第二强度理论是最大伸长线应变准则; 第三强度理论是最大剪应力准则; 第四强度理论是最大形变能准则。 2 夹层结构夹芯参数为格子形状,边长,箔厚与变密度格子。 第十一次课(教材 76 页—84 页) 1 在多榫式接头中,齿中部厚度小于齿厚,是为了减少齿的精加工面,齿外端厚度比齿根略小,装配 时外端起导向作用。 (教材 77 页图 3.44)

飞行器总体设计

飞行器总体设计

飞行器总体设计1. 简介本文档旨在提供飞行器总体设计的指南。

飞行器总体设计是一个重要的环节,它涉及到飞行器的结构、性能和功能的规划和设计。

一个良好的总体设计可以为后续的详细设计和制造工作奠定基础。

2. 设计目标飞行器总体设计的首要任务是明确设计的目标。

以下是一些常见的设计目标:•性能目标:如最大飞行速度、最大飞行高度、续航时间等;•安全目标:如故障容错能力、自动驾驶功能等;•使用目标:如操作简便性、便携性等;•经济目标:如成本把控、维护成本等。

3. 总体设计流程设计一个飞行器的总体设计可以按照以下步骤进行:3.1. 需求分析在这一阶段,需求分析师会与用户、管理层和技术团队进行沟通,明确设计项目的要求和期望。

需求分析的目标是明确飞行器的功能、性能和限制条件。

3.2. 概念设计概念设计是总体设计过程中的关键步骤。

在这一阶段,设计团队会通过头脑风暴、研究和分析等方法,提出不同的设计方案,并评估各个方案的优缺点。

最终选择一个合适的概念设计方案。

3.3. 详细设计在详细设计阶段,设计团队会对概念设计进行进一步的细化。

这包括细化设计细节、制定规范、进行模型和原型制作等。

在这一阶段,设计团队需要与相关领域的专家进行密切合作,确保设计的可行性和可实施性。

3.4. 验证与验证完成详细设计后,设计团队需要进行验证和验证工作,以确保设计方案的可靠性和性能满足要求。

这包括模拟测试、实验室测试以及现场测试等。

4. 总体设计考虑因素总体设计过程中需要考虑的因素很多,以下是一些重要的方面:•结构设计:包括飞行器的外形、大小、布局和材料等;•动力系统设计:选择合适的发动机和推进系统,确保飞行器的动力满足要求;•电气系统设计:选择适当的电气设备和电池,并设计合理的电气布局;•控制系统设计:设计合理的控制系统,确保飞行器的稳定性和操控性;•传感器系统设计:选择合适的传感器设备,实现飞行器对环境的感知和导航功能;•安全性设计:考虑飞行器的安全性和风险管理,包括故障容错设计和紧急情况处理等。

完全2飞行器设计第2章

完全2飞行器设计第2章
第一页,编辑于星期一:七点 四十八分。
第二页,编辑于星期一:七点 四十八分。
第三页,编辑于星期一:七点 四十八分。
第四页,编辑于星期一:七点 四十八分。
第五页,编辑于星期一:七点 四十八分。
第六页,编辑于星期一:七点 四十八分。
第七页,编辑于星期一:七点 四十八分。
第八页,编辑于星期一:七点 四十八分。
第三十一页,编辑于星期一:七点 四十八分。
第三十二页,编辑于星期一:七点 四十八分。
第三十三页,编辑于星期一:七点 四十八分。
第三十四页,编辑于星期一:七点 四十八分。
第三十五页,编辑于星期一:七点 四十八分。
第三十六页,编辑于星期一:七点 四十八分。
第三十七页,编辑于星期一:七点 四十八分。
第二十四页,编辑于星期一:七点 四十八分。
第二十五页,编辑于星期一:七点 四十八分。
第二十六页,编辑于星期一:七点 四十八分。
第二十七页,编辑于星期一:七点 四十八分。
第二十八页,编辑于星期一:七点 四十八分。
第二十九页,编辑于星期一:七点 四十八分。
第三十页,编辑于星期一:七点 四十八分。
第十七页,编辑于星期一:七点 四十八分。
第十八页,编辑于星期一:七点 四十八分。
第十九页,编辑于星期一:七点 四十八分。
第二十页,编辑于星期一:七点 四十八分。
第二十一页,编辑于星期一:七点 四十八分。
第二十二页,编辑于星期一:七点 四十八分。
第二十三页,编辑于星期一:七点 四十八分。
第三十八页,编辑于星期一:七点 四十八分。
第九页,编辑于星期一:七点 四十八分。
第十页,编辑于星期一:七点 四十八分。
第十一页,编十八分。

