丙酮酸脱氢酶系(多酶复合物)

合集下载

第20章-柠檬酸循环

第20章-柠檬酸循环
④TCA的第二个限速步骤。
⑤线粒体内有二种异柠檬酸脱氢酶,一种以NAD+ 为电子受体,另一种以NADP+为受体。前者只 在线粒体中,后者在线粒体和胞质中都有。
①由α-酮戊二酸脱氢酶系(a-ketoglutarate dehydrogenase complex)催化,不可逆。
②α-酮戊二酸脱氢酶系为多酶复合体,与丙酮酸脱氢酶系 相似(先脱羧,后脱氢):包括a-酮戊二酸脱氢酶(aketoglutarate dehydrogenase)(E1,含有TPP),二氢 硫辛酰胺琥珀酰转移酶(dihydrolipoamide succinyl transferase)(E2,含有硫辛酰胺),和二氢硫辛酰胺 脱氢酶(dihydrolipoamide dehydrogenase)(E3.,含 有黄素蛋白)及六种辅因子。
2、一次底物水平的磷酸化、二次脱羧反应, 三个调节位点,四次脱氢反应。
3个NADH、1个FADH2进入呼吸链 3、三羧酸循环中碳骨架的不对称反应
同位素标记表明,乙酰CoA上的两个C原子 在第一轮TCA上并没有被氧化。
被标记的羰基碳在第二轮TCA中脱去。
在第三轮TCA中,两次脱羧,可除去最初 甲基碳的50%,以后每循环一次,脱去余下 甲基碳的50%。
第二个调节点是异柠檬酸转变为α -酮戊二酸的反应
异柠檬酸脱氢酶,ADP能增强异柠檬酸脱氢酶同异柠檬酸之间的亲和力。但 NADH及琥珀酰CoA都对异柠檬酸脱氢酶有抑制作用
2×3/2.5
C 异柠檬酸脱氢酶
NADH
2×3/2.5
A α-酮戊二酸脱氢酶复 NADH 合物
2×3/2.5
琥珀酸脱氢酶 苹果酸脱氢酶
FADH2 NADH
2×2/1.5 2×3/2.5

生化名词解释

生化名词解释

重组修复:通过复制后的同源DAN单链之间交换使双链中一条单链上对应损伤的空隙得以修复的方式.合成代谢:从生物体外吸取养料,通过一系列生化反应转变成自己的物质,此过程消耗能量。

又叫同化作用。

分解代谢:将体内原有组分经一系列生化反应分解成不能利用的物质而排出体外,此过程产生能量。

又叫异化作用.生物能学:研究发生在活细胞内的能量转换的定量关系以及支撑这些转换的化学过程的性质.糖酵解:糖酵解途径指糖原或葡萄糖分子分解至生成丙酮酸的阶段,是体内糖代谢最主要途径。

糖异生作用:非糖物质(糖的异生作用的前体,如丙酮酸、乳酸、氨基酸等)转变为葡萄糖的过程。

发酵:葡萄糖在无氧条件下转变成酒精或乳酸的过程。

厌氧有机体把糖酵解生成NADH中的氢交给丙酮酸脱羧后的产物乙醛,使之生成乙醇的过程称之为酒精发酵。

如果将氢交给病酮酸丙生成乳酸则叫乳酸发酵。

巴斯德效应:在厌氧条件下,向高速发酵的培养基中通入氧气,则葡萄糖消耗减少,抑制发酵产物积累的现象称为巴斯德效应。

即呼吸抑制发酵的作用。

底物/无效循环:一对催化两个途径的中间代谢物之间循环的方向相反、代谢上不可逆的反应。

有时该循环通过ATP的水解导致热能的释放。

底物水平磷酸化:在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键(或高能硫酯键),由此高能键提供能量使ADP(或GDP)磷酸化生成A TP(或GTP)的过程称为底物水平磷酸化。

