11塔河油田深井超深井钻井液技术

11塔河油田深井超深井钻井液技术
11塔河油田深井超深井钻井液技术

塔河油田深井超深井钻井液技术

郭才轩1王悦坚2宋明全1

(1、中国石化石油勘探开发研究院德州石油钻井研究所,2、中国石化西北分公司)摘要塔河油田主力油藏深度一般在5300m以下,是我国目前陆上油气层埋藏最深

的一个大型整装油田。由于油气埋藏深,钻遇的地层多、而且复杂,曾一度给油气田的

开发和扩展带来了困难。后通过技术攻关和技术引进,成功解决了塔河油田三叠、石炭

系硬脆性泥页岩地层的坍塌,奥陶系地层大型裂缝溶洞地层漏失,塔河油田新区巨厚盐

膏层塑性蠕变卡钻等制约塔河油田的瓶颈问题。技术进步使塔河油田在解决复杂问题的

能力上得到大幅提升,6000m左右的开发井建井周期从原来的100多天缩短到70天以内,新区超深盐层钻井成功率从2002年前不足40%提高到现在100%。

主题词超深井井眼稳定欠平衡钻井承压封堵欠饱和盐水

塔河油田是中国石化在西部地区的一个大油田,近年来原油产量一年一个台阶,2004年原油产量达到357万吨。原油产量的大幅提高,除了得益于油藏地质技术进步外,钻井技术,尤其是钻井液技术的发展也是重要的动力源之一。塔河油田的主力油藏位于奥陶系的裂缝型灰岩地层中,埋深在5300m以上,有二套地层,一套不含盐膏,位于塔河油田老区块;另一套含有巨厚盐膏层,位于塔河油田外围新区。中国石化西北分公司针对塔河油田存在的主要钻井液技术问题,组织联合攻关,通过近5年的努力,较好解决了三叠、石炭系井眼坍塌,巨厚盐膏层塑性蠕变卡钻和奥陶系裂缝性油气藏的损害等技术难题,为塔河油田增储上产、降本增效做出了巨大贡献。

一、塔河油田存在的主要钻井液技术问题分析

1、三叠、石炭系井眼坍塌问题

长期钻井实践表明:塔河油田三叠、石炭系存在严重的井眼坍塌问题,钻井中经常会遇到大面积突发性井眼坍塌,严重时必须反复划眼和通井,不仅影响了钻井速度,而且影响了成井质量,给后期的测井、固井、测试等作业埋下了隐患。我们随机的对2002年和2003年施工的30口井进行了统计分析,5000m以下地层扩大率在0-10%的井7口、10-15%的井6口、15-20%的井5口、大于20%的井12口。统计数据说明塔河油田三叠系、石炭系地层存在严重的扩径问题。从井径曲线看,三叠、石炭系井径很不规则,小的缩径率达2%以上,大的井径测不到边。

2、巨厚盐膏层钻井液问题

塔河油田外围新区石炭系的膏盐层具有埋藏深、厚度大、蠕变速度快,钻井中极易发生塑性蠕变卡钻。早期在该区及其外围施工30余口井,虽然沙10、沙24、沙42、乡1、轮南46等井成功地钻穿了巨厚盐膏层,但大多数井都发生了不同程度的井漏、阻卡、套管变形甚至挤毁等问题,半数以上井因井漏、盐膏层蠕变卡钻、井眼坍塌埋钻等事故而被迫提前完钻或弃井。综合分析认为:①井身结构上没有采取专打专封的方案,使上低下高不同的压力体系处于三开同一裸眼段,地层岩性特征、孔隙压力和坍塌压力变化大,为了安全钻进石炭系的膏盐层,需要提高钻井液密度以减少盐膏层蠕变速度,而高的钻井液密度会把上部地层压漏,因此在进入盐层前提高地层承压能力是盐层钻井的技术难题之一;②盐膏层塑性蠕变速度快,而钻井液密度因地层原因又不能提的很高,所以选择钻井液含盐浓度是一个技术关键,高了会降低盐层溶蚀速度,甚至在上返过程中形成盐重结晶,而低了又不能保证井眼稳定,因此控制钻井液氯根平衡范围也是盐层钻井成败的关键技术之一。

3、奥陶系油气保护问题

奥陶系油气资源储藏于灰岩的裂缝溶洞中,油藏压力在 1.08-1.10g/cm3之间,钻井液密度窗口非常窄,稍高即漏、稍低则喷。油藏非均质性强,裂缝开口大小和方向无规律可循,但连通性好。如S48井在奥陶系灰岩储层施工过程中,静止就涌,循环则漏,平衡点很难掌握,奥陶系仅揭开7m,漏失钻井液和油田水超过2700m3,不得不被迫提前完钻。再者,对于裂缝性储层,在地面测得的岩心裂缝宽度与井下实际裂缝宽度有较大的差别,因为地层裂缝在井下原始状态下受地应力的作用,其宽度随应力的变化而变化,难以大量的准确获取裂缝宽度等重要参数,导致无法制定具体、针对性强的油气层保护技术措施,如防漏、堵漏、解堵技术措施等。因此奥陶系油气藏的漏失问题是制约塔河油田提高油气产量的瓶颈问题。

二、技术攻关与技术引进

针对上述技术难题,中国石化西北分公司联合大专院校、科研院所进行集体攻关,通过技术创新和技术引进,形成了硬脆性泥页岩防塌、弱胶结地层承压堵漏、欠饱和盐水钻井液及屏蔽暂堵或欠平衡钻井保护油气层等多项技术。

1、三叠、石炭系防塌技术

(1)三叠系、石炭系井眼失稳机理

通过对三叠系石炭系地层原始岩心的完整性、层理及微裂隙的发育情况,地层粘土矿物总量、粘土矿物组分,地层分散性和水化膨胀性,泥页岩浸泡以及岩石力学和测井资料求取地层坍塌压力等系统分析研究后,认为塔河油田三叠系石炭系地层失稳的机理原因是:

①三叠、石炭系地层存在纵横交错的微裂隙,这些微裂隙为钻井液中自由水进入地层提

供了通道。

②三叠、石炭系地层分散性粘土矿物和膨胀性粘土矿物含量较高,而且水化膨胀能力和分散性都较强,一旦钻井液中的自由水沿微裂隙进入泥页岩中,泥页岩的水化膨胀和水化分散就不可避免,因此粘土矿物的水敏性是引起井眼失稳的必然原因。

③地层坍塌压力较高,现场使用泥浆密度偏低,加之起钻抽吸,易导致突发性大面积坍塌。

(2)主要技术对策

①依据求取的地层坍塌压力,三叠、石炭系钻井液密度应控制在1.28-1.32g/cm3。

②通过屏蔽封堵技术,在微裂隙发育的泥页岩井壁形成类似于橡皮套的屏蔽层。该屏蔽层渗透率低,具有一定强度,一方面阻止钻井液滤液进入地层,另一方面通过屏蔽层来加固硬脆性泥页岩地层。

③采用钾基聚磺防塌钻井液体系。使用高浓度聚合物胶液和预水化坂土浆进行维护,保持较高的切力和动塑比,满足携岩洗井要求;钻进中利用大高分子聚合物絮凝剂清除无益固相,小阳离子提高泥浆抑制分散能力;HV-CMC提高井浆抗盐、钙污染能力;SMP、KPAN降低钻井液的失水,改善泥饼质量;并加入适量液体润滑剂,降低起下钻阻力。

2、巨厚盐膏层钻井液技术

巨厚盐膏层的穿盐关键技术主要是:在进入盐层0.5-1.0m时要停钻,依据盐层钻井需要的钻井液密度进行先期承压堵漏,然后将聚磺钻井液转换为欠饱和盐水聚磺钻井液,并严格控制氯根含量范围,保证欠饱和钻井液对盐膏层的溶蚀速度,使盐层塑性蠕变速度与溶蚀速度达到一个动态平衡,以保证安全钻井、测井和下套管作业。

