泛函分析讲义

泛函分析讲义
泛函分析讲义

第三章赋范空间

3.1.范数的概念

“线性空间”强调元素之间的运算关系,“度量空间”则强调元素之间的距离关系,两者的共性在于:只研究元素之间的关系,不研究元素本身的属性。

为了求解算子方程,需要深入地了解函数空间的结构与性质,为此,我们不仅希望了解函数之间的运算关系和距离关系,还希望了解函数本身的属性。那么,究竟需要了解函数的什么属性呢?

3.1.1. 向量的长度

为了回答上述问题,我们需要从最简单的函数空间——欧氏空间——中寻找灵感。回想一下,三维欧氏空间中的元素被称为“向量”,向量最重要的两大属性是:长度和方向,向量的许多重要性质都是由其长度和方向所决定的。这一章的任务就是将欧氏空间中向量的长度推广为(以函数空间为原型的)一般线性空间中元素的广义长度,下一章的任务就是将欧氏空间中向量的方向推广为(以函数空间为原型的)一般线性空间中元素的广义方向。可以想象:其元素具有广义长度和广义方向的线性空间必将像欧氏空间那样,呈现出丰富多彩的性质,并且这些性质必将有助于求解算子方程。

图3.1.1. 三维欧氏空间中向量的大小和方向

矩阵论知识告诉我们:可以为欧氏空间中的向量赋予各种各样的长度,并且可以根据问题需要来选择最合适的向量长度。实际上,可以在数域F 上的n 维欧式空间n F 上定义向量12(,,,)n x x x x 的如下三种长度(称为“范数”):

● 2-范数(也称为欧氏范数)

:2x =

● 1-范数:11

n k k x x ==∑;

● ∞-范数:1max k k n

x x ∞≤≤=。

图3.1.2. 三种向量范数对应的“单位圆”图3.1.3. “单位圆”集合的艺术形式

下一节将谈到:就分析性质而言,这三种向量范数没有任何区别。

我们注意到:通常将2 或3 中两个向量之间的距离定义为两者的差向量的长度。由此可知:如果有了长度的概念,就可以诱导出距离;反之则不然。因此,长度是比距离更本质的概念。

3.1.2. 范数的定义

我们希望将向量范数的概念推广到(以函数空间为原型的)无限维线性空间的场合。

定义3.1.1.设X 是数域F 上的线性空间,?是定义在X 上、取值为实数的函数。如果下列条件满足:

(1)正定性:对于任意x X ∈,都有0x ≥,并且等号成立当且仅当0x =;

(2)正齐性:对于任意x X ∈,F α∈,都有x x αα=?;

(3)三角不等式:x y x y +≤+;

则称?是X 上的范数(norm )。称赋予了范数的线性空间为赋范线性空间(normed linear space ),或者简称为赋范空间(normed space )。

图3.1.1. 三角不等式示意图

3.1.3. 常用的范数

下面列出常用的赋范空间。

例3.1.1:设X 是数域F 上的紧度量空间,用()F C X 表示定义在X 上、在F 中取值的全体连续映射的集合。可以在()F C X 上定义如下范数:对于()F f C X ∈,

{}sup ():f f x x X =∈。

例3.1.2:对于1p ≤<∞,可以在()p L X 上定义如下范数:对于()p f L X ∈,

()1/()p p p X f f x dx =?。

例3.1.3:可以在()L X ∞上定义如下范数:对于()f L X ∞∈,

{}sup ():f ess f x x X ∞

=∈。 注释:函数的1-范数、2-范数、∞-范数分别是向量的1-范数、2-范数、∞-范数的自然推广。(为什么?)

例3.1.4:对于1p ≤<∞,可以在p l 上定义如下范数:对于1{}p k k x x l ∞

==∈,

1/1p p k p k x x ∞=??=????∑。

例3.1.5:可以在l ∞上定义如下范数:对于1

{}k k x x l ∞∞==∈,

{}sup :k x x k ∞=∈ 。

上述五种范数是泛函分析中最重要的范数,我们将其称为标准范数。 例3.1.6:设(),X ?是赋范线性空间,Y 是X 的线性子空间,Y ?是范数?在Y 上的限制,则Y ?是Y 上的范数。