飞行器创新设计

飞行器创新设计

8、飞行器创新设计
• 四代机F-22 • Super Maneuverability • Supersonic Cruise • Stealth • STOL(Short Take-off and Landing)
8、飞行器创新设计
• • • • • • • • UCAV 远航程 长航时 高隐身 超机动 大载荷 自主飞行 纵深打击
轨道方程与宇宙速度
• 航天器的轨道方程为圆锥曲线 圆锥曲线的一般方程为
p r 1 e cos f
其中:r:圆锥曲线的任意一点到焦 点的距离。e :圆锥曲线的偏心率。p : 正焦距或半通径。f : r与焦点至近心点 之间连线的夹角,叫真近点角
轨道方程与宇宙速度
• 圆锥曲线的类型: • e=0时,r=p,圆锥 曲线为圆 • 0<e<1时,圆锥曲线 为椭圆 • e=1且f=180度,圆 锥曲线为抛物线 • e>1时,圆锥曲线为 双曲线
中国航空学会
第三届“创新杯”飞行器设计大赛系列讲座
飞行器创新设计
北京航空航天大学 黄 俊
内容
1、飞行器基本概念 2、设计要求与飞行器设计 3、飞行器设计过程 4、飞行器设计的特点 5、数字化设计技术 6、飞行器的未来发展 7、飞行基本原理 8、飞行器创新设计
1、飞行器基本概念
3、飞行器设计过程
3、飞行器设计过程
3、飞行器设计过程
3、飞行器设计过程
4、飞行器设计的特点
• 作为一种涉及到多个学科的复杂工程系统, 现代飞行器设计一般具有以下特点 • 科学性 • 创造性 • 非唯一性 • 反复迭代,多轮逼近 • 综合与协调
科学性
创造性
非唯一性
反复迭代,多轮逼近

无人机设计手册

无人机设计手册

无人机设计手册一、概述无人机是一种能够无需人工驾驶员操作的飞行器,它能够通过预设的程序或遥控器实现自主飞行和执行任务。

无人机的应用领域越来越广泛,包括军事侦察、农业喷洒、航拍摄像等。

设计一款稳定飞行和高效执行任务的无人机需要考虑到多方面因素,包括飞行稳定性、搭载负载能力、节能环保等。

二、飞行系统设计1. 无人机结构设计无人机的结构设计是整个飞行系统的基础,主要包括机翼、机身、动力系统、控制系统等。

在设计中需要考虑到结构的轻量化和强度,以确保无人机在飞行时具有足够的载荷能力和稳定性。

2. 动力系统设计动力系统是无人机的关键组成部分,通常包括电动机、螺旋桨等。

在设计时需要考虑到飞行器的负载需求以及飞行时间的要求,选择适当的动力系统以确保无人机能够完成预定任务。

3. 控制系统设计无人机的控制系统一般包括姿态控制、航向控制、高度控制等功能。

设计时需要考虑到控制系统的精准性和适应性,尤其是在面对复杂环境和突发情况时,控制系统能够快速有效地响应。

三、通信系统设计1. 遥控器设计遥控器是用户与无人机进行通信和控制的核心设备,设计时需要考虑到遥控器的灵敏度、操作性以及抗干扰能力。

2. 通信连接设计无人机通常通过无线网络进行数据传输和控制,设计时需要考虑到通信连接的稳定性和安全性,在复杂电磁环境下也能够正常工作。

四、导航系统设计1. 定位系统设计无人机的导航系统一般包括GPS、惯性导航系统等,设计时需要确保定位系统的精准度和稳定性,尤其是在室内或者遮挡环境下也能够准确定位。