(1)先期承压堵漏技术

①钻进过程中,随钻加入多功能屏蔽暂堵剂PB-1和高软化点的沥青提前进行屏蔽暂堵护壁,以减少后续承压堵漏作业时间。

②在钻遇盐膏层后停钻,当随钻屏蔽暂堵材料不足以提高地层承压能力时,可采用复合堵漏材料,如PB-1、CXD、云母等配合堵漏稠浆进行全裸眼钻井液憋压封堵。采用该技术可使地层承压能力提高到1.80 g/cm3左右,完全满足下部盐层钻井需要。

(2)盐层钻井液密度及盐度的控制

目前控制巨厚盐膏层塑性蠕变速度的方法主要有二种:一是提高钻井液密度,降低盐膏层蠕变速率;二是降低盐饱和度,保持与蠕变缩径相当的溶解扩径率。但多数盐膏层的上、下地层均存在破漏压力低的问题,因此实际作业时钻井液密度不可能太高;此外由于盐膏层在低饱和盐水钻井液中的溶解速度很快,钻井过程中盐水钻井液很快处于饱和状态,要保持较低含盐度,需要对循环钻井液进行大量的置换,这显然是不现实的。最好的解决方法是允许盐膏层钻进过程中蠕变速度与溶解速度的达到一个动态平衡,只要控制盐膏层井眼蠕变速度在确定的安全钻井和下套管时间内即可。

①系统研究表明,塔河油田外围新区穿盐钻井液密度控制在1.60-1.75g/cm3比较合适。

②根据钻井液密度图谱和一定温度范围内不同矿化度钻井液溶蚀盐岩速度,要求聚磺欠饱和钻井液在钻井过程中[Cl-]维持在10~17×104mg/l。

3、奥陶系灰岩裂缝型地层油气层保护技术

奥陶系的油气损害主要以钻井液的漏失为主,因此油气保护重点是防漏和堵漏。如果钻遇微裂缝地层,当钻井液密度控制不当、粒度分布不合理时,钻井过程中易发生漏失;如果钻遇大的裂缝地层和溶洞,钻井液的大量漏失或者有进无出,会对油气层造成巨大的损害。原因是:虽然钻井液的粘度不高,但与一定粘度的原油相遇后,钻井液因与原油的接触和相混粘度会很快增加,另外在井下高温高压条件下这种混合物会形成胶凝而无法流动,从而堵塞与其接触的油流通道,使油气产量达不到预期目标。其具体对策如下:(1)在钻井液中加入2%的屏蔽暂堵材料,如PB-1、QS-2、DF-1等,防止小裂缝型地层的漏失。

(2)根据地层压力,采用低固相、低密度、低粘切钻井液实现微超平衡压力钻井,并避免开泵过猛、下钻过快,减少液柱激动压力,降低钻井液的漏失速度。

(3)当钻遇大型裂缝和溶洞型地层时,引用欠平衡压力钻井技术钻进,防止钻井液的恶性漏失。

三、取得的主要成果

1、三叠系、石炭系防塌钻井液技术现场应用结果

通过三叠系、石炭系防塌钻井液技术研究,形成了配套钻井液技术,使三叠、石炭系井径扩大率明显减少。例如TK634井是一口长裸眼井,二开裸眼井段长达4749m,采用该技术后,三叠系平均扩大率为5.82%、石炭系扩大率为5.43%,比邻井TK609井(22%)、TK612井(18%)、S80井(32%)明显降低。目前塔河油田开发井已将原来的四级结构改变为三级长裸眼井身结构。由于防塌技术的进步以及井身结构的简化,建井周期从原来的100多天下降到了70天以内,综合钻井成本节约近200万元、井径扩大率从原来15%以上下降到了10%以内,考虑油井提前投产带来的效益,其技术经济效益是十分显著的。

2、盐层钻井液技术的现场应用结果

2002年在S105井首次应用上述穿盐技术,顺利完成了承压堵漏、欠饱和盐水钻井液的转换。由于钻井中控制钻井液密度1.65-1.70g/cm3,[Cl-]含量维持在15~17×104mg/l,在5200m实测的缩径率与扩径率差值是0.003/h,计算安全下套管时间在40小时,所以起下钻、测井和下套管作业均很顺利。到目前为止,共完钻盐层井42口,成功率100%,并在S106、S111等井的盐下地层中发现了丰富的油气资源,大大拓展塔河油田的范围。目前正在开展

新的一轮降低钻井液密度及螺杆加PDC钻头提高钻速的盐下优快钻井技术研究。

3、奥陶系油气层保护现场应用结果

目前奥陶系地层采用低粘、低切、低密度聚磺钻井液体系,随钻加有保护油气层的屏蔽暂堵材料,遇小漏时通过提高封堵材料加量控制井漏;如发生恶性漏失,立即采用欠平衡压力钻井技术恢复钻进。由于目前技术措施得力,由井漏引起的油气层保护问题得到明显改善。

四、结论

1、通过控制钻井液密度、强化钻井液封堵护壁能力及钾基聚磺钻井液的化学防塌

能力,可有效解决三叠、石炭系的井眼坍塌问题。

2、通过承压堵漏可以提高地层承压能力,保证密度达1.65g/cm3钻井液穿盐时不

发生漏失。

3、只要控制欠饱和盐水钻井液的[Cl-]含量在10~17×104mg/l、密度在

1.60-1.70g/cm3,即可保证盐层段起下钻、测井和下套管的安全作业。

4、采用随钻封堵和欠平衡压力钻井技术可有效防止奥陶系裂缝型地层的井漏,从

而保护油气层。

参考文献

[1]王程忠等.利用屏蔽暂堵技术解决塔河油田长裸眼井的地层渗漏问题[J].石油钻

探技术,2003,31(1):60-61.

[2]孟庆生,江山红等,塔河油田盐膏层钻井液技术..钻井液与完井液.2003,19(6),74~76.

[3]鄢捷年,钻井液工艺学。石油大学出版社。2001

聚焦深井超深井钻井技术

聚焦深井超深井钻井技术 超深井钻探的实施从某种意义上说反映了一个国家最前沿的科技发展水平,也体现了一个国家的综合国力。由钻井院承担的国家863项目超深井钻井技术经过四年的攻关终于划上了一个圆满的句号,并通过了有关部委的审核。在石油工程领域,何为深井、超深井?目前国内国际深井、超深井施工的技术现状如何?超深井钻井工程的主要工作目标是什么?超深井钻井工程的主要技术难点有哪些……带着这些疑问,近日记者采访了国家863项目超深井钻井技术攻关小组成员之一、钻井院工艺所副所长、高级工程师唐洪林,并请他对这些问题进行了解答。 记者:何为深井、超深井? 唐洪林:按照国际通用概念,井深超过4500米的井称为深井,井深超过6000米的井为超深井,超过9000米的井为特深井。目前世界上深井钻探工作量最大的是美国,迄今为止累计工作量占全球的85%。1984年,原苏联在科拉半岛的波罗地盾结晶岩中钻成世界上第一口12260米特深井SG-3井(1991年第二次侧钻至终深12869米)。专家们在认真考察当今技术水平的基础上,认为利用目前最先进的技术已具备钻达15000米深度的能力,美国已在着手制定这方面的深井钻井计划。 记者:目前国内国际深井、超深井施工的技术现状如何? 唐洪林:在国外,在目前常规的技术条件下,施工一口井深为5000米- 6000米的井钻井技术已经成熟。有关的统计表明,目前世界上可以施工4500米以上的深井有80多个国家,其中以美国的施工技术最先进,全世界钻成的6口特深井,美国占3口,原苏联2口,德国1口。从钻井水平和工作量看,美国和前苏联仍居前列,近年来世界上的深井作业量多集中于欧洲的北海。最近几年,由于高新技术在深井钻井作业中的运用数量越来越多,使得深井钻井工程成为又一个高新技术密集区。 国内自1966年大庆钻成中国第一口深井—松基6井(完钻井深4719米)开始,中国深井钻井已经历了35年的历史,主要深井和全部超深井均分布于四川和新疆。在1978 -1998年的时间内,中国先后完成3口7000米超深井。根据有关资料的综合分析,可将1994年作为一个分界点,在此之前,国内钻井技术人员在复杂地质条件下还不能完全掌握或运用深探井科学施工规律,只能用“科学探索”办法解决复杂深探井(特别是新区第一口探井)施工的基本问题,更谈不上用“高新技术”或“先进适用技术”提高钻速、减少钻头用量、缩短周期、降低成本等解决复杂问题。继“五口科学探索井”在塔里木盆地成功实施以后,该