此过程与呼吸链的作用无关,以底物水平磷酸化方式只产生少量A TP。

生物氧化:糖、脂、蛋白质等有机物质在细胞中经过一系列的氧化分解,最终生成CO2和H2O等小分子物质并释放出化学能的总过程称为生物氧化。

柠檬酸循环:发生在线粒体基质内,经由一系列脱氢及脱羧反应将乙酰-CoA最终氧化成CO2 的单向循环途径。

回补反应:酶催化的,补充柠檬酸循环中间代谢物供给的反应,例如由丙酮酸羧化酶生成草酰乙酸的反应。

乙醛酸循环:植物细胞内脂肪酸氧化分解为乙酰CoA之后,在乙醛酸体(glyoxysome)内生成琥珀酸、乙醛酸和苹果酸;此琥珀酸可用于糖的合成,该过程称为乙醛酸循环戊糖磷酸途径:6-磷酸-葡萄糖转变成CO2和5-磷酸核酮糖的过程,也称HMS.高能化合物:指体内氧化分解中,一些化合物通过能量转移得到了部分能量,把这类储存了较高能量的化合物,如三磷酸腺苷(ATP),磷酸肌酸,称为高能化合物生物氧化:有机分子在体内氧化分解成CO2和H2O并释放出能量的过程。

三羧酸循环(TCA)

三羧酸循环(TCA)

CH2COOH
5、α —酮戊二酸和Asp 经转氨作用 生成Glu和草酰乙酸
第五节 磷酸戊糖途径(HMP PPP)
磷酸戊糖途径的概念:是G分解的另一条途径: 在6—P—G上直接氧化,再分解产生5—P—核糖。
磷酸戊糖途径PPP:Pentose Phosphate Pathway 己糖磷酸途径HMP:Hexose Monophosphate Pathway 磷酸己糖支路HMS:Hexose Monophosphate Shunt G直接氧化途径DOPG:Direct Oxidation Pathway of Glucose
2、乙酰CoA和NADH可分别抑制DLT和DLDH的 活性,阻止氧化脱羧。
丙酮酸的氧化脱羧是连接EMP和TCA 的纽带,其反应本身并未进入TCA,但是是 所有糖进入TCA的必由之路。
二、三羧酸循环概要
TCA循环一轮分10步完成。来自丙酮酸 脱氢脱羧后的乙酰基(C2单位)由CoA带着 进入TCA,第一步是C2与一个C4化合物(草 酰乙酸)结合成C6化合物(柠檬酸),然后 经过2次脱羧(生成2个CO2)和4次脱氢(生 成3NADH+1FADH2),还产生1个GTP(高 能化合物),最终回到C4化合物(草酰乙 酸),结束一轮循环。
5—P核糖(5—P—R) 官能团异构
5、5—P 核酮糖(5—P—Ru)异构化为 5—P木酮糖(5—P—Xu)
差向异构
4——5步
6-----8步,基团移位反应
通过转酮酶和转醛酶的催化作用,将一酮糖分 子的酮醇基转移给另一醛糖分子上,形成新的醛糖 和酮糖。
转酮酶专门催化乙酮醇基转移
转醛酶专门催化二羟丙酮基转移
细胞中ATP浓度越高时,TCA速度下降; NAD+/NADH的比值越高时,TCA速 度越快。