2. 航迹规划设计航迹规划是无人机执行任务的基础,设计时需要考虑到航迹的安全性和高效性,确保无人机能够在规定区域内完成任务。

五、应用系统设计1. 摄像系统设计无人机的航拍、监视等任务通常需要搭载摄像系统,设计时需要考虑到摄像系统的稳定性和画质,提高任务执行的效率和质量。

2. 载荷系统设计无人机还可以搭载各种各样的传感器、货物等载荷,设计时需要考虑到载荷的重量平衡和固定方式,确保载荷在飞行中不会造成无人机失衡或者影响飞行性能。

无人机设计说明书

无人机设计说明书

无人机设计说明书1. 引言无人机(Unmanned Aerial Vehicle,简称UAV)是一种没有人搭乘的飞行器,通过遥控或者自动化系统进行控制。

无人机的设计和制造需要考虑众多因素,包括飞行性能、稳定性、载荷能力等。

本文档将详细介绍我们设计的无人机的技术规格和设计要点。

2. 技术规格无人机的技术规格如下:2.1 机身结构•材料:采用轻质复合材料制造,以减轻重量并提高结构强度和刚度。

•结构设计:采用单机身结构,简化生产制造和维护。

2.2 动力系统•电池:使用高能量密度的锂聚合物电池,提供长时间的电力供应。

•电机:采用高效率无刷电机,提供足够的推力和转速。

•螺旋桨:选用轻质复合材料螺旋桨,以提高飞行效率。

2.3 控制系统•遥控器:配备先进的2.4GHz遥控器,提供稳定的无线信号传输。

•自动驾驶系统:采用先进的GPS导航系统和惯性测量单元(IMU),实现自动起飞、降落和航行模式切换。

2.4 传感器系统•惯性测量单元(IMU):用于测量和监控无人机的加速度和角速度。

•气压计:用于测量无人机的海拔高度。

•摄像头:配备高分辨率摄像头,以拍摄照片和录制视频。

2.5 通信系统•数据链路:通过5.8GHz频段的数据链路,与地面控制站进行通信。

•无线网络:支持Wi-Fi、4G和5G网络连接,实现远程控制和遥测功能。

3. 设计要点为了满足无人机的设计要求,我们需要关注以下几个设计要点:3.1 飞行性能无人机的飞行性能是设计的核心,关系到其稳定性和操控性。

在设计中,我们需要考虑以下因素:•重量分配:合理分配无人机各部件的重量,以提高飞行平衡性。

•飞行控制:采用先进的动态姿态控制算法,提供稳定的飞行控制。

•空气动力学设计:通过优化机翼和螺旋桨的轮廓和设计,降低空气阻力和噪音。

3.2 载荷能力无人机的载荷能力是指其能够携带的重量和体积。

在设计中,我们需要考虑以下因素:•结构强度:确保无人机机身和连接部件的强度和刚度,以承载额外的负载。

Cessna 152 飞行手册说明书

Cessna 152 飞行手册说明书

CESSNA 152PROCEDURES MANUALThis Procedures Manual is property of Inflight Pilot Training. Its use is limited to customers of Inflight Pilot Training. Reproduction and distribution rights are limited to Inflight Pilot Training,Cessna 152 ProceduresPre-Maneuver FlowSeat Belts…………………………………………………………………………………………………………………….Secure Fuel……………..………………………………………………………………………………………………………………….On Mixture………….…………………………………………………………………………………………………….………….Rich Landing Light…… ………………………………………………………………………………………………….…………….On Engine Gauges…..………………………………………………………………………………………………….Green/NormalSlow Flight – Airplane Flying Handbook (AFH) 4-3Clearing Turns……………………………………………………………………………………………… ……………Complete Altitude………………………………………………………………………………………… ……………..Minimum 1500’ AGL Maneuver Power……………………………………………………………………………………………..………………………1700 RPMCarburetor Heat……………………………………………………………………………………………..……………………On Flaps………………………………………………………………………………………………….Extend in Increments to 30°Airspeed……………………………………………………………………………………….Pitch to maintain above stall horn Altitude………..….. ……………………………………….Increase power as necessary to maintain (typically »2000 RPM)Recovery – if stall horn sounds, buffet occurs, or instructor directs. Power……………………………………………………………………………………………..………………………….…...Full Carburetor Heat……………………………………………………………………………………………..………………..…..Off Flaps…………… …………………………………………………Retract in increments (10° increments as airspeed builds) TolerancesHeading…………………………………………………………………………………………….. ………………………..+/- 10°Altitude…………………………………………………………………………………………….. ………………….…..+/- 100 ft. Airspeed…………………………………………………………………………………………….. …………….Above stall horn Steep Turns – 360° left and right – AFH 9-2Clearing Turns……………………………………………………………………………………………… ……………Complete Altitude………………………………………………………………………………………… ……………..Minimum 1500’ AGL Reference Point…………………………………………………………………………………………ndmark near horizonManeuver Power………………………………………………………………………………………… …………………….…..»2300 RPM Airspeed……………………………………………………………………………………………….………………………90 Kts During Turn…………………………………………………………………………… …..Slight power increase (50-150 RPM) Tolerances Heading……………………………………………………………………………………………..…………………….…..+/- 10°Altitude…………………………………………………………………………………………….. ………………….…..+/- 100 ft. Airspeed…………………………………………………………………………………………….. …………………….+/- 10 kts Bank Angle……………………………………………………………………………………………..….45° (PVT) 50° (Comm)Power-Off Stall (Approach Configuration) – AFH 4-8Clearing Turns…………………………………………………………………………………………………………….Complete Altitude…………………………………… ……………………………………An altitude allowing full recovery by 1500’ AGLManeuver Power……………………………………………………………………………………………………………………..1700 RPM Carburetor Heat…………………………………………………………………………………………………………………..On Flaps………………………………………………………………………………………………….Extend in Increments to 30°Airspeed…………………………………………………………………………………………….…..Pitch and Trim for 60 Kts. Altitude…………………………………………………………….…Establish descent, choose an altitude to initiate the stallRecoveryPitch…………………………………..........................Lower pitch, reducing elevator pressure, then back to climb attitude Ailerons……………………………………………………………………..