深井钻井技术工艺探讨

深井钻井技术工艺探讨 深井钻井技术工艺探讨 摘要:钻井过程中,常会受地层的影响遇到一些深井。此类井由于深度特别深,井下地质状况不甚明晰,往往由于相关预告不准确导致钻井出现许多情况,从而影响钻井的速度和效率。而探讨这些因素,进行深入分析,并提出相关解决策略是摆在相关工作者面前的一项重大课题。本文结合笔者经验就深井钻井来讲,如何提升钻井技术工艺谈几点看法。 关键词:深井钻井技术工艺策略 在钻井过程中,常常会受地层的影响遇到一些深井。此类井由于深度特别深,井下地质状况不甚明晰,往往由于相关预告不准确导致钻井出现许多情况,从而影响钻井的速度和效率。而探讨这些因素,进行深入分析,并提出相关解决策略是摆在相关工作者面前的一项重大课题。本文结合笔者经验就深井钻井来讲,如何提升钻井技术工艺谈几点看法。 一、深井钻井所存在的问题分析 深井钻井要穿过多套地层,这些地层跨越的地质时代较多、变化较大,相应的地质条件错综复杂,同一井段可能包括压力梯度相差较大的地层压力体系和复杂地层等,施工时一口井中需要预防和处理几种不同性质的井下复杂情况。再加上深部地层高温、高压、高地层应力等,会使井下复杂的严重程度和处理复杂的难度大大加剧。就目前我国的钻井技术水平来说,钻深井存在的技术问题主要以下几个方面: 钻井的主要装备性能差、比较陈旧,和国外的先进装备相比落后的太远了。上部大尺寸井眼和深部井段提高钻井速度是一大难题。多层套管时,深部井段小井眼的钻井速度问题。减小技术套管磨损和破裂后处理问题。防斜打直技术。深井固井质量问题。井漏、井涌、井塌、缩径等复杂情况的预防和处理。深井定向井、水平井钻井技术。深井钻井液现有体系中的包被剂抗温问题、高温稳定剂的复配问题、

水平井钻井技术经验概述

第一章定向井(水平井)钻井技术概述 第一节定向井、水平井的基本概念 1.定向井丛式井发展简史 定向井钻井被(英)T.A.英格利期定义为:“使井筒按特定方向偏斜,钻遇地下预定目标的一门科学和艺术。”我国学者则定义为,定向井是按照预先设计的井斜角、方位角和井眼轴线形状进行钻进的井。定向井相对与直井而言它具有井斜方位角度而直井是井斜角为零的井,虽然实际所钻的直井它都有一定斜度但它仍然 石油管理局的河50丛式井组,该丛式井组长384米,宽115米,该丛式井平台共有钻定向井42口。 2.定向井的分类 按定向井的用途分类可以分为以下几种类型: 普通定向井 多目标定向井 定向井丛式定向井 救援定向井 水平井 多分枝井(多底井) 国外定向井发展简况

(表一)

10.井眼尺寸不受限制 11.可以测井及取芯 12.从一口直井可以钻多口水平分枝井 13.可实现有选择的完井方案 (4).短曲率半径水平井的优缺点 优点缺点 1.井眼曲线段最短1.非常规的井下工具 2.侧钻容易2.非常规的完井方法 3.能够准确击中油层目标3.穿透油层段短(120—180米)4.从一口直井可以钻多口水平分枝井4.井眼尺寸受到限制

5.直井段与油层距离最小5.起下钻次数多 6.可用于浅油层6.要求使用顶部驱动系或动力水龙头 7.全井斜深最小7.井眼方位控制受到限制 8.不受地表条件的影响8.目前还不能进行电测 第三节定向井的基本术语解释 1)井深:指井口(转盘面)至测点的井 眼实际长度,人们常称为斜深。国外 称为测量深度(MeasureDepth)。 2)测深:测点的井深,是以测量装置 率是井斜角度(α)对井深(L?)的一阶导数。 dα Kα=─── dL 井斜变化率的单位常以每100米度表示。 8)井深方位变化率:实际应用中简称方位变化率,?是指井斜方位角随井深变化的快慢程度,常用KΦ表示。计算公式如下: dΦ KΦ=─── dL

深井超深井钻井技术

深井超深井钻井技术 第一节概述 (1) 第二节地层孔隙压力评估技术 (2) 第三节井身结构及套管柱优化设计 (4) 第四节防斜打快理论和技术 (9) 第五节地层抗钻特性评价与钻头选型技术 (14) 第六节井壁稳定技术 (18) 第七节钻井液技术 (23) 第八节固井技术 (27) 第九节深井测试和录井技术 (31)

第一节概述 对于油气井而言,深井是指完钻井深为4500~6000米的井;超深井是指完钻井深为6000米以上的井。深井、超深井钻井技术,是勘探和开发深部油气等资源的必不可少的关键技术。在我国,深井、超深井比较集中的陆上地区包括塔里木、准噶尔、四川等盆地。实践证明,由于地质情况复杂(诸如山前构造、高陡构造、难钻地层、多压力系统及不稳定岩层等,有些地层也存在高温高压效应),我国在这些地区(或其它类似地区)的深井、超深井钻井工程遇到许多困难,表现为井下复杂与事故频繁,建井周期长,工程费用高,从而极大地阻碍了勘探开发的步伐,增加了勘探开发的直接成本。 在“八五”末期,虽然我国在3000m以内的油气井钻井方面已接近国际80年代末的技术水平,但当井深超过4000m时,我国的钻井技术与国外先进水平相比仍有较大差距。美国5000m左右的油气井钻井周期约为90天,5500m左右约为110天,6000m左右约为140天,6500~7000m约为5~7月。然而,我国深井平均钻井周期约为210天左右,特别是在对付复杂深井超深井工程方面的钻井能力和水平比较低,没有形成一整套与之相适应的深井超深井钻井技术。 为了尽快适应我国西部深层油气资源勘探开发工程的迫切需要,在“八五”初步研究的基础上,中国石油天然气集团公司将“复杂地层条件下深井超深井钻井技术研究”列为“九五”重大科技工程项目之一(项目编号:960024),调动全国的优势科研力量开展大规模攻关研究,试图使塔里木、准葛尔、四川等盆地的深井超深井钻井技术水平有较大提高,基本满足这些地区深部油气资源高效钻探与开采的技术需求。通过五年多的持续攻关研究,该项目攻关集团攻克了不同地质条件下深井超深井钻井技术的许多难题,有力地推动了我国复杂地质条件下深井超深井钻井技术的发展,取得了丰硕的理论和技术研究成果(2002年通过专家验收评价),可概括如下: 1.项目共完成深井超深井91口,其中,由塔里木攻关集团完成一口国内最深的超深井(塔参1井),完钻井深7200米,完成6000米以上的超深井6口,4500-6000米的深井85口。各攻关集团完成的深井超深井数量分别为:塔里木攻关集团26口,准葛尔攻关集团45口,四川攻关集团12口,塔西南攻关集团3

