a酮戊二酸脱氢酶复合体的组成
生物化学:第十章 三羧酸循环

The Citric Acid Cycle Oxidizes Two-Carbon Units
The cycle starts with the condensation of oxaloacetate (C4) and acetyl CoA (C2) to give citrate (C6), which is isomerized to isocitrate (C6). Oxidative decarboxylation of this intermediate gives –ketoglutarate (C5). The second molecule of carbon dioxide comes off in the next reaction, in which -ketoglutarate is oxidatively decarboxylated to succinyl CoA (C4). The thioester bond of succinyl CoA is cleaved by inorthophosphate to yield succinate, and a high phosphoryl transfer potential compound in the form of GTP is concomitantly generated. Succinate is oxidized to fumarate (C4), which is then hydrated to form malate (C4). Finally, malate is oxidized to regenerate oxaloacetate (C4). Thus, two carbon atoms from acetyl CoA enter the cycle, and two carbon atoms leave the cycle as CO2 in the successive decarboxylations catalyzed by isocitrate dehydrogenase and ketoglutarate dehydrogenase. In the four oxidation–reduction reactions in the cycle, three pairs of electrons are transferred to NAD and one pair to FAD. These reduced electron carriers are subsequently oxidized by the electrontransport chain to generate approximately 9 molecules of ATP. In addition, 1 molecule of a compound having a high phosphoryl transfer potential is directly formed in the citric acid cycle. Hence, a total of 10 molecules of compounds having high phosphoryl transfer potential are generated for each two-carbon fragment that is completely oxidized to H2O and CO 2. 44 浙江大学医学院徐立红
(完整版)生物化学试题及答案(4)