上述例子表明:可以从较大的赋范线性空间出发,“从大到小”地构造许许多多较小的赋范线性空间。

例 3.1.7:设()1,X ?和()2,Y ?是同一个数域上的赋范线性空间,则在笛卡尔积

X Y ?上可以定义如下范数:对于任意(,)x y X Y ∈?,

12(,)x y x y =+, 则?是X Y ?上的范数。

上述例子表明:可以从较小的赋范线性空间出发,“从小到大”地构造无穷无尽的赋范线性空间。

范数就像灵魂一样重要:有范数的元素就有了精气神;反之,没有范数的元素就像是孤魂野鬼,完全没有实在感。

3.2.范数的基本性质

赋范线性空间具有许多独特的性质,这些性质在研究其分析性质时特别有用。

3.2.1.范数诱导度量

一方面,赋范空间是线性空间。另一方面,下列定理告诉我们:赋范空间还是度量空间。因此,赋范空间是线性空间与度量空间的合体,是为求解算子方程而生的。

定理3.2.1.设(),X ?是赋范空间,定义映射:d X X ?→ 如下:对于任意,x y X ∈,

(,)d x y x y =-,

则(,)X d 是度量空间。以下称该度量为范数诱导度量,称相应的度量空间为诱导度量空间。

下面列出常用的范数诱导度量。

例3.2.1:可以用n 维向量空间n F 上的2-范数2?诱导n F 上的如下度量:对于任

意1212(,,,),(,,,)n n n x x x x y y y y F ==∈ ,

1/2221(,)n k k k d x y f g x y =??=-=-????

∑。 例3.2.2:可以用例3.1.1中定义的范数?诱导()F C X 上的如下度量:对于任意,()F f g C X ∈,

{}(,)sup ()():d f g f g f x g x x X =-=-∈。

例3.2.3:对于1p ≤≤∞,可以用()p L X 上的范数p ?诱导()p L X 上的如下度量:

对于任意,()p f g L X ∈,

1/(,)()()p

p p X d f g f g f x g x dx ??=-=-???。 例 3.2.4:对于1p ≤≤∞,可以用p l 上的范数p ?诱导p l 上的如下度量:对于

{},{}p n n x x y y l ==∈,

1/1(,)p p k k p k d x y x y x y ∞=??=-=-????∑。

上述度量都是第二章最后一节介绍的标准度量,由此可见:范数与度量是紧密联系在一起的。

3.2.2. 极限运算律

赋范空间满足下列极限运算交换律。

定理3.2.2:设(),X ?是数域F 上的赋范空间,则下列性质成立:

(1)极限运算-代数运算交换律:设{}n x 和{}n y 是X 中的收敛序列,,F αβ∈,则

lim()lim lim n n n n n n n x y x y αβαβ→∞→∞→∞

+=+。 (2)极限运算-范数运算交换律:设{}n x 是X 中的收敛序列,则

lim lim n n n n x x →∞→∞

=。 赋范空间的上述性质使极限运算变得十分便捷。

3.2.3. 范数的等价性

我们知道,在同一个线性空间上可以赋予各种不同的范数。于是,就自然产生了如下问题:

赋范空间的分析性质是否会随着范数的改变而改变?

为了回答上述问题,我们希望将某个线性空间上的所有可能的范数划分为若干类,使得(a )来自同一类中的两个范数对应的赋范空间的分析性质完全相同,(b )来自不同类中的两个范数对应的赋范空间的分析性质不完全相同。为了实现这个目的,数学家给出了如下定义。

定义3.2.1.设1?和2?是线性空间X 上的两个范数。如果存在正数m 和M ,使得

所有x X ∈均满足

121m x x M x ≤≤, 则称1?与2?等价。

这个等价关系是标准的等价关系,即是同时满足自反性、对称性和传递性。按照这个等价关系,就可以将同一个线性空间上的所有范数分为若干等价类。下

列定理表明:属于同一等价类的两个范数对应的赋范空间的确具有完全相同的分析性质。

定理3.2.3.设1?和2?是线性空间X 上的两个等价范数。1d 和2d 分别表示由1?和2?诱导的度量。

(1) 设{}k x 是X 中的序列,则12d d k k x x x x ??→???→。

(2) 设{}k x 是关于1d 的Cauchy 列?{}k x 是关于2d 的Cauchy 列。

(3) 1(,)X d 完备?2(,)X d 完备。

3.2.