钻井液设计

1基础资料 井位 构造位置:位于阿克库勒凸起东南斜坡部钻井性质:探井 1.2钻井地质任务: 1) 探索阿克库勒凸起东边缘寒武系建隆性质,储层发育特征及含油气性。为进一步研究寒武系-奥陶系的地层,沉积特征及储层发育,储层的成因机制提供基础资料; 2) 取全,取准岩芯,测井,测试等基础资料,为储量计算提供准确资料; 4之下各反射波的地质属性提 3) 验证地震波组的地质属性,为准确标定T 7 供基础资料; 4) 为进一步分析,研究油气运移,聚集规律等提供基础资料; 5) 为测试,采油提供合格的井眼条件。 1.3 设计井深:8000m(钻台面算起) 1.4 完钻原则 1) 钻到设计井深,进入建隆体1的顶225m完钻。 2) 如寒武系钻遇好的油气显示(如井漏,井涌等油气显示井段),强钻8-10米后,经测试获高产油气流,可提前完钻。 1.5 完钻方式:裸眼或套管完井。 塔深1井钻遇地层预测表

4386 注:深度均从台板起算。 目录 1、塔河油田超深井钻井液技术难点

2、国内外高温超深井钻井液状况 3、塔深1井钻井液体系配方选择、性能要求及维护处理要点 4、风险分析 5、超深井钻井液配套工艺技术 1、塔河油田超深井钻井液技术难点 1.1 钻井液处理剂高温高压失效问题。 1.2 钻井液高温流变性的控制问题。 1.3 钻井液高温滤失造壁性的控制问题。 1.4 抗高温钻井液的护胶问题。 1.5 超深井段地层破碎,白云岩地层防塌问题。 1.6 超深井段地层破碎,防漏堵漏问题。 1.7 超深井奥陶系、寒武系地层为防塌防漏寻找一个安全钻井液密度窗口的问题。 1.8 超深井可能存在的高压问题。 1.9 超深井钻井液润滑性问题。 1.10 超深井钻井液陈化问题。 1.11 超深井膏盐层问题。 1.12 硫化氢、二氧化碳污染问题 技术难点 在塔河油田,按正常地温梯度2.2-2.3℃/100m计算,井深8000m的超深井,井底温度可达170-200℃左右,井底循环温度在150-170℃左右,所用钻井液体系必须能抗200℃左右的高温.在超深井的钻进中,可采用抗高温的钻井液体系有

深井_超深井钻井提速技术难点及对策分析_汤卫华

化学工程与装备 2015年 第2期 96 Chemical Engineering & Equipment 2015年2月 深井、超深井钻井提速技术难点及对策分析 汤卫华 (中石化中原石油工程公司塔里木分公司,新疆 库尔勒 841000) 摘 要:据目前来看,深井、超深井的钻井的钻速持续偏低成为机械运转所面对的一大问题所在,这一问题对开采深部的油气能源造成了极大的障碍。本文首要一点便是从高温直螺杆、涡轮钻具以及旋冲工具等可以提升钻速等工具的使用上进行了使用规律上的研讨,且阐明了在我国的油田中的使用成效如何。此外还对于机械钻速紧密相连的提速技术等的提速机理及使用成效做出相关讨论。 关键词:深井;机械钻速;高温直螺杆工具;钻头优化 随着浅层油气能源的渐近匮乏,国内石油和天然气的勘探形式的标准正逐步由浅层转换向深层的发展,以深井和超深井的方式而存在。而深层地下的油气能源开采的潜能巨大,这种地方多存在于我国的盆地地区。但尽管如此,经实践证明,深层地下若想得以进行开采,面临的主要问题便是深井、超深井钻井提速技术方面的困难,只有提升深井和超深井机械的钻速,才能够加大开采力度、将盆地石油和天然气的开采出来。因此,本文便从深井、超深井机械技术的钻速所面对的困难开始分析,并提出提升技术所采取的主要措施,以使得油田、天然气能源的资源更加丰富。 1 深井钻井提速的难点剖析 1.1 深层地下的岩石质层的钻性较差 伴随着井的深度不断增大,深层地下的岩石所承压的阻力逐步增加,并且致其岩石的缝隙和整体构架产生变化,导致变形,导致其深度平均延伸一千米,岩石的硬度密度、抗挤压的强度以及磨损度翻倍的增长,继而使得岩石的凝固密度更大,联结更加紧密,凿钻度变得越来越差,可钻度也越来越低。图一便为新疆某区块不同井深条件下细砂岩的岩石力学性质的数据分析,据图一可以得出:此地区的石炭系砂岩抗压强度高达221MPa,极大的超出了通常性质的PDC 钻头钻性极点124MPa 的数值。且因这井的深度不断增大,此地区的细砂岩的硬度密度、抗挤压的强度以及磨损度都在不断增长,继而使得岩石的凝结密度更大,联结更加紧密,钻性即变得越来越差。 1.2 深层地下的井内的恒定温度略高 API 的数据表明,正常的温度应为2.7340C/100m。假想若地表温度为200C,则井内的稳定温度则为20+2.734x 井深的长度。若井的深度超出了井5000m 后,则井下的稳定温度则已达到了国际上所规定的高温标准范围(国际标准为1500C)。这将给井下的机械钻速带来很大的困难,同时会造成不小的损失,原因在于,若井下温度过于高,则橡胶材质的工具零件则会经过高温而快速老化,从而造成脱落并失去 了原本效果,从而使得井底的堵塞状况越来越严重,碎屑的长期堆积,从而降低了机械的钻速效果。 1.3 钻头加压带来的难处 在对深井进行凿钻的进程中,往往会随同井深的不断加大,而造成钻柱扭曲的状况发生,这种情况下会致其钻井倾斜的效果,并使得钻压的传递性越来越差,加大了施工的难度,极大降低了传统的钻井方式,破岩的效率大大降低。此外,为了防御钻井倾斜的情况发生,通常会采用保守的轻压

647.2-2013_页岩气水平井钻井作业技术规范_第_2_部分:钻井作业(出版稿)

Q/SYCQZ 川庆钻探工程有限公司企业标准 Q/SYCQZ 647.2—2013 页岩气水平井钻井作业技术规范 第2部分:钻井作业 2013-12-22发布2014-01-22实施

目次 前言................................................................................. II 1 范围 (1) 2 规范性引用文件 (1) 3 钻井工程设计 (1) 4 井眼轨迹控制 (2) 5 防碰作业 (3) 6 水平段安全钻井 (3)

前言 《页岩气水平井钻井作业技术规范》分为五个部分: ——第 1 部分:丛式井组井场布置; ——第 2 部分:钻井作业; ——第 3 部分:油基钻井液; ——第 4 部分:水平段油基钻井液固井; ——第 5 部分:井控。 本部分为第 2 部分。 本标准按 GB/T 1.1-2009《标准化工作导则第 1 部分:标准的结构和编写规则》进行编写和表述。 本标准由川庆钻探工程有限公司提出。 本标准由川庆钻探工程有限公司钻井专业标准化技术委员会归口。 本标准起草单位:川庆钻探工程有限公司钻采工程技术研究院、川庆钻探工程有限公司川东钻探公司、川庆钻探工程有限公司川西钻探公司 本标准主要起草人:张德军、赵晗、卓云、叶长文。