丙酮酸脱氢酶与丙酮酸脱羧酶

丙酮酸脱氢酶与丙酮酸脱羧酶

丙酮酸脱氢酶与丙酮酸脱羧酶丙酮酸脱氢酶和丙酮酸脱羧酶是两种与丙酮酸代谢途径密切相关的酶。

它们在生物体内负责丙酮酸的转化,参与糖酵解、柠檬酸循环、脂肪酸合成等重要代谢过程。

本文将重点介绍这两种酶的结构、功能、催化机理及其在生物体内的作用。

丙酮酸脱氢酶(Pyruvate dehydrogenase, PDH)是一种催化丙酮酸氧化为乙酰辅酶A(Acetyl-CoA)的酶。

乙酰辅酶A是一种重要的中间产物,可以输入到柠檬酸循环中继续被代谢。

丙酮酸脱氢酶是由几个亚单位(E1-E3)组成的复合物,其中E1亚单位含有丙酮酸脱氢酶活性中心。

该亚单位存在于线粒体内,与多个辅酶、酶促等因子结合形成多酶复合物。

丙酮酸脱羧酶(Pyruvate decarboxylase, PDC)在酵母菌等真核生物中广泛存在。

它是一种催化丙酮酸脱羧生成乙醛的酶。

乙醛是酵母菌中的重要中间产物,可以通过酒精发酵途径生成乙醇。

丙酮酸脱羧酶的催化需要依赖于辅因子硫代乙酸(Thiamine pyrophosphate,TPP)。

该辅因子与酶底物相结合后形成稳定的共价中间体,经过一系列的重排反应最终生成乙醛。

丙酮酸脱氢酶和丙酮酸脱羧酶在丙酮酸代谢中起到重要的作用。

丙酮酸脱氢酶参与糖酵解和柠檬酸循环,在线粒体内将丙酮酸转化为乙酰辅酶A,为细胞提供能量和中间产物。

丙酮酸脱氢酶活性的变化会直接影响葡萄糖的代谢途径选择,从而影响细胞内的乳酸、乙醇等产物的产生。

丙酮酸脱羧酶参与酵母菌中的酒精发酵过程,将丙酮酸脱羧为乙醇。

这个过程在一些重要的实际应用中具有特殊意义,如酿造酒类、面包发酵等。

丙酮酸脱羧酶也参与乙酸发酵途径,将丙酮酸转化为乙酸。

丙酮酸脱氢酶和丙酮酸脱羧酶的催化机理与结构特点有许多共同之处。

在催化反应中,两种酶均通过形成共价中间体来实现丙酮酸的转化。

丙酮酸脱氢酶和丙酮酸脱羧酶的活性中心结构和活性位点也存在一定的相似性,具有类似的催化机制。

总的来说,丙酮酸脱氢酶和丙酮酸脱羧酶是两种在丙酮酸代谢途径中发挥重要作用的酶。

丙酮酸脱氢酶复合体

丙酮酸脱氢酶复合体
丙酮酸脱氢酶复合体E2的缺失。E2亚单位缺乏患者不会出现神经系统的改变,主要是患有胆汁性肝硬化。该病主要发于女性,临床表现为肝内小胆管慢性渐进性损伤,伴有肝门炎症并最终发展为肝纤维化。这些患者多有抗E2的自身抗体。
丙酮酸脱氢酶复合体E3和E3结合蛋白的缺失。E3 和E3 结合蛋白的缺陷很少见, 所报道的患者父母多为近亲婚配,属常染色体隐性遗传。在三羧酸循环和支链氨基酸代谢中 E3 也参与其他2个脱氢酶的组成。其中E3结合蛋白缺乏的男性患者的临床表现与PDHA1缺陷的男性患者相似,主要表现为体格、智力运动发育落后、肌张力低下、乳酸酸中毒和 Leigh 综合症。对于乳酸酸中毒合并ɑ-酮酸尿症和血浆支链氨基酸水平增高的患者应高度怀疑E3缺乏。
三、丙酮酸脱氢酶复合体的作用机制
在丙酮酸脱氢酶复合体总的催化反应中。 首先是丙酮酸在Mg2+( Mg2+结合在 ThDP 的磷酸基团上)存在下脱去的羧基与丙酮酸脱氢酶的辅助因子ThDP 形成羟乙基OThDP, 丙酮酸脱氢酶与 ThDP在α 、β亚单位之间的深沟内结合。然后, 羟乙基被氧化并将乙酰基转移到 E2,,即二氢硫辛酸乙酰转移酶的硫辛酰基形成中间产物乙酸硫酰胺, 同时释放出ThDP, 接下来在二氢硫辛酸乙酰转移酶催化下,乙酰硫酰胺上的乙酰基从乙酰硫辛酰基转移给辅酶A ,形成乙酰辅酶A。最后二氢硫辛酸脱氢酶E3 与二硫化物结合, 被还原的硫辛酸重新氧化并将氢递给它的辅基FAD。在氧化和脱羧过程中硫辛酸充当乙酰基载体和电子传递体。
关键词:丙酮酸脱氢酶复合体;调控机制;蛋白质的结构和功能
一、丙酮酸脱氢酶复合体的组成
丙酮酸脱氢酶复合体是由三种酶以及相应的辅助因子形成,因物种的不同其各种成分的所占比例不同。丙酮酸脱氢酶复合体的分子量为7×106kDa。