4. 扩张子空间

为了求得线性算子方程的通解,我们希望从它的一组解出发,通过代数运算和极限运算产生它的全部解。为此,现引入如下定义。

定义3.2.2.设X 是赋范空间,S 是X 的非空子集,则S 的扩张集Sp S 定义为由S 的

全体有限线性组合组成的集合的闭包,即是

1:,,,Sp k j j j j j S x X x x k x S F αα=??=∈=∈∈∈????

∑ 。 由此可见,Sp S 是由S 中元素通过代数运算和极限运算能够产生的最大集合。扩张集有下列重要性质。

定理3.2.4.Sp S 是X 的包含S 的、最小的闭线性子空间。

3.2.5. Riesz 引理

Riesz 引理是由匈牙利数学家Riesz (1880-1956)发现的,对揭示无限维赋范线性空间与有限维线性空间的本质区别具有重要作用。

Riesz 引理:设X 是赋范空间,Y 是X 的闭线性真子空间,01α<<。则存在x X ∈,

使得(1)1x =,(2)对于所有的y Y ∈,都有x y α->。

图3.1.3. 匈牙利数学家Riesz

3.3.有限维赋范空间

有限维线性空间是最简单的线性空间。实际上,根据定理 2.1.2,有限维线性空间的代数结构已经完全清楚了。这一节的目的是研究有限维赋范空间的分析结构。

可以将有限维线性空间视为度量空间,理由如下:设X 是n 维线性空间,{}12,,,n e e e 是X

的基,则可以定义X 上的如下范数:对于X 中任意元素

1n k k k x e λ==∑,令

1/2

21n k k x λ=??=????

∑。 这样定义的范数值将会随着基的改变而改变。然而,我们有如下惊人的结论: 定理3.3.1.同一个有限维线性空间上的所有范数均等价。

综合定理3.2.3和3.3.1可知:有限维赋范线性空间的分析性质是完全确定的,不依赖于范数的选择。因此在处理实际问题时,可以根据需要选择合适的范数。

对于有限维线性空间,我们还有如下进一步的结论:

定理3.3.2.有限维赋范空间是完备的,即是说其诱导度量空间是完备的。

综上所述,数域F 上的n 维线性空间与n F 不仅具有相同的代数结构,而且具有相同的分析性质。实际上,矩阵论的一部分内容,就是研究n F 的分析性质。

最后,我们还有

定理3.3.3.赋范空间的有限维子空间是闭集。

综上所述,有限维赋范空间的代数结构和分析结构都是十分简单的,是完全被人类所掌握。

3.4.无限维赋范空间

3.4.1. 无限维的烦恼

众所周知,“无限”比“有限”要复杂得多。因此自然可以想象:无限维赋范空间将失去有限维赋范空间的许多优美性质。实际上,我们有与定理3.3.1至定理3.3.3完全对立的下列结论。

定理3.4.1.同一个无限维线性空间上的某些范数不等价。

定理3.4.2.无限维赋范空间不一定是完备的。

定理3.4.3.赋范空间的无限维子空间不一定是闭集。

甚至对于无限维赋范空间X 而言,形如{}:1x X x ∈≤、{}:1x X x ∈=之类的集合都不再是闭集,这极大地妨碍了极限运算的实施。看来,最一般的无限维赋范空间已经超出了人类的认知能力。

3.4.2. Banach 空间

由于泛函分析的主要目的是求解算子方程,因此研究重点是完备的赋范空间。为了纪念波兰数学家Banach 在泛函分析领域的卓越贡献,后人就将这类空间称为Banach 空间。