………………….……Neutral, then level the wings Rudder……………………………………………………………………………………………….………………….Control yaw Power…………………………………………………………………………………………………….……………………….Full Carburetor Heat………………………………………………………………………………………….……………………….Off Flaps…………………………… ………………..1st Notch immediately, 2nd Notch with Positive ROC, 3rd Notch at 60 KTS TolerancesHeading…………………………………………………………………………………………….. ………………………..+/- 10°Bank Angle……………………………………………………………….. …………………………………..……..20° maximumPower-On Stall (Takeoff/Climb Configuration) – AFH 4-9Clearing Turns……………………………………………………………………………………………… ……………Complete Altitude…………………………………… ……………………………………An altitude allowing full recovery by 1500’ AGL Maneuver Power……………………………………………………………………………………………………………………..1500 RPM Altitude………………………………………………………………………………………………………………..Maintain level Airspeed……………………………………………………………………………………………………Vr or Vy/Vx, as desired Power………………………………………………………………………………… ………………..2300 RPM minimum - FullRecoveryPitch………………………………… …………….......Lower pitch, reducing elevator pressure, then back to climb attitude Ailerons………………………………………………………………………….………..…………Neutral, then level the wings Rudder…………………………………………………………………………………………………………….…….Control yaw Power…………………………………………………………………………………………………………….……………….FullTolerances Heading……………………………………………………………………………………………..…………………….…..+/- 10°Bank Angle……………………………………………………………….. ……………………..…………………..20° maximumAccelerated Stall (Commercial/CFI) – AFH 4-10Clearing Turns……………………………………………………………………………………………… ……………Complete Altitude…………………………………… ……………………………………An altitude allowing full recovery by 1500’ AGLManeuver Throttle.…………………………………………………………………………………………… ………………….….1500 RPM Altitude………………………………………………………………………………………………………………..Maintain level Bank Angle…………………………………………………………………………..45°, increase back pressure to reach stall RecoveryPitch………………………………… …………….......Lower pitch, reducing elevator pressure, then back to climb attitude Ailerons………………………………………………………………………….………..…………Neutral, then level the wings Rudder…………………………………………………………………………………………………………….…….Control yaw Power…………………………………………………………………………………………………………….……………….Full Secondary Stall (CFI) – AFH 4-10Clearing Turns…………………………………………………………………………………………………………….Complete Altitude…………………………………… ……………………………………An altitude allowing full recovery by 1500’ AGL ManeuverThrottle.…………………………………………………………………………………………… ……………………..1500 RPM Flaps……………………………………………………………………………………………….…Extend in Increments to 30°Airspeed……………………………………………………………………………………….………..Pitch and Trim for 60 Kts. Altitude…………………………………… …………………………Establish descent, choose an altitude to initiate the stall Stall Indication………………………………………………….Release back pressure, then immediately increase abruptly RecoveryPitch…………………………………..........................Lower pitch, reducing elevator pressure, then back to climb attitude Ailerons……………………………………………………………………..……………..…………Neutral, then level the wings Rudder…………………………………………………………………………………………….…………………….Control yaw Power…………..……………………………………………………………………………………..………………….……….Full Flaps…………………………… ………………..1st Notch immediately, 2nd Notch with Positive ROC, 3rd Notch at 60 KTS Elevator Trim Stall (CFI) – AFH 4-12Clearing Turns…………………………………………………………………………………………………………….Complete Altitude…………………………………… ……………………………………An altitude allowing full recovery by 1500’ AGL ManeuverThrottle.…………………………………………………………………………………………… ……………………..1500 RPM Flaps……………………………………………………………………………………………….…Extend in Increments to 30°Airspeed……………………………………………………………………………………….………..Pitch and Trim for 60 Kts. Altitude…………………………………… …………………………Establish descent, choose an altitude to initiate the stall Power……………………………… …………………………………………………………………….Full, simulate go-around RecoveryPitch…………………………………..........................Lower pitch, reducing elevator pressure, then back to climb attitude Ailerons……………………………………………………………………..……………..…………Neutral, then level the wings Rudder…………………………………………………………………………………………….…………………….Control yaw Power…………..…………………………………………………………………………………………………………………Full Flaps…………………………… ………………..1st Notch immediately, 2nd Notch with Positive ROC, 3rd Notch at 60 KTS Crossed Control Stall (CFI) – AFH 4-11Clearing Turns…………………………………………………………………………………………………………….CompleteAltitude…………………………………… ……………………………………An altitude allowing full recovery by 1500’ AGLManeuver Throttle.