第二单元 物质代谢和能量代谢 第四章 糖代谢

第二单元 物质代谢和能量代谢 第四章 糖代谢

第二单元物质代谢和能量代谢第四章糖代谢二、生化术语1.中间代谢:通常指消化吸收的营养物质和体内原有的物质在一切组织和细胞中进行的各种化学变化。

2.糖原(glycogen):动物细胞中葡萄糖的贮存形式。

肌糖原主要供给肌肉收缩时能量的需要,肝糖原主要维持血糖的稳定。

3.血糖:血液中的葡萄糖。

其水平的稳定对确保细胞执行正常功能具有重要意义(正常人的血糖值为每100ml血含有80~120mg葡萄糖)。

4.糖酵解(glycolysis):在无氧条件下,由葡萄糖氧化分解转化为丙酮酸的过程。

5.发酵(fermentation):指葡萄糖及其他有机物的厌氧降解过程,生成乳酸称乳酸发酵,生成乙醇称生醇发酵。

6.丙酮酸脱氢酶系(pyruvate dehydrogenase complex):一种多酶复合体,分布在线粒体内膜上,催化丙酮酸氧化脱羧,生成乙酰辅酶A。

在大肠杆菌中,这种复合体包括3种酶(丙酮酸脱氢酶E1、和6种辅因子(TPP+、硫辛酸、辅酶A、FAD、NAD 二氢硫辛酸转乙酰基酶E2、二氢硫辛酸脱氢酶E3)+、Mg2+)。

7.三羧酸循环(tricarboxylic acid cycle 简称TCA循环):以乙酰CoA和草酰乙酸缩合成柠檬酸后再经一系列反应又重新生成草酰乙酸的环状途径。

该途径的第一个代谢物是柠檬酸,所以又称柠檬酸循环;柠檬酸含有三个羧基,故称三羧酸循环;德国科学家H.Krebs发现,又称Krebs循环。

8.回补反应(anaplerotic reaction):三羧酸循环的中间代谢物也是其他物质生物合成的前体,当它们为了同化的目的而被移去时,必须进行“补充”或“填充”,才能维持TCA循环的正常进行。

如丙酮酸在丙酮酸羧化酶的催化下生成草酰乙酸反应。

9.乙醛酸循环(glyoxylate cycle):存在于植物和微生物中,是将2个乙酰CoA转变成一分子草酰乙酸的环状途径。

循环中有乙醛酸,所以称乙醛酸循环。

生物化学第三版习题答案第八章

生物化学第三版习题答案第八章

生物化学第三版习题答案第八章自养生物分解代谢糖代谢包括异养生物自养生物合成代谢异养生物能量转换〔能源〕糖代谢的生物学功能物质转换〔碳源〕可转化成多种中间产物,这些中间产物可进一步转化成氨基酸、脂肪酸、核苷酸。

糖的磷酸衍生物能够构成多种重要的生物活性物质:NAD、FAD、DNA、RNA、ATP。

分解代谢:酵解〔共同途径〕、三羧酸循环〔最后氧化途径〕、磷酸戊糖途径、糖醛酸途径等。

合成代谢:糖异生、糖原合成、结构多糖合成以及光合作用。

分解代谢和合成代谢,受神经、激素、别构物调剂操纵。

第一节糖酵解glycolysis一、酵解与发酵1、酵解glycolysis 〔在细胞质中进行〕酵解酶系统将Glc降解成丙酮酸,并生成ATP的过程。

它是动物、植物、微生物细胞中Glc分解产生能量的共同代谢途径。

在好氧有机体中,丙酮酸进入线粒体,经三羧酸循环被完全氧化成CO2和H2O,产生的NADH经呼吸链氧化而产生ATP 和水,因此酵解是三羧酸循环和氧化磷酸化的前奏。

假设供氧不足,NADH把丙酮酸还原成乳酸〔乳酸发酵〕。

2、发酵fermentation厌氧有机体〔酵母和其它微生物〕把酵解产生的NADH上的氢,传递给丙酮酸,生成乳酸,那么称乳酸发酵。

假设NAPH中的氢传递给丙酮酸脱羧生成的乙醛,生成乙醇,此过程是酒精发酵。

、视网膜。

二、糖酵解过程〔EMP〕Embden-Meyerhof Pathway ,1940在细胞质中进行1、反应步骤P79 图13-1 酵解途径,三个不可逆步骤是调剂位点。