定义3.4.1.完备的赋范空间称为Banach 空间。

图3.4.1. 泛函分析之父,波兰数学家Banach

下面的实例充分表明:常用的赋范空间都具有完备性,都是Banach 空间。 例3.4.1.有限维赋范空间是Banach 空间。

例3.4.2.设X 是紧度量空间,则()F C X 是Banach 空间。

例3.4.3.设1p ≤≤∞,则()p L X 是Banach 空间。

例3.4.4.设1p ≤≤∞,则p l 是Banach 空间。

例3.4.5.设X 是Banach 空间,Y 是X 的线性子空间,则Y 是Banach 空间?Y 是闭集。

前面提到,为了求解一般的线性算子方程,需要研究函数空间中函数项级数的收敛性。在Banach 空间上,就有如下很实用的级数收敛判别法。

定理3.4.4.设1k k x ∞=∑是Banach 空间上的级数。如果正项级数1k k x ∞=∑收敛,则1k

k x ∞

=∑亦收敛。

泛函分析讲义

第三章赋范空间 3.1. 范数的概念 “线性空间”强调元素之间的运算关系,“度量空间”则强调元素之间的距离关系,两者的共性在于:只研究元素之间的关系,不研究元素本身的属性。 为了求解算子方程,需要深入地了解函数空间的结构与性质,为此,我们不仅希望了解函数之间的运算关系和距离关系,还希望了解函数本身的属性。那么,究竟需要了解函数的什么属性呢? 3.1.1. 向量的长度 为了回答上述问题,我们需要从最简单的函数空间——欧氏空间——中寻找灵感。回想一下,三维欧氏空间中的元素被称为“向量”,向量最重要的两大属性是:长度和方向,向量的许多重要性质都是由其长度和方向所决定的。这一章的任务就是将欧氏空间中向量的长度推广为(以函数空间为原型的)一般线性空间中元素的广义长度,下一章的任务就是将欧氏空间中向量的方向推广为(以函数空间为原型的)一般线性空间中元素的广义方向。可以想象:其元素具有广义长度和广义方向的线性空间必将像欧氏空间那样,呈现出丰富多彩的性质,并且这些性质必将有助于求解算子方程。

图3.1.1. 三维欧氏空间中向量的大小和方向 矩阵论知识告诉我们:可以为欧氏空间中的向量赋予各种各样的长度,并且可以根据问题需要来选择最合适的向量长度。实际上,可以在数域F 上的n 维欧式空间n F 上定义向量12(,, ,)n x x x x =的如下三种长度(称为“范数”): ● 2-范数(也称为欧氏范数) :2x = ● 1-范数:11 n k k x x ==∑; ● ∞-范数:1max k k n x x ∞ ≤≤=。 图3.1.2. 三种向量范数对应的“单位圆” 图3.1.3. “单位圆”集合的艺术形式 下一节将谈到:就分析性质而言,这三种向量范数没有任何区别。 我们注意到:通常将 2 或 3 中两个向量之间的距离定义为两者的差向量的 长度。由此可知:如果有了长度的概念,就可以诱导出距离;反之则不然。因此,

实变函数与泛函分析报告初步试题

浙江省2008年1月高等教育自学考试 实变函数与泛函分析初步试题 课程代码:10023 一、单项选择题(本大题共4小题,每小题4分,共16分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设Q 是I =[0,1]中有理数的全体,从R 1来看,边界?Q =( ) A.I B.Q C.I \Q D.φ 2.设R 是实数集,P 是Cantor 三分集,x ∈P ,下列叙述正确的是( ) A.x 是P 的内点 B.x 是P 的外点 C.x 是P 的界点 D.x 是P 的孤立点 3.设f (x )在闭集E ?R n 上R 可积,I 1=(R ) ?E x x f )d (,I 2=(L )?E x x f )d (,则有( ) A.I 1<I 2 B.I 1=I 2 C.I 1>I 2 D.不能比较 4.设A n (n =1,2,…)是一列递增集合,F = ∞=∞→= 1lim n n n n A G A ,,则F 与G 的外测度满足( ) A.m *F <m *G B.m*F=m*G C.m *F >m *G D.不能比较 二、判断题(本大题共6小题,每小题3分,共18分)判断下列各题,正确的在题后括号内打“√”,错的打“×”。 1.完全集是没有邻接余区间的闭集.( ) 2.Cantor 三分集中必含有内点.( ) 3.外测度为零的集是可测集.( ) 4.设f (x )=0 a . e . 于E ,则?E x )x (f d =0.( ) 5.设f (x )是[a ,b ]上有界变差函数,则f ′(x )在[a ,b ]上可积.( ) 6.y =f (x )在[a ,b ]满足Lipschitz 条件,则y =f (x )在[a ,b ]能表示为两个增函数之差.( ) 三、填空题(本大题共10小题,每小题4分,共40分)请在每小题的空格中填上正确答案。错填、不填均无分。 1.设A n (n =1,2,…)是一列集合,则 ∞=∞=1n n m m A =_________. 2.设A 2n -1=[0,n 1], A 2n =[0,n ],n =1,2,…, 则n n A ∞→lim =_________. 3.设S n =(n ,+∞), 则n n mS ∞→lim =_________.