生物化学试题及答案(4)第四章糖代谢【测试题】一、名词解释1.糖酵解(glycolysis) 11.糖原累积症2.糖的有氧氧化 12.糖酵解途径3.磷酸戊糖途径 13.血糖 (blood sugar)4.糖异生(glyconoegenesis) 14.高血糖(hyperglycemin)5.糖原的合成与分解 15.低血糖(hypoglycemin)6.三羧酸循环(krebs循环) 16.肾糖阈7.巴斯德效应 (Pastuer效应) 17.糖尿病8.丙酮酸羧化支路 18.低血糖休克9.乳酸循环(coris循环) 19.活性葡萄糖10.三碳途径 20.底物循环二、填空题21.葡萄糖在体内主要分解代谢途径有、和。
22.糖酵解反应的进行亚细胞定位是在,最终产物为。
23.糖酵解途径中仅有的脱氢反应是在酶催化下完成的,受氢体是。
两个底物水平磷酸化反应分别由酶和酶催化。
24.肝糖原酵解的关键酶分别是、和丙酮酸激酶。
25.6—磷酸果糖激酶—1最强的变构激活剂是,是由6—磷酸果糖激酶—2催化生成,该酶是一双功能酶同时具有和两种活性。
26.1分子葡萄糖经糖酵解生成分子ATP,净生成分子ATP,其主要生理意义在于。
27.由于成熟红细胞没有,完全依赖供给能量。
28.丙酮酸脱氢酶复合体含有维生素、、、和。
29.三羧酸循环是由与缩合成柠檬酸开始,每循环一次有次脱氢、- 次脱羧和次底物水平磷酸化,共生成分子ATP。
30.在三羧酸循环中催化氧化脱羧的酶分别是和。
31.糖有氧氧化反应的进行亚细胞定位是和。
1分子葡萄糖氧化成CO2和H2O净生成或分子ATP。
32.6—磷酸果糖激酶—1有两个ATP结合位点,一是 ATP作为底物结合,另一是与ATP亲和能力较低,需较高浓度ATP才能与之结合。
33.人体主要通过途径,为核酸的生物合成提供。
34.糖原合成与分解的关键酶分别是和。
在糖原分解代谢时肝主要受的调控,而肌肉主要受的调控。
35.因肝脏含有酶,故能使糖原分解成葡萄糖,而肌肉中缺乏此酶,故肌糖原分解增强时,生成增多。
生物化学试题及答案

生物化学试题及答案(4)第四章糖代谢【测试题】一、名词解释1.糖酵解(glycolysis)11.糖原累积症2.糖的有氧氧化12.糖酵解途径3.磷酸戊糖途径13.血糖(bloodsugar)4.糖异生(glyconoegenesis)14.高血糖(hyperglycemin)5.糖原的合成与分解15.低血糖(hypoglycemin)6.三羧酸循环(krebs循环)16.肾糖阈7.巴斯德效应(Pastuer效应)17.糖尿病8.丙酮酸羧化支路18.低血糖休克9.乳酸循环(coris循环)19.活性葡萄糖10.三碳途径20.底物循环二、填空题21.葡萄糖在体内主要分解代谢途径有、和。
22.糖酵解反应的进行亚细胞定位是在,最终产物为。
23.糖酵解途径中仅有的脱氢反应是在酶催化下完成的,受氢体是。
两个底物水平磷酸化反应分别由酶和酶催化。
24.肝糖原酵解的关键酶分别是、和丙酮酸激酶。
25.6—磷酸果糖激酶—1最强的变构激活剂是,是由6—磷酸果糖激酶—2催化生成,该酶是一双功能酶同时具有和两种活性。
26.1分子葡萄糖经糖酵解生成分子ATP,净生成分子ATP,其主要生理意义在于。
27.由于成熟红细胞没有,完全依赖供给能量。
28.丙酮酸脱氢酶复合体含有维生素、、、和。
29.三羧酸循环是由与缩合成柠檬酸开始,每循环一次有次脱氢、-次脱羧和次底物水平磷酸化,共生成分子ATP。
30.在三羧酸循环中催化氧化脱羧的酶分别是和。
31.糖有氧氧化反应的进行亚细胞定位是和。
1分子葡萄糖氧化成CO2和H2O净生成或分子ATP。
32.6—磷酸果糖激酶—1有两个ATP结合位点,一是ATP作为底物结合,另一是与ATP亲和能力较低,需较高浓度ATP才能与之结合。