…………………………………………………………………………………………… ……………………..1500 RPM Descent………………………………………………………………………………………………………………………..60 Kts Enter Turn………… I ncrease Rudder in Direction of Turn, Increase Opposite Aileron, Maintain Elevator Back PressureRecoveryPitch…………………………………..........................Lower pitch, reducing elevator pressure, then back to climb attitude Ailerons……………………………………………………………………..……………..…………Neutral, then level the wings Rudder…………………………………………………………………………………………….…………………….Control yaw Power…………..…………………………………………………………………………………………………………………Full Chandelles – AFH 9-5Clearing Turns…………………………………………………………………………………………………………….Complete Altitude…………………………………..………………………………………..…………… An altitude of at least 1500’ AGL Reference Point……………………………………………………………………………………………………………Selected Maneuver Power………………………………………………………………………………………………………..2300 RPM – then Full Airspeed…………………………………………………………….………………………………………………………..90 KTS Chandelle………………………………………………………………………………… ………………..……………pleteTolerances Heading……………………………………………………………………………………………..…………………….…..+/- 10°Bank Angle……………………………………………………………….. ……………………..…………………..30° maximum Airspeed…………………………………………………………….………………………………………………Just above stallLazy Eights – AFH 9-6Clearing Turns…………………………………………………………………………………………………………….Complete Altitude…………………………………..………………………………………..…………… An altitude of at least 1500’ AGL Reference Point……………………………………………………………………………………………………………Selected Maneuver Power……………………………………………………………………………………………… …………………….2300 RPM Airspeed…………………………………………………………….………………………………………………………..90 KTS Lazy Eight…………………………………………………………………………………………………..……………pleteTolerances Heading……………………………………………………………………………………………..…………………….…..+/- 10°Bank Angle……………………………………………………………….. ……………………..…………………..30° maximum Airspeed……………………………………………………………. ……………………………………………………..+/- 10 kts Altitude……………………………………………………………. …………………………………..+/- 100’ from entry altitudeSteep Spirals – AFH 9-4Clearing Turns…………………………………………………………………………………………………………….Complete Altitude…………………………………..………………………..………An altitude allowing 3 complete turns by 1500’ AGL Reference Point……………………………………………………………………………………………………………SelectedManeuver Power…………………………………………………………………………………………………….………..Idle abeam point Steep Spiral………………………………………………………………………………… ….………………plete 3 turns Airspeed…………………………………………………………….………………………………………………………..60 KTSTolerances Heading……………………………………………………………………………………………..…………………….…..+/- 10°Bank Angle……………………………………………………………….. ……………………..…………………..60° maximum Airspeed……………………………………………………………. ……………………………………………………..+/- 10 kts Altitude…………………………………………………………….………………………………….…plete by 1500’ AGLEights on Pylons – AFH 6-14Clearing Turns…………………………………………………………………………………………………………….Complete Altitude…………………………………..………………………………………..………… Pivotal altitude calculated/selected Reference Points. …………………………………………………………………………………………………………Selected Emergency Field.. …………………………………………………………………………………………………………Selected Maneuver Power……………………………………………………………………………………………………………………..2300 RPM Airspeed…………………………………………………………….………………………………………………………..90 KTS Eights on Pylons…..…………………..………………………………………………… ………………..……………pleteTolerances Heading………………………………………………………………………………………………….…..45° entry to first pylon Bank Angle……………………………………………………………….. ……………………..…………………..As necessary Airspeed……………………………………………………………. ………………………………………….………..+/- 10 KTS Altitude…………………………………………….……. ………………………………….…..Begin and end at pivotal altitude Turns Around a Point – AFH 6-8Clearing Turns…………………………………………………………………………………………………………….Complete Altitude…………………………………..……………………………..……………………………………..………… 1000’ AGL Reference Point... …………………………………………………………………………………………………………Selected Emergency Field.. …………………………………………………………………………………………………………Selected Maneuver Power……………………………………………………………………………………………………………………..2300 RPM Airspeed…………………………………………………………….………………………………………………………..90 KTS Turn Around Point...…………………..………………………………………………… ………………..……………pleteHeading……………………………………………………………………………………………..…………………….…..+/- 10°Bank Angle……………………………………………………………….. ……………………..…………………..45° maximum Airspeed……………………………………………………………. ……………………………………………….