页岩气水平井钻井作业技术规范第2部分:钻井作业 1 范围 本标准规定了页岩气丛式井组钻井工程设计、井眼轨迹控制、防碰作业、水平段安全钻井等内容和要求。 本标准适用于川渝地区页岩气井的钻井作业。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 SY/T 1296 密集丛式井上部井段防碰设计与施工技术规范 SY/T 5088-2008 钻井井身质量控制规范 SY/T 5416 定向井测量仪器测量及检验 SY/T 5435-2003 定向井井眼轨迹设计与轨迹计算 SY/T 5547 螺杆钻具使用、维修和管理 SY/T 5619 定向井下部钻具组合设计方法 SY/T 6332-2004 定向井轨迹控制 SY/T 6396 钻井井眼防碰技术要求 Q/SYCQZ 001 钻井技术操作规程 Q/SYCQZ 372-2011 丛式井井眼防碰技术规程 3 钻井工程设计 3.1 井身结构 3.1.1 表层套管应封隔地表漏层和垮塌层,相邻两井表层套管下深错开20 m以上。 3.1.2 水平井技术套管下入位置井斜应不低于60°,若井下出现严重垮塌、钻遇高压油气,可提前下入技术套管。 3.1.3 油层套管尺寸不小于 11 4.3 mm,抗内压强度与增产改造施工压力之比>1.25。 3.1.4 水平段长度宜控制在800 m ~ 1400 m。 3.2 靶区 3.2.1 靶区半径设计符合SY/T 5088-2008的规定,且满足井眼轨迹控制要求。 3.2.2 水平段井眼方向与地层最小主应力方向的夹角不小于 15°。 3.3 井眼轨道 3.3.1 每口井地下靶心与井口位置连线相互之间不宜空间交叉。

深井超高温钻井液技术综述

129 按照国际通用概念,井深超过4500m (15000f t )的井称为深井,井深超过6000m (20000ft)的井为超深井,超过9000m(30000ft)的井为特深井。深井和超深井的钻井液技术一直被认为是钻井技术水平好坏的重要标志。 井底高温是限制钻探深度的决定性因素之一。井下高温所带来的直接问题之一是钻井液的稳定性受到严峻挑战,当温度低于250℃时,现有的抗高温处理剂可以直接用于水基钻井液中,温度达到300℃时,可以使用热稳定性更高的油基钻井液,而当温度高于350℃时,保持钻井液的热稳定性将变得非常困难。而且世界各地几乎都存在深度仅为几百或几千米而地温高达几百摄氏度的高温地带,例如我国著名的羊八井、日本的葛根田地热区、美国的Cinitations地区所钻的深度小于4000m的地热井,井下温度均超过了350℃。 1 深水超高温钻井液技术难点 钻超深井使用的钻井液必须具有的特点是:高温稳定性,良好的润滑性和剪切稀释特性,固相含量低,高压失水量低,抗各种可溶性盐类和酸性气体的污染,有利于处理、配置、维护和减轻地层污染。温度对水基钻井液的影响非常大,超过150℃ 时大多数聚合物处理剂易分解或降解,或出现高温交联现象,引起增稠、胶凝、固化成型或减稠等流变性恶化,造成钻井液体系不稳定。对于深井超高温钻井液体系主要存在以下技术难点:钻井液用处理剂高温高压失效问题;钻井液高温流变性的控制问题;高温滤失造壁性的控制问题;抗高温钻井液的护胶问题;高温高压条件下,深井、超深井段易破碎地层的防漏堵漏工艺和材料选择问题;超深井的高压将使钻井液高温流变性的控制更加困难,除了更易于增稠外,还存在加重剂的悬浮、沉降稳定性问题;高温高压条件下钻井液的润滑性问题;高密度的钻井液的维护问题。 2 国外深井钻井液技术发展现状 国外深井超高温钻井液技术研究起步较早,且研究系统、全面,如测试仪器的研制和评价方法的建立、井壁稳定机理的模拟研究、抗高温钻井液材料的选择和研制、钻井液高温高压流变特性研究等,并形成了几种深井超高温钻井液体系: 2.1 石灰基钻井液体系 美国阿莫科公司针对深井研制了石灰基钻井液体系,解决了常规的石灰基钻井液(尤其是高密度钻井液)在高温高压下易发生胶凝,甚至固化的问 深井超高温钻井液技术综述 王永生 (大庆钻探工程公司钻井工程服务公司,吉林 松原 138000) 摘要: 文章根据国内外已完成深井、超深井的资料,分析了深井超高温钻井过程中的钻井液主要技术难点,并对国外深井、超深井钻井液技术现状进行了调研,提出了深井超高温钻井液技术方案及处理维护措施。关键词: 深井;超深井;超高温;钻井液中图分类号: TE254 文献标识码:A 文章编号:1009-2374(2012)32-0129-03 2012年第32/35期(总第239/242期)NO.32/35.2012 (CumulativetyNO.239/242) 地质矿产 G eology Resources and Mines

国内外深井钻井技术比较分析

[收稿日期]2007212210 [作者简介]王志刚(19712),男,1995年大学毕业,工程师,现主要从事钻井工程方面的研究工作。 国内外深井钻井技术比较分析 王志刚 (胜利石油管理局钻井工程技术公司,山东东营257064) [摘要]通过对国内外近25年来井深超过4500m 的各种各样深井钻井技术与经济情况的调研分析,认为 美国和欧洲北海地区深井钻井技术居领先水平,我国与国际先进水平有10年以上差距。对比研究了3种 不同的深井钻井技术经济评价方法(体系)特点,初步探讨了深井钻井科技进步的纵横向变化规律及深井 钻井技术经济评价的系统科学问题。 [关键词]深井钻井;钻井设备;系统工程 [中图分类号]TE243[文献标识码]A [文章编号]167321409(2008)012N282203 1 深井钻井技术的发展历史 全世界能钻4500m 以上深井的国家有80多个,但大多数深井集中在美国。有30多个国家能钻6000m 以上的超深井,中国是其中之一,但中国第1口超深井较世界第口超深井(美国)晚了27年。欧洲北海地区深井钻井技术比较先进。苏联拥有一套适用于高纬度地区的先进深井钻井技术,创造了世界钻深12869m 的最深记录,通过技术改造可以在发展中国家应用并取得最佳效益。德国大陆科探深井(KTB )钻探技术已被我国第一口大陆科学探井所借鉴。 近年来受各种因素影响,世界年钻深井数量有所下降,但深井钻井技术发展迅速,基本满足高陡、高温、高压、高密度(高矿化度)及含H 2S 气体等复杂地质条件深钻要求。目前我国深井钻井技术水平与国外先进国家相比大约差15年(知识产权水平约差40年),因此要通过各种办法(如“科探井”和“高探井”计划)缩小差距,以适应我国国民经济持续、快速、协调发展的要求和“西气东输”、“气化中国”等工程的需要。 1966年7月28日我国钻成第1口深井———松基6井,井深4719m 。1976年4月30日我国完成第1口超深井“女基井”,井深6011m 。从第1口深井完钻至今,我国先后钻成的3口7000m 以上超深井是关基井(7175m ,1978年)、固2井(7002m ,1979年)及塔参1井(7200m )。2000年中国石油化工集团公司最深井沙82井完钻井深6346115m 。1998年中国海洋石油总公司所钻海上最深井开发井,完钻井深9238m 。 2 深井钻井设备发展与进步 深井钻井技术系统高度复杂,属于开放的复杂性系统或非线性复杂性系统,其复杂特性主要表现在“六个非”上,即非单一、非有序、非透明、非确切、非定量、非理性,思考这些问题需要运用各种综合方法。几乎所有先进适用的工程技术措施(含人工智能钻井专家系统),都在深井勘探与开发过程中得到验证、应用和发展。深井钻井技术水平从整体上反映了一个国家或一个时代的工程技术水平。 深井钻井技术装备系列化、标准化、规范化,20世纪80年代中期首次形成高峰,本世纪初将形成第二次高峰。至20世纪90年代末,深井钻机基本采用AC2SCR2DC 电驱动钻机(交流电机效率96%,直流电机效率91%,绞车减轻20%~30%,占地面积少25%~40%)和顶部驱动装置(安装顶驱占钻机总数23%以上,包括动力水龙头),井口机械化、井下自动化和整机智能化水平大幅度提高。 目前深井钻机正朝着AC2GTO2AC 电驱动和满足HSE 及TQC 综合性能要求的方向发展。美国在撒哈拉沙漠等地区使用的6000m 深井钻机代表了当今世界钻机最先进水平(符合A PI 标准),其设计制?282?长江大学学报(自然科学版)  2008年3月第5卷第1期:理工Journal of Yangtze U niversity (N at Sci Edit) Mar 12008,Vol 15No 11:Sci &Eng