33.人体主要通过途径,为核酸的生物合成提供。
34.糖原合成与分解的关键酶分别是和。
在糖原分解代谢时肝主要受的调控,而肌肉主要受的调控。
35.因肝脏含有酶,故能使糖原分解成葡萄糖,而肌肉中缺乏此酶,故肌糖原分解增强时,生成增多。
三羧酸循环

1基本介绍Kerbs Cycle柠檬酸循环(tricarboxylicacidcycle):也称为三羧酸循环(tricarboxylicacidcycle,TCA),Krebs循环。
是用于将乙酰CoA中的乙酰基氧化成二氧化碳和还原当量的酶促反应的循环系统,该循环的第一步是由乙酰CoA与草酰乙酸缩合形成柠檬酸。
反应物乙酰辅酶A(cetyl-CoA)(一分子辅酶A和一个乙酰相连)是糖类、脂类、氨基酸代谢的共同的中间产物,进入循环后会被分解最终生成产物二氧化碳并产生H,H将传递给辅酶--尼克酰胺腺嘌呤二核苷酸(NAD+) 和黄素腺嘌呤二核苷酸(FAD),使之成为NADH + H+和FADH2。
NADH + H+ 和FADH2 携带H进入呼吸链,呼吸链将电子传递给O2产生水,同时偶联氧化磷酸化产生ATP,提供能量。
真核生物的线粒体和原核生物的细胞质是三羧酸循环的场所。
它是呼吸作用过程中的一步,但在需氧型生物中,它先于呼吸链发生。
厌氧型生物则首先遵循同样的途径分解高能有机化合物,例如糖酵解,但之后并不进行三羧酸循环,而是进行不需要氧气参与的发酵过程。
2发现过程三羧酸循环如果国泰民安,克雷布斯博士也许一辈子就是一位普通的医生。
但是第二次世界大战爆发了,他受到纳粹的迫害,不得不逃往英国。
在德国,他是位非常优秀的医生,但是在英国,由于没有行医许可证,得不到社会的承认。
他只好打消当一名每天给患者看病的医生的念头,转而从事基础医学的研究。
刚开始选择课题时,仅仅出于对食物在体内究竟是如何变成水和二氧化碳的现象充满了兴趣,他毫不犹豫地选择了这个课题,并且着手调查前人研究这一课题的各种材料。
有的学者报告说:“A物质经过氧化变成了B 物质。
”有的学者说:“C物质经过氧化变成了D物质,然后又进一步变成E物质。
”还有的学者认为:“C物质是从B物质中得到的。
或者可以说,是F物质变成了G物质。
”另外一些学者则认为,是“G物质经过氧化变成A物质”等等。
4三羧酸循环

HC COOH
延胡索酸
2H FAD
CH2 COOH H2C COOH
琥珀酸
2021/5/14
GTP
CH2 COOH
琥珀酰CoA
H2C
CH2 COOH
O=C COOH
α-酮戊二酸
H2C CO~SCoA 2H CO2
NAD+
CO2 2H
NAD+
(二) 草酰乙酸的回补反应
表面上看来,三羧酸循环运转必不可少的草酰乙 酸在三羧酸循环中是不会消耗的,它可被反复利用。 但是:
2021/5/14
第三阶段三羧酸循环乙酰coa与草酰乙酸缩合形成柠檬酸tca柠檬酸合成酶草酰乙酸coohchcoscoa乙酰辅酶acoohcooh柠檬酸citratehscoa乙酰coa草酰乙酸柠檬酸coash乙酰coa草酰乙酸柠檬酸coash关键酶异柠檬酸hocoohcoohcoohch柠檬酸异构化生成异柠檬酸柠檬酸coohcoohcoohch顺乌头酸coohcooh柠檬酸异柠檬酸柠檬酸异柠檬酸tca顺乌头酸酶cohocoohcooh异柠檬酸氧化脱羧生成酮戊二酸coohcooh异柠檬酸脱氢酶异柠檬酸nadtcaco酮戊二酸氧化脱羧生成琥珀酰辅酶a酮戊二酸脱氢酶系hscoanadcoashnad关键酶tca酮戊二酸脱氢酶系催化的反应机制与丙酮酸氧化脱氢酶系相同组成类似
C6H12O6 + 6O2
6 CO2 + 6 H2O + 30/32 ATP