(完整word版)泛函分析习题标准答案

第二章 度量空间 作业题答案提示 1、 试问在R 上,()()2,x y x y ρ=- 能定义度量吗? 答:不能,因为三角不等式不成立。如取 则有(),4x y ρ=,而(),1x z ρ=,(),1z x ρ= 2、 试证明:(1)()1 2 ,x y x y ρ= -;(2)(),1x y x y x y ρ-= +-在R 上都定 义了度量。 证:(1)仅证明三角不等式。注意到 2 11 22x y x z z y x z z y ?? -≤-+-≤-+- ? ?? 故有1 112 22 x y x z z y -≤-+- (2)仅证明三角不等式 易证函数()1x x x ?=+在R +上是单调增加的, 所 以 有 ()() a b a b ??+≤+,从而有 1111a b a b a b a b a b a b ++≤≤+ ++++++ 令,,x y z R ?∈,令,a z x b y z =-=- 即111y x z x y z y x z x y z ---≤+ +-+-+-

4.试证明在[]b a C ,1 上,)12.3.2()()(),(?-=b a dt t y t x y x ρ 定义了度量。 证:(1)0)()(0),(≡-?=t y t x y x ρ(因为x,y 是连续函数) 0),(≥y x ρ及),(),(x y y x ρρ=显然成立。 []) ,(),()()()()()()()()()()(),()2(y z z x dt t y t z dt t z t x dt t y t z dt t z t x dt t y t x y x b a b a b a b a ρρρ+≤-+-≤-+-≤-=???? 5.试由Cauchy-Schwarz 不等式证明 ∑∑==≤?? ? ??n i i n i i x n x 12 2 1 证:∑∑∑∑=====?≤?? ? ??n i i n i n i i n i i x n x x 12 12 122 11 8.试证明下列各式都在度量空间()11,ρR 和()21,R R 的Descartes 积 21R R R ?=上定义了度量 {}2 12/1222121,max ~~)3(;)(~)2(;)1(ρρρρρρρρρ=+=+= 证:仅证三角不等式。(1)略。 (2) 设12(,)x x x =,12(,)y y y =12R R ∈?,则

博士生入学考试泛函分析考试大纲

博士生入学考试《泛函分析》考试大纲 第一章度量空间 §1 压缩映象原理 §2 完备化 §3 列紧集 §4 线性赋范空间 4.1 线性空间 4.2 线性空间上的距离 4.3 范数与Banach空间 4.4 线性赋范空间上的模等价 4.5 应用(最佳逼近问题) 4.6 有穷维* B空间的刻划 §5 凸集与不动点 5.1 定义与基本性质 5.2 Brouwer与Schauder不动点原理* 5.3 应用* §6 内积空间 6.1 定义与基本性质 6.2 正交与正交基 6.3 正交化与Hilbert空间的同构 6.4 再论最佳逼近问题 第二章线性算子与线性泛函 §1 线性算子的概念 1.1 线性算子和线性泛函的定义 1.2线性算子的连续性和有界性 §2 Riesz定理及其应用 Laplace方程f ? -狄氏边值问题的弱解 u= 变分不等到式 §3 纲与开映象定理 3.1 纲与纲推理 3.2 开映象定理 3.3 闭图象定理 3.4 共鸣定理 3.5应用 Lax-Milgram定理 Lax等价定理 §4 Hahn-Banach定理

4.1线性泛函的延拓定理 4.2几何形式----凸集分离定理 §5 共轭空间·弱收敛·自反空间 5.1 共轭空间的表示及应用(Runge) 5.2 共轭算子 5.3弱收敛及*弱收敛 5.4弱列紧性与*弱列紧性 §6 线性算子的谱 6.1 定义与例 6.2 Γелbφaнд定理 第三章紧算子与Fredholm算子 §1 紧算子的定义和基本性质 §2 Riesz-Fredholm 理论 §3 Riesz-Schauder理论 §4 Hilbert-Schmidt定理 §5 对椭圆方程的应用 §6 Fredholm算子 参考文献 1.张恭庆林源渠,“泛函分析讲义”,北京大学出版社,1987。 2.黄振友杨建新华踏红刘景麟《泛函分析》,科学出版社, 2003。