…..+/- 10 KTS Altitude………………………………………………………………………………. ………………………………….…..+/- 100’S-Turns Across a Road – AFH 6-10Clearing Turns…………………………………………………………………………………………………………….Complete Altitude…………………………………..……………………………..……………………………………..………… 1000’ AGL Reference Point... …………………………………………………………………………………………………………SelectedEmergency Field.. …………………………………………………………………………………………………………SelectedManeuver Power……………………………………………………………………………………………………………………..2300 RPM Airspeed…………………………………………………………….………………………………………………………..90 KTS S-Turn……………....…………………..…………………………………………………………………..……………pleteHeading……………………………………………………………………………………………..…………………….…..+/- 10°Bank Angle……………………………………………………………….. ……………………..…………………..45° maximum Airspeed……………………………………………………………. …………………………………………….……..+/- 10 KTS Altitude………………………………………………………………………………. ………………………………….…..+/- 100’Take-Off’sNormal Take-Off………………………………………………………………………………………………… ………..No Flaps Soft Field Take-Off………………………………………………………………………………………………… …….10° Flaps Short Field Take-Off…………………………………………………………….....54 KTS till Obstacle Clearance, 10° Flaps LandingsNormal Landing……………………………………………………………………………………………….. 60 KTS, 30° Flaps Soft Field Landing…………………………………………………………………………………………….. 60 KTS, 30° Flaps Short Field Landing…………………………………………………………………………………………… 54 KTS, 30° Flaps Power-Off 180 Approach………………………………. 60 KTS, Flaps as required OR with Forward Slip, MAX 20° FlapsTraffic Pattern – AFH CH. 7Downwind:1000’ AGL2300 RPMBrief Landing:RunwayWindApproach Speed Touchdown/Aim PointAbeam TD:Carb Heat1600 RPM80 KTS10 FlapsBase:20 Flaps70 KTS Final:30 Flaps60 KTS Upwind:Flaps UpFull Power65-75 KTSVy – 67 Vx – 55Engine Failure Procedure – AFH 8-25, 26The engine failure procedure is intended to provide the student with a basic procedure in order to correctly set up the aircraft for a power off approach to the emergency landing site. Not included in this procedure are the necessary procedures and checklists to troubleshoot the engine and secure the engine. These will be found in the aircraft POH as well as the Inflight iPad checklists.Emergency landing site, selected due to wind, obstacles, size, terrain.KEY POSITION¼ - ½ mile abeam 1000’ AGL (est.) Proceed directly to KEY POSITION at Best Glide. Completechecklists and communicate asaltitude allows. Aviate, Navigate,Communicate.Spiral as necessary to arrive at Key Position.Depart Key Position and execute the power off approach, using flaps and forward slip as necessary to simulate landing at emergency site. WIND 123Instrument Approach ProcedurePrior to the Approach: Approach.…………………………………………………………………………………………………………………….Briefed Checklists.……………………………………………………………………………………………… Completed as necessary On Initial Approach Segment or Downwind/Base Vector Throttle.……………………………………………………………………………………………… …………………..2300 RPM Airspeed.………………………………………………………………………………………………………………………Cruise Approaching Major Descent Point (1/2 Scale on GS or 2 NM to FAF) Airspeed.……………………………………………………………………………………………………………………..90 KTS Intercepting Major Descent Point (GS/FAF) Throttle.……………………………………………………………………………………………… …………………..1700 RPMCarb Heat …………………………………………………………………………………………………………………………On Flaps.………………………………………………………………………………………………………………………………10°Pitch.………………………………………………………………………………………………………………………2.5° Down Airspeed.……………………………………………………………………………………………… ……………….80 - 85 KTSBriefing the ApproachWEATHER – ATIS/Automated WeatherINSTRUMENTS – Set as necessary.RADIOS – Set as necessaryENVIRONMENT – Brief the approachBrief the approach from Top to BottomHeader - Verify Name, Type, and Runway of the approach. Discuss the notes and frequencies and note any changes as necessary. Verify airport lighting. Tune and ID frequencies. Verify airport elevation and TDZE.Planview – Brief current location relative to the airport, IAF, approach segments to the airport, and any procedure turns. Minimum Safe Altitude for the area. Brief runway position relative to Final Approach Course. Is circling required?Profile – Brief fixes, altitudes, and minimums.Missed Approach – Brief the FULL missed approach. The first 2 steps should be memorized.1st Edition, August 2018 10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