浅析冀东油田深井钻井技术

浅析冀东油田深井钻井技术 石油钻井受众多因素影响,特别是深井钻井因为钻进深度较大、地层信息不明确,往往会由于各种因素影响造成井下复杂状况增多,影响钻井速度和效益,本文结合深井钻井技术实施中存在的问题,对钻井技术措施进行了探究。 标签:深井钻井;技术难点;技术措施 冀东油田油气资源勘探开发中,应用了较多深井进行采油作业,因深井钻井储层埋深加大、地质因素不明确、部分岩层硬度较大、温度和压力变化大以及井壁易坍塌等原因,造成钻井中存在一定困难。特别是多套层系共生、储层和盖层交错复杂以及广泛分布软泥层和盐膏层等特点,造成钻井技术实施存在较多难点。因此,有必要结合深井钻井困难和钻井技术实施中的难点,采取有针对性的措施进行深井钻井。 1 深井钻井技术实施难点 结合冀东油田地质条件,深井钻井技术实施中需要钻穿多套年代和性质存在较大差异的地层,一口油井钻井中不同深度压力也存在较大差异,同一口油井不同深度地层钻井需要分段采取不同技术手段应对不同的地质条件和各类复杂状况,同时地层深度较大后存在压力、温度、地层应力较高等问题,加剧了井下复杂状况发生的概率,特别是多套压力系统的存在,造成漏失和井喷威胁同时存在。就钻井技术实施而言,钻井技术装备与国际先进深井钻井存在一定差距,浅层地层的大尺寸井眼钻进和深层钻速提升存在一定困难;同一油井钻进中需要配套多层套管,深层地层小井眼钻速提升存在困难;有针对性的套损和防斜打直技术实施需求较大;深层地层钻井中地层漏失、喷涌、坍塌和缩径等问题同时存在,钻井液配制中需要同步考虑包被剂抗温、高温稳定剂等多种试剂和复配问题,同时还要考虑钻井液流变稳定性和环保问题;钻进地层较多后存在部分高陡构造,易加大钻井质量控制难度。 2 冀东油田深井钻井技术措施 2.1 井身设计优化 油井井身会对钻井效率、效益和安全性产生重要影响,要结合区块地质开发资料和邻井开发情况,以及三压力剖面和地层特点等进行井身轨迹优化设计。一般在确保完井尺寸的情况下尽量减小井眼尺寸,确保浅地层大尺寸钻进速度,同时还要满足套管下入、优快钻井和完井质量要求。比如在濮深某油井沙三段地层钻进中,深度3700-4000m地层承压性较低,破压当量密度仅为1.6kg/L,在井身设计时充分考虑该因素,在上层地层钻井中应用Ф244.5mm的套管对地层进行封隔,虽然增加了施工成本,但避免了下部地层钻进中上部地层的漏失、坍塌等危害,确保了优快钻井。

苏里格气井水平井钻井液技术方案

苏里格气井水平井钻井液技术方案苏里格气井水平井钻井液最关键的技术是井眼净化、大斜度井段“双石层”和水平段泥岩的垮塌、预防PDC钻头的泥包、润滑性、产层保护等。 1 基本情况 直井段:保持了本区块直井、定向井钻井液方案。 斜井段: 继续采用强抑制无土相复合盐钻井液体系。 水平段:采用无土相酸溶暂堵钻井液体系。 2 技术难点 2.1 苏里格区块直井段安定底直罗组、延长底部纸纺组顶部易垮塌。 2.2苏里格区块刘家沟组与石盒子组地层承压能力低,普遍存在渗透性漏失和压差性漏失。 尤其是苏5区块漏失最为频繁。 2.3“双石层”、煤层和水平段泥岩的垮塌,是导致水平井易发生复杂和故障的致命的因素。 2.4如何优化钻井液体系、性能、组分,通过钻头选型,水力参数优化,是预防PDC钻头泥包和提高斜井段机械钻速的关键。 2.5 如何通过改善泥饼质量,提高钻井液的润滑性是水平井钻井液防卡润滑的关键。 3 技术方案 3.1表层技术方案 3.1.1表层钻井液配方 表层及导管钻进严格按《苏里格气田表层钻井液技术》执行,打导管采用白土浆小循环,导管打完后固定、找正、坐实、水泥回填,侯凝2-3小时,开钻过程中监控导管情况。 若流砂层未封住(流沙层50米以上),采用白土浆钻井,0.1%CMC+5-6%白土,密度:1.03---1.05g/cm3,粘度:40-50s ;钻穿流沙层50-80米之后,采用低固相钻井液体系,密度:1.01---1.03g/cm3,粘度:31-35s。 若流砂层已完全封住,用清水聚合物钻井液体系,配方为0.2%CMP +0.2%ZNP-1。钻井液性能:密度:1.00---1.02g/cm3,粘度:31-32s。 3.1.2下表层表套前技术措施 打完表层后配白土浆(约40-50方)密度:1.03-1.05g/cm3,粘度:40-50s,采用地面小循环清扫井底后打入井里封固裸眼井段,起钻连续灌白土浆,确保井口流沙层段为白土浆,防止下表套过程中流沙垮塌。

【钻井工程】国内外深井、超深井井下工具简介

国内外深井、超深井井下工具简介 按照我们国家对深井、超深井的界定,深井是指井深大于4500m 的井,超深井是指井深6000m以上的井。迄今,世界上最深的井为前苏联的SC-3井,井深12869m。目前,美国深井、超深井的钻井水平大致为:5000m的井完井周期3个月,6000m的井完井周期6个月,7000m的井完井周期12个月。 深井、超深井对钻井的方方面面都是一个极为严峻的挑战,其关键技术包括:先进的地震技术以及对地震资料的准确判读与分析;对邻井钻井资料的全面采集、处理和利用;功率、功能强大且易于控制的钻机设备;先进的数据采集、分析系统和先进的用于不同目的的井下工具;科学合理的钻井设计;成熟的钻井工艺技术;高温高压泥浆体系;科学、强化的生产技术管理等。 随着世界范围内深井、超深井钻井数量与钻井难度的逐年递增,国内外各大石油公司近几年先后开发研制出了用于深井、超深井防斜打直、提高钻速、井眼轨迹和井下参数测量与控制、井眼扩大规整、刚体膨胀管补救、深井扩孔等先进的井下工具,现一一简单介绍如下: 1、井下动力钻具---用于提高机械钻速 ●国产螺杆钻具耐温低,仅能用于上部井段; 1

●BakerHughes INTEQ的高速螺杆钻具采用新的橡胶定子制 造工艺,耐温190℃,且转速与排量成正比,输出功率是涡轮钻具的两倍多; ●俄罗斯的带齿轮减速箱新型涡轮钻具耐温可达250℃∽ 300℃; ●美国Manurer公司为钻高温地热井研制的齿轮减速涡轮钻 具成功钻成了温度高达316℃的地热井; 2、旋冲钻井工具---用于提高机械钻速 ●国内:厂家众多,成熟较少,究其原因,主要有三:一是寿命 短,二是无匹配之钻头,三是无深部极硬之地层,故效果不明显。现场应用最好当属江苏东海的科钻1井,但该井具以下特点:连续取心,工具一次下井工作时间短;钻头为孕镶式天然金刚石取心钻头,抗冲击能力强;地层为非沉质岩地层,硬度高、可钻性差、研磨性强,故应用效果明显; ●国外有适合于地层、同时也适合于工具的专用钻头,如图1。 1