有氧氧化是糖氧化的主要方式,绝大多 数组织细胞都通过有氧氧化获得能量。
2021/5/14
糖
糖酵
解 乳酸
有
氧
线粒体内
氧 化
概
葡萄糖→→丙酮酸→丙酮酸→乙酰CoA
三羧酸循环

二 TCA循环的过程
(c5)
1 、乙酰COA与草酰乙酸缩合形成柠檬酸
COO-
C=O CH2 + COO-
O C-CH3 S-COA
柠檬酸 合酶
O C-SCOA
CH2 HO-C-COO-
CH2
COOH2O
单向不可逆 可调控的限速步骤
氟乙酰CoA导致致死合成
常作为杀虫药
第四节 三羧酸循环
概念:在有氧的情况下,葡萄糖酵解产生的丙酮酸 氧化脱羧形成乙酰CoA。乙酰CoA经一系列氧化、 脱羧,最终生成C2O和H2O并产生能量的过程,称 为柠檬酸循环,亦称为三羧酸循环, 简称TCA循环。 由于它是由H.A.Krebs(德国)正式提出的,所以 又称Krebs循环。
三羧酸循环在线粒体基质中进行。
5、琥珀酰COA转化成琥珀酸,并产生GTP (琥珀酰COA 硫激酶/琥珀酰COA合成酶)
S COA
GDP+Pi
CO CH2 CH2
COOH
GTP+HSCOA
COOH CH2 CH2 COOH
TCA中唯一底物水平磷酸化直接产生高能磷酸化合物的步骤
GTP+ADP
GDP+ATP
6 、琥珀酸脱氢生成延胡索酸
若从葡萄糖开始,共可产生12.5/15×2 + 7 (8/6)= 32 (38/36)个ATP
(二版及其他教材为38个ATP,NADH3ATP, FADH2 2ATP: (6/4 + 2)+(2×3) +(2×12)=38/36
可见由糖酵解和TCA循环相连构成的糖的有氧氧化途 径,是机体利用糖氧化获得能量的最有效的方式,也是 机体产生能量的主要方式。
3-三羧酸循环

Tricarboxylic acid/Krebs cycle-1丙酮酸脱氢酶复合体:E1-丙酮酸脱氢酶组分(TPP,丙酮酸氧化脱羧);E2-二氢硫辛酰转乙酰基酶(硫辛酰胺,将乙酰基转移到CoA);E3-二氢硫辛酸脱氢酶(FAD,将还原型硫辛酰胺转变为氧化型)丙酮酸+CoASH+NAD+乙酰CoA+CO2+NADH丙酮酸脱氢酶复合体体的调控:①产物控制:NADH和乙酰CoA和酶作用的底物NAD+和CoA竞争酶的活性部位,乙酰CoA抑制E2,NADH抑制E3;如果NADH/NAD+和乙酰CoA/CoA的比值高,E2则处于与乙酰基结合的形式,这时不能接受在E1酶上与TPP结合着的羟乙基基团,使E1酶上的TPP停留在与羟乙基结合的状态,从而抑制了丙酮酸脱羧酶作用的进行。
②E1的磷酸化和去磷酸化是使丙酮酸脱氢酶复合体失活和激活的重要方式;E2分子上结合有两种酶,一种激酶,一种磷酸酶,激酶使E1磷酸化,磷酸酶使磷酸化的E1去磷酸化从而激活E1;Ca2+通过激活磷酸酶的作用,也使E1激活。
柠檬酸合酶:草酰乙酸+乙酰CoA+H2O柠檬酸+CoA+H+乌头酸酶:柠檬酸顺乌头酸+H2O ;顺乌头酸+H2O异柠檬酸(柠檬酸异柠檬酸)异柠檬酸脱氢酶:异柠檬酸+NAD+→草酰琥珀酸+NADH+H+;草酰琥珀酸+H+→a-酮戊二酸+CO2(异柠檬酸+NAD+a-酮戊二酸+NADH+CO2)草酰琥珀酸+H+→a-酮戊二酸+CO2a-酮戊二酸脱氢酶复合体:a-酮戊二酸+NAD++CoASH琥珀酰CoA+NADH+H++CO2琥珀酸-CoA合成酶:琥珀酰CoA+GDP+Pi琥珀酸+GTP+CoASH琥珀酸脱氢酶:琥珀酸+FAD延胡索酸+FADH2延胡索酸酶:延胡索酸+H2O苹果酸苹果酸脱氢酶:苹果酸+NAD+草酰乙酸+NADH+H+(填补反应)丙酮酸羧化酶:丙酮酸+ATP+CO2草酰乙酸+ADP+Pi+2H+(由草酰乙酸或循环中任何一种中间产物的不足而引起TCA速度有任何的降低都会使乙酰CoA浓度增加,而乙酰CoA是丙酮酸羧化酶的激动剂,结果会产生更多的草酰乙酸,从而提高TCA的速度,过量的草酰乙酸被转运到线粒体外用于合成Glc。