(1)、葡萄糖磷酸化形成G-6-P反应式此反应差不多不可逆,调剂位点。

△G0= - 4.0Kcal/mol使Glc活化,并以G-6-P形式将Glc限制在细胞内。

催化此反应的激酶有,已糖激酶和葡萄糖激酶。

激酶:催化ATP分子的磷酸基〔r-磷酰基〕转移到底物上的酶称激酶,一样需要Mg2+或Mn2+作为辅因子,底物诱导的裂缝关闭现象看起来是激酶的共同特点。

【实用】丙酮酸脱氢酶复合体PPT文档

【实用】丙酮酸脱氢酶复合体PPT文档

2.由二氢硫辛酸乙酰转移酶(E2)催化使羟乙基被氧化成乙酰
基,同时转移给硫辛酸与酶蛋白的赖氨酰ε氨基所形成的硫辛酰 胺上,形成乙酰硫辛酰胺。
3.二氢硫辛酸乙酰转移酶(E2)还催化乙酰硫辛酰胺上的乙酰
基转移给CoA形成乙酰CoA。
4.二氢硫辛酸脱氢酶(E3)使被还原的硫辛酰氨重新氧化, 并将氢传递给它的辅基FAD。
这个反应包括脱水和水化,顺乌头酸是脱水中间物。在250C,这 三个酸的平衡混合物含有90%柠檬酸,4%顺乌头酸,6%异柠檬酸 。顺乌头酸酶有铁-硫中心,包括非血红素铁和酸不稳定硫。铁 通过与柠檬酸的羧基和羟基相互作用与柠檬酸形成复合物。顺 乌头酸酶有立体专一性,只产生一种异柠檬酸。
顺乌头酸酶是个相当复杂的酶,其中含有由4个铁原子,4个无 机硫原子及4个半胱氨酸硫原子形成的铁硫中心参与底物的去水 和加水反应。这个酶是含铁的非铁卟啉蛋白。
这样合成酶不会因水解乙酰CoA而造成浪费。
A)硫辛,酰胺而与且酶1结会合引的羟起乙基硫TP酯P相键互作水用;解的天门冬氨酸残基,只有在形成柠檬酰CoA后才会
接近活性中心。
柠檬酸合成酶是一个调控酶。酶活性在体外受ATP, NADH,
琥珀酰CoA和长链脂肪酸的抑制。它催化的反应是可调控的限 速步骤。
氟乙酰CoA可与柠檬酸合成酶反应形成氟柠檬酸,因它可抑制 酶的下一步反应,所以称这步反应为致死合成。
顺乌大头肠酸酶杆有菌铁-中硫中丙心酮,包酸括脱非血氢红酶素铁的和分酸不子稳量定硫为。4600000,是由60条多肽链组成的多面体,直径约
30nm,在电镜下可观察到复合体的存在。
二氢硫辛酸乙酰转移酶位于中心,有24条肽链。丙酮酸脱羧酶也有24条肽链,二氢硫
辛酸脱氢酶由12条肽链组成。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丙酮酸脱氢酶系(多酶复合物) 丙酮酸脱氢酶系(多酶复合物) 丙酮酸脱羧酶( 丙酮酸脱羧酶(TPP) ) 硫辛酸乙酰转移酶(硫辛酸) 硫辛酸乙酰转移酶(硫辛酸) 二氢硫辛酸脱氢酶(辅酶 , 二氢硫辛酸脱氢酶(辅酶A,FAD,NAD) ) 脱氢产生一个 NADH(ATP?) ( ?)
进入 TCA
TCA循环将乙酰CoA彻底氧化为CO 同时产生NADH TCA循环将乙酰CoA彻底氧化为CO2 ,同时产生NADH 循环将乙酰CoA彻底氧化为 ATP) 和FADH2(ATP). TCA循环中 大部分的ATP 循环中, ATP都是通过氧化磷酸化 在TCA循环中,大部分的ATP都是通过氧化磷酸化 (电子传递链)产生的。 电子传递链)产生的。
HMP途径的特点与生物学意义 途径的特点与生物学意义
葡萄糖直接脱氢和脱羧; 葡萄糖直接脱氢和脱羧; 糖彻底氧化的又一途径; 糖彻底氧化的又一途径; 五碳糖合成和分解的代谢途径(提供核酸合成的必须 五碳糖合成和分解的代谢途径( 原料); 原料); 生成大量的NADPH,是重要的还原力,用于生物合成 ,是重要的还原力, 生成大量的 脂肪酸和固醇类化合物等); (脂肪酸和固醇类化合物等);
glucose
EM P
HMP
anaerobic
ethanol lactic acid
pyruvate
acylC oA
TC A
HMP途径的核心 途径的核心
五碳糖的代谢途径; 五碳糖的代谢途径; NADPH的产生途径(NADPH作为还原力 的产生途径( 的产生途径 作为还原力 和能量) 和能量)
HMP途径的生化反应过程 途径的生化反应过程—— 途径的生化反应过程
转醛醇酶
转酮醇酶
转酮醇酶
HMP途径能量的生成 途径能量的生成
葡萄糖 ATP ADP 6(葡萄糖 葡萄糖-6-P)+6O2 葡萄糖 + 5(葡萄糖 葡萄糖-6-P)+6CO2+5H2O 葡萄糖
6×2NADP ×
6×2NADPH+H+ ×
因此, 分子葡萄糖经 分子葡萄糖经HMP彻底氧化可产生 彻底氧化可产生35ATP. 因此,1分子葡萄糖经 彻底氧化可产生
TCA循环 TCA循环
乙酰辅酶A 乙酰辅酶A
NADH2 NAD
草酰乙酸
苹果酸脱氢酶 柠檬酸 合成酶
柠檬酸
顺乌头酸酶
苹果酸
延胡索酸酶
异柠檬酸
CO2
NAD NADH2