超深井钻井技术研究及工业化应用

超深井钻井技术研究及工业化应用 摘要自改革开放以来,我国的社会经济保持着高速发展,经济体量不断壮大,已经成为世界第二大经济体,而随着经济的发展,科学技术水平也在不断提高,其中超深井钻井技术也取得了长足进步。石油是经济发展和社会发展过程中不可或缺的资源,而为了人类的进步和发展,石油勘探技术也在不断提高,越来越多的钻井、越钻越深的钻井、从陆地转向海洋的钻井,这些都见证着我国钻井技术的发展历程。本文主要分析和探讨了超深井钻井技术的研究和工业化的应用。 关键词超深井钻井;技术研究;工业化应用 近些年來,随着石油资源的不断开采和消耗,深层找油也变得也来越多,超深井钻井技术的应用日益变多,但超深井开采会遇到多方面的问题,包括深高温高压、层岩性等因素,这些问题会对钻具、钻速、井斜等产生直接影响,进而造成事故发生。 1 超深井钻井遇到的各类问题 随着经济的快速发展和对石油资源的更大需求,我国油气资源勘探开发的步伐不断加快,开始向更深层次进发,特别是在塔里木盆地、四川盆地等地方的超深层油气勘探,使得对超深井钻井技术提出了迫切的需求和更高的要求。但是因为超深井钻井工程通常所处的地质环境都比较复杂,所以钻井会遇到各种问题,有些甚至是世界级难题,给我国油气资源的开采带来了巨大挑战,主要包括以下几个方面。 1.1 地质条件比较复杂 通常油气资源丰富的西北地区,地层时代都比较古老、构造活动期次频繁、演化程度也很高,很多地区还存在厚砾石层、陆相地层胶结致密等现象,地层压力系数超过2.4。同时地层埋藏深、地层比较坚硬、岩石强度较高、可钻性比较差、研磨性较强、机械钻速相对低[1]。 1.2 井身结构设计困难 因为西北以及川东北地区由纵向上分布的压力系统很多,同时由于破碎带、低承压层等方面的影响,所以造成了井身结构设计和优化的难度较大;超深井因为上部套管尺寸很大、下深相对较深,所以经常会出现抗内压和套管抗挤强度达不到标准。 1.3 气候条件造成困扰 因为工程所处地区的原因,往往会引发高温状况下,钻井液黏土出现分散、

冀东油田水平井钻井液技术重点

第22卷第4期钻井液与完井液Vol.22No.4 2005年7月DRILLINGFLUID&COMPLETIONFLUIDJul12005 文章编号:100125620(2005)0420072202 冀东油田水平井钻井液技术 邓增库左洪国夏景刚杨文权赵增春蒋平 (华北石油管理局第三钻井工程公司,河北河间) 摘要针对水平井钻井要求和冀东油田的地层特点,采用强包被、、,定向井段和水平井段采用聚磺硅氟乳化原油钻井液。该钻井液中PMHA与JJ能力;GT298、KJ21与NPAN,L21与JGWJ复配使用可以提高钻井液的封堵能力,。现场应用表明,该钻井液具有较强的防塌能力、,解决了上部地层和水平井段砂岩储层的井塌以及大斜度井段、水平井段的携砂、,完全满足了冀东地区垂深小于3000m水平井的钻井需要。 关键词聚磺硅氟钻井液井眼净化井眼稳定防止地层损害水平钻井冀东油田中图分类号:TE254.3 文献标识码:A 钻井液性能优良是水平井井下安全的重要保证。为满足水平井钻井要求,对水平井钻井液技术进行了调研,结合冀东油田的地层特点,从钻井液的抑制防塌能力、流变性、润滑性、油层保护等方面进行室内评价,优选出了聚磺硅氟乳化原油钻井液配方,并首次在G362P4井进行试验,获得了成功。随着水平井钻井液技术的不断完善,22口水平井实践表明,聚磺硅氟乳化原油钻井液具有较强的防塌能力、良好的流变性和润滑性,油层保护效果好,满足了冀东油田垂深小于3000m的水平井钻井需要。 砂带来困难;水平段处于砂岩产层,钻速快(钻时为0.8~2min/m),钻井液中岩屑浓度大;一般水平井段的井径比常规井径大,同时钻具不能居中,在重力作用下,岩屑在运移过程中产生沉降,在钻具周边淤积。如果钻井液携砂能力较弱,或工程措施不当,极易形成岩屑床,造成卡钻。113润滑防卡 由于油层埋深较浅,井眼轨迹半径较小,造斜率有时达30°/100m以上,大斜度井段地层较软,地层与钻具接触面大,固相润滑作用小,主要依赖液相润滑,增加了润滑防卡难度。114油层保护 1技术难点 111井壁稳定 该油田馆陶组下部地层存在不同厚度的玄武 岩,胶结物少,地层破碎,表现为大块塌落;东营组泥页岩地层易吸水造成不均质剥落坍塌;储层砂岩胶结性差,返出岩屑类似流砂,储层砂岩裸露段长达几百米,上层井壁

水平井钻井液

水平井钻井液 前言 水平井钻井是钻井技术发展的必然产物,和钻直井相比涉及到新的工艺和新的技术措施,它对钻井液技术提出了更高的要求,因此在水平井钻井液的设计和施工中,必须把握好钻井液的特性、分优钻井液性能、钻井液参数的优选,这样才能安全、顺利的完成钻井任务,才可能取得更高的经济效益。从胜利油田钻水平井的发展历史来看,套管结构在不断的简化,钻井周期在不断的降低,成本在不断的减少,当初钻二千来米的水平井需三开完钻,现在钻将近五千米的水平井也只下两层套管,所取得的技术和经济效益是相当可观的。所钻地层也由当初的较稳定的地层到现在的低压易漏失地层;钻井液的发展经历了水基、油基到现在的泡沫钻井液,水平井钻井液技术的持续、稳定发展,使我油田目前能钻各种类型、各种难度、不同井深的水平井。 一、水平井钻井液的发展 为提高水平井钻井液的携岩洗井效果,只有提高钻井液粘度和动切力,降低钻屑的下滑速度,避免岩屑床的形成,但粘度太高不利于钻井的施工,提高动切力是有效的方法。为达到这个目的,胜利油田在最初的几口水平井用聚腐粉JFF来改善钻井液这方面的性能,但JFF有它的局限性,作用时间不能持续长久,处理量大时易使粘度迅速上升,在此基础上采用正电胶MMH来改善钻井液流变参数,可以大大地提高动切力,施工方便、快捷。这两者处理剂实际上都是改善钻井液中粘土的性质,不同的只是JFF在施工时就已对粘土进行了处理,加入时同时会增加泥浆中的般土含量;而MMH是在施工之中进行,不可能增加钻井中的般土含量,且作用时间长。润滑剂的种类可根据地质需要而选择不同的类型。 二、钻屑在井下的运移状态 分析钻屑的运移情况,必须从钻井液的流变参数,当动切力越小,流型越显尖峰型,动切力越大,则呈现平板型层流,以宾汉模式计算,钻井液的临界环空返速 321.49 (Do+Di)(PV+(PV2+YP(Do-Di)2D) 1/2 Qc= D 7716 式中:Do井眼直径(米) Di 钻杆内径(米) D 钻井液密度(Kg/m3) PV 钻井液塑性粘度(PaS) YP 钻井液动切力(Pa)