生物化学下册复习提纲重点版(华南理工)

物质代谢(合成代谢、分解代谢):从物质代谢来说,新陈代谢包括分解代谢和合成代谢。
分解代谢——生物大分子通过一系列的酶促反应步骤,转变为教小的、较简单的物质的过程。
合成代谢——生物体利用小分子或大分子的结构元件合成自身生物大分子的过程。
能量代谢:在生物体内,以物质代谢为基础,与物质代谢过程相伴随发生的,是蕴藏在化学物质中的能量转化,统称为能量代谢。
一、名词解释高能磷酸化合物:机体内有许多磷酸化合物,当其磷酰基水解时,释放出大量的自由能。
这类化合物为高能磷酸化合物。
高能键:高能磷酸化合物分子中的酸酐键,能释放出大量自由能,称之为“高能键”。
二、高能磷酸键化合物及其他高能化合物的类型(一)磷氧型1、酰基磷酸化合物(1)乙酰磷酸(2)氨甲酰磷酸(3)1,3-二磷酸甘油酸(4)酰基腺苷酸(5)氨酰腺苷酸2、焦磷酸化合物(1)焦磷酸(2)二磷酸腺苷3、烯醇式磷酸化合物磷酸烯醇式丙酮酸(二)氮磷型胍基磷酸化合物(1)磷酸肌酸(2)磷酸精氨酸(三)硫酯键型活性硫酸基(1)3’-腺苷磷酸5’-磷酰硫酸(2)酰基辅酶A(四)甲硫键型活性甲硫氨酸一、名词解释被动运输:指物质从高浓度的一侧,通过膜运输到低浓度的一侧,物质顺浓度梯度的方向跨膜运输的过程,是不需要消耗代谢能的穿膜运输。
主动运输:指物质逆浓度梯度的穿膜运输过程。
需消耗代谢能,并需专一性的载体蛋白。
协同运输:小分子的跨膜运送大都是通过专一性运送蛋白的作用实现的。
如果只是运输送一种分子由膜的一侧到另一侧,称为单向运输;如果一种物质的运输与另一种物质的运输相关而且方向相同,称为同向运输。
方向相反则称为反向运输,这二者又统称为协同运输。
Na+,K+—泵:Na+、K+-泵实际是分布在膜上的Na+、K+-ATP酶。
通过水解ATP提供的能量主动向外运输Na+,而向内运输K+ 。
每水解1分子ATP,向外运输3个Na+,而向内运输2个K+ 。
Ca+—泵:Ca2+泵即为Ca2+-ATP酶,Ca2+泵主动运送Ca2+到膜内是通过水解ATP提供的能量驱动的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a酮戊二酸脱氢酶复合体的组成
比克斯-粘特酮戊二酸脱氢酶复合物是一种生物氧化过程而形成的高度结构化复合物,可以解离比克斯-粘特酮戊二酸。
它是一种双功能蛋白,可以结合能量供体,将氧从比克斯-粘特酮戊二酸转移到金属中。
它由三种结构单元组成,包括胆碱结合域(LBD),蛋白质调节域(PRD)和调控域(RD)。
LBD是一种特殊的脱氢酶域,主要作用是将胆碱从比克斯-粘特酮戊二酸中捕获到一种特定的形式。
胆碱是一种氧化还原物质,可以将能量转化为化学信号,从而帮助大脑与其他器官之间进行沟通。
PRD是蛋白质调节域,可以识别比克斯-粘特酮戊二酸,并调节比克斯-粘特酮戊二酸的氧化还原动力学过程。
PRD可以与肽段形成结合,调节比克斯-粘特酮戊二酸的氧化反应,并能够将较慢的氧化反应过程加速,使细胞回归正常的状态。
RD,即调控域,是一种氧化抑制域,可以调节比克斯-粘特酮戊二酸的氧化反应。
它可以识别较低活性的酶,并减少它们的活性水平,从而阻止不必要的氧化过程。
因此,比克斯-粘特酮戊二酸脱氢酶复合物是一种高度结构化的复合物,由LBD,PRD和RD 三种酶域组成。
对于比克斯-粘特酮戊二酸的氧化反应,这一复合物可以为细胞提供足够的能量并延缓氧化过程的发生,从而保证了细胞的正常功能。