飞行器设计技术手册
一、简介
飞行器设计技术手册是为了指导飞行器的设计、制造与维护工作而
编写的文件。

本手册从飞行器的概述、设计要求、材料选择、结构设计、系统设计等多个方面进行详细讲解,以帮助读者全面了解飞行器
的设计技术知识。

二、飞行器概述
1. 飞行器分类
飞行器按功能可分为民用飞行器和军用飞行器两大类,根据机身结构、使用方式等又可进一步细分为多个小类别,如民用飞机、直升机、无人机等。

2. 飞行器性能指标
飞行器的性能指标包括起飞重量、燃油消耗率、巡航速度、航程、
载客量等多个参数,这些参数的选择需根据实际需求进行合理的确定。

三、设计要求
1. 结构强度
飞行器的结构设计要满足一定的强度要求,以确保在飞行过程中不
发生结构破坏或失效的情况。

2. 稳定性与操纵性
飞行器的稳定性和操纵性是设计过程中需要特别关注的重要指标,需要进行合理的机身设计和飞行控制系统设计。

3. 燃油效率
燃油效率是衡量飞行器性能的重要参数之一,设计师需要在保证飞行器性能的前提下,尽可能提高燃油利用率,减少油耗成本。

4. 整体安全性
飞行器的整体安全性需要从设计、材料选择、系统设计等多个方面进行综合考虑,确保在飞行过程中不出现危险情况。

四、材料选择
1. 结构材料
飞行器的结构材料需要具备一定的强度、刚度和轻量化的特点,目前常用的结构材料有铝合金、复合材料和钛合金等。

2. 功能材料
飞行器的功能材料包括润滑材料、防腐材料、绝缘材料等,这些材料的选择需根据具体使用环境和要求进行合理的选用。

五、结构设计
1. 机身结构设计
飞行器的机身结构设计需考虑强度、重量、外观等因素,通过合理的设计使飞行器具备优良的外形和有效的载荷承受能力。

2. 机翼和尾翼设计
机翼和尾翼的设计需考虑气动力学特性和控制性能,采用适当的翼
型和有利于操纵的布局,以保证飞行器的稳定性和操纵性。

六、系统设计
1. 动力系统设计
飞行器的动力系统设计需根据飞行器类型和性能要求进行合理选择,包括发动机、推进器、传动系统等。

2. 控制系统设计
飞行器的控制系统设计需确保飞行器的稳定性和操纵性,包括飞行
控制系统、导航系统、通信系统等。

七、维护与保养
为了确保飞行器的正常运行和延长使用寿命,对其进行定期的维护
和保养是十分重要的。

维护和保养工作包括结构检查、设备功能检测、润滑和清洁等。

八、总结
本技术手册从飞行器的概述、设计要求、材料选择、结构设计和系
统设计等多个方面进行了详细的讲解,为读者提供了全面的飞行器设
计技术知识。

希望读者能够通过本手册加深对飞行器设计的理解,并
能在实际工作中应用到相关技术中。

最后,祝愿读者在飞行器设计领
域取得更大的发展与成就!。

相关文档
最新文档