水平井钻井液技术

水平井钻井液技术 水平井钻井液技术 水平井技术是当代油气资源勘探开发的重点技术之一.从80十九 世纪末期开始,为了勘探提高钻探开发综合经济效益,全世界各油公 司掀起了水平井的热潮,在生产中所取得了重大经济效益,断定了水 平井“少井高产”的突出优点,取得了减少油田勘查勘探开发费用, 加快资金回收,少占土地减少和环境污染等一系列经济效益和社会效益。 由于水平井催化裂化在钻井过程中井转角从0°~90°变化,因而 水平井与直井钻井工艺有较大的差别,为了确保水平井的钻成井保护 好油气层,对水平井的钻井液完井液提出了特殊要求,必须解决井眼 净化、井壁稳定、摩阻控制、防漏堵漏和保护储层堵漏等症结。 一、井眼净化 井眼净化是水平井钻井工程的一个主要组成部分,井眼雾化不好 会导致摩阻和扭矩增加、卡钻;下能影响下套管和固井作业正常进行。 (一)影响井眼净化的因素 1、井斜角:环空岩屑或临界流速随井斜角的增加而变大,而清洁 率则随之下降 2、环空返速:其大小直接影响环空岩屑的运移方式、状态和环空 岩屑浓度。提高环的空运速: 环空岩屑浓度降低,井眼减低净化状况得以改善;岩屑侵蚀床厚 度降低或被破坏,井眼下侧不形成明显的岩屑床。 3、环空流型:完全一致态的携屑效果基本相同。通过调整钻井液 流变性能,改变层流速度剖面的平板程度来取代紊流,使钻井液在环

空处于平板型层流,从而达到改善井眼净化旌善线的目的;55°~90°紊流比层流携屑效果好 4、钻井液密度:钻井液电阻率的提高,这有利于钻屑的携带 5、钻柱尺寸:当井身结构中已确定,随着钻杆尺寸柱塞的增大环空返速增加,有利于携屑 6、转速:钻柱的旋转,对沉积的岩床起搅动指导作用,有利于床面岩屑的离去;转动钻柱可以限制钻柱的偏心效应,从而改善井眼净化;提高转速可防止钻井液在井壁周围形成不流动,从而不断提高井眼净化;钻柱除了自转外,还围绕井眼周界作圆周运动,因而利于岩屑的携带 7、钻柱的偏心度:随着井斜角的增大,钻校的偏心度对环空岩屑的影响较大;环空岩屑浓度随钻柱偏心度的增大而增大8、钻井速度和岩屑尺寸:当钻速过高时,会造成环空钻屑浓度过大,岩屑床内径增加;岩屑尺寸大小亦会对井眼净化效果带来影响(二)技术措施 水平井的井眼清洗在现场经常采用机械清洗和水力清洗相结合的措施来解决,实现水平井净化的技术措施可归纳为以下几个方面: 1、增强环空返速; 2、选用合理流型与钻井液流变参数; 3、改变下部钻具组合 4、适当增加钻井液密度; 5、转动钻具或上下大范围活动; 6、使用钻杆扶正器; 7、压制钻进速度; 8、采改采高转速金刚石钻头; 9、倒划眼二、井壁稳定 井壁稳定是钻井工程中最常见的井下复杂情况之一。酿成井壁不稳定的原因可归纳为力学因素与物理化学因素,但最终均归结为井壁岩石所受的应力超过其自身强度风速造成岩石发生捏切破坏,井眼钻开前,地下岩石在上覆地层压力、水平地应力及地层孔隙压力的作用下,继续保持应力平衡状态,井眼被钻开后,井筒内的钻井液柱压力取代了所钻岩石对井壁的支撑,惹起引起井壁邻近的应力重新分布,当井筒的液柱压力小于地层坍塌压力时,井壁周围的岩石所受的远远

11塔河油田深井超深井钻井液技术

塔河油田深井超深井钻井液技术 郭才轩1王悦坚2宋明全1 (1、中国石化石油勘探开发研究院德州石油钻井研究所,2、中国石化西北分公司)摘要塔河油田主力油藏深度一般在5300m以下,是我国目前陆上油气层埋藏最深 的一个大型整装油田。由于油气埋藏深,钻遇的地层多、而且复杂,曾一度给油气田的 开发和扩展带来了困难。后通过技术攻关和技术引进,成功解决了塔河油田三叠、石炭 系硬脆性泥页岩地层的坍塌,奥陶系地层大型裂缝溶洞地层漏失,塔河油田新区巨厚盐 膏层塑性蠕变卡钻等制约塔河油田的瓶颈问题。技术进步使塔河油田在解决复杂问题的 能力上得到大幅提升,6000m左右的开发井建井周期从原来的100多天缩短到70天以内,新区超深盐层钻井成功率从2002年前不足40%提高到现在100%。 主题词超深井井眼稳定欠平衡钻井承压封堵欠饱和盐水 塔河油田是中国石化在西部地区的一个大油田,近年来原油产量一年一个台阶,2004年原油产量达到357万吨。原油产量的大幅提高,除了得益于油藏地质技术进步外,钻井技术,尤其是钻井液技术的发展也是重要的动力源之一。塔河油田的主力油藏位于奥陶系的裂缝型灰岩地层中,埋深在5300m以上,有二套地层,一套不含盐膏,位于塔河油田老区块;另一套含有巨厚盐膏层,位于塔河油田外围新区。中国石化西北分公司针对塔河油田存在的主要钻井液技术问题,组织联合攻关,通过近5年的努力,较好解决了三叠、石炭系井眼坍塌,巨厚盐膏层塑性蠕变卡钻和奥陶系裂缝性油气藏的损害等技术难题,为塔河油田增储上产、降本增效做出了巨大贡献。 一、塔河油田存在的主要钻井液技术问题分析 1、三叠、石炭系井眼坍塌问题 长期钻井实践表明:塔河油田三叠、石炭系存在严重的井眼坍塌问题,钻井中经常会遇到大面积突发性井眼坍塌,严重时必须反复划眼和通井,不仅影响了钻井速度,而且影响了成井质量,给后期的测井、固井、测试等作业埋下了隐患。我们随机的对2002年和2003年施工的30口井进行了统计分析,5000m以下地层扩大率在0-10%的井7口、10-15%的井6口、15-20%的井5口、大于20%的井12口。统计数据说明塔河油田三叠系、石炭系地层存在严重的扩径问题。从井径曲线看,三叠、石炭系井径很不规则,小的缩径率达2%以上,大的井径测不到边。 2、巨厚盐膏层钻井液问题 塔河油田外围新区石炭系的膏盐层具有埋藏深、厚度大、蠕变速度快,钻井中极易发生塑性蠕变卡钻。早期在该区及其外围施工30余口井,虽然沙10、沙24、沙42、乡1、轮南46等井成功地钻穿了巨厚盐膏层,但大多数井都发生了不同程度的井漏、阻卡、套管变形甚至挤毁等问题,半数以上井因井漏、盐膏层蠕变卡钻、井眼坍塌埋钻等事故而被迫提前完钻或弃井。综合分析认为:①井身结构上没有采取专打专封的方案,使上低下高不同的压力体系处于三开同一裸眼段,地层岩性特征、孔隙压力和坍塌压力变化大,为了安全钻进石炭系的膏盐层,需要提高钻井液密度以减少盐膏层蠕变速度,而高的钻井液密度会把上部地层压漏,因此在进入盐层前提高地层承压能力是盐层钻井的技术难题之一;②盐膏层塑性蠕变速度快,而钻井液密度因地层原因又不能提的很高,所以选择钻井液含盐浓度是一个技术关键,高了会降低盐层溶蚀速度,甚至在上返过程中形成盐重结晶,而低了又不能保证井眼稳定,因此控制钻井液氯根平衡范围也是盐层钻井成败的关键技术之一。

相关文档
最新文档