异柠檬酸脱氢酶
延胡索酸
琥珀酸脱氢酶
CO2
硫激酶
α-酮戊二酸
NAD
α -酮戊二酸脱氢酶系 酮戊二酸脱氢酶系
FADH2
FAD 琥珀酸
GTP GDP
酵解( 酵解(EMP): 2ATP, 2NADH ) 2丙酮酸转化为乙酰 丙酮酸转化为乙酰CoA: 2 NADH 丙酮酸转化为乙酰 TCA: 6NADH, 2FADH2, 2GTP 合计: 合计 38ATP
葡萄糖+ 葡萄糖+6O2+38ADP+38Pi +
8ATP 6ATP 24ATP
6CO2+6H2O+38ATP
琥珀酰 辅酶A 辅酶A
NADH2
乙酰辅酶A 乙酰辅酶A NADH2 NAD 苹果酸 草酰乙酸 柠檬酸
TCA循环中 循环中 能量的产生
异柠檬酸 延胡索酸 FADH2 FAD 琥珀酰 辅酶A 辅酶A GTP GDP
NAD NADH2
α-酮戊二酸 NAD NADH2 琥珀酸
1分子乙酰 分子乙酰CoA经TCA: 分子乙酰 经 :
GDP GTP
乙酰CoA 乙酰
2CO2
3NADH2 FAD FADH2
3NAD
电子传递链
H2O ATP
葡萄糖
2ATP 2NADH2 NADH2 EMP/糖酵解 EMP/糖酵解
糖 的
乙醇 乳酸
丙酮酸
有氧
无氧
中 心 代 谢 途 径
乙酰CoA 乙酰
GTP FADH2 3NADH2
TCA
CO2
总能量的生成 : 1分子的葡萄糖经 分子的葡萄糖经EMP-TCA彻底氧化为 2 和H2O能 彻底氧化为CO 能 分子的葡萄糖经 彻底氧化为 产生几个ATP? 产生几个
EMP-TCA代谢途径的生物学意义 代谢途径的生物学意义
糖、脂、蛋白质等物质彻底氧化的途径; 蛋白质等物质彻底氧化的途径; 生成大量的ATP,是机体利用糖或其它物质氧化获得能 生成大量的 , 量的最有效方式; 量的最有效方式; 蛋白质三大物质转化的枢纽; 糖、脂、蛋白质三大物质转化的枢纽; 为合成代谢提供原料。 为合成代谢提供原料。
相关文档
最新文档