泛函分析试题B

泛函分析试题B PTU院期末考试试卷 (B)卷 2010 ——2011 学年第 1 学期课程名称: 泛函分析适用年级/专业 07 数学试卷类别:开卷(?)闭卷( ) 学历层次: 本科考试用时: 120 分钟 《考生注意:答案要全部抄到答题纸上,做在试卷上不给分》(((((((((((((((((((((((((((一、填空题(每小题3分,共15分) (,)Xdx1.设=是度量空间,是中点列,如果____________________________, XX,,n x则称是中的收敛点列。 X,,n ffNf2. 设是赋范线性空间,是上线性泛函,那么的零空间是中的闭子空XXX,,间的充要条件为_____________________________。 3. 为赋范线性空间到赋范线性空间中的线性算子,如果_________________, TXY 则称T是同构映射。 xyX,,4. 设是实Hilbert空间,对中任何两个向量满足的极化恒等式公式 为:XX ___________________________________________。 ,,5. 设是赋范线性空间,是的共轭空间,泛函列,如果XXXfXn,,(1,2,)Ln ff_______________________________________________,则称点列强收敛 于。 ,,n二、计算题(共20分) ppl叙述空间的定义,并求的共轭空间。 lp(1),,,, 三、证明题(共65分) p1、(12分)叙述并证明空间中的Holder不等式。 lp(1),

,,MM,2、(15分)设是Hilbert空间的闭子空间,证明。 MX 试卷第 1 页共 2 页 3、(14分)Hilbert空间是可分的,证明任何规范正交系至多为可数集。 XX 4、(12分) 证明Banach空间自反的充要条件是的共轭空间自反。 XX ,,ll5、(12分)叙述空间的定义,并证明空间是不可分的。 试卷第 2 页共 2 页

泛函分析答案

泛函分析答案: 1、 所有元素均为0的n ×n 矩阵 2、 设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。 3、 设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。 4、 设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的 λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。 5、 设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件: (1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x) (3) 三角不等式:d(x,y)≤d(x,z)+d(y,z) for every x,y,z ∈E n 维欧几里德空间常用距离定义: 】 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }T d 2(x,y)=( 21 ||n i i i x y =-∑)1/2 d 1(x,y)=1 ||n i i i x y =-∑ d p (x,y) = ( 1 ||n p i i i x y =-∑ )1/p d ∞(x,y)=1max ||i i i n x y ≤≤- 6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)0(n ∞),这时记作 0lim n n x x -->∞ =,或 简单地记作x n x 0 7、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iff x=0 (2)||λx||=λ||x||,λ为常数 (3)||x+y||≤||x||+||y||,for every x,y ∈E 8、设E 为线性赋范空间,{x n }∞ n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。若E 的基本列的收敛元仍属于E ,则称E 为完备的线性赋范空间,即为Banach 空间。线性赋范空间中的基本列不一定收敛。 9、有限维的线性赋范空间必然完备,所以它必定是Banach 空间。 $ 10、如果内积空间能在由内积诱导的赋范空间完备,则此内积空间称为Hilbert 空间。 11、L 2(a,b )为定义在(a,b)上平方可积函数空间,即设f(t)∈L 2(a,b ), 2|()|b a f t dt ? <∞。 当 L 2(a,b )中内积的定义为(f,g )= _____ ()()b a f t g t dt ? (其中f(t),g(t)∈L 2(a,b ))时其为Hilbert 空间。 ★ 12、算子表示一种作用,一种映射。设X 和Y 是给定的两个线性赋范空间,集合D ?X , 若对D 中的每一个x ,均有Y 中的一个确定的变量y 与其对应,则说这种对应关系确定

(完整版)《实变函数与泛函分析基础》试卷及答案要点

试卷一: 一、单项选择题(3分×5=15分) 1、1、下列各式正确的是( ) (A )1lim n k n n k n A A ∞ ∞ →∞ ===??; (B )1lim n k n k n n A A ∞ ∞ ==→∞ =??; (C )1lim n k n n k n A A ∞ ∞ →∞ ===??; (D )1lim n k n k n n A A ∞ ∞ ==→∞ =??; 2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P =' (D) P P =ο 3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( ) (A )若()()n f x f x ?, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数 (C ){}inf ()n n f x 是可测函数;(D )若()()n f x f x ?,则()f x 可测 5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))(' x f 在],[b a 上L 可积 (D) ? -=b a a f b f dx x f )()()(' 二. 填空题(3分×5=15分) 1、()(())s s C A C B A A B ??--=_________ 2、设E 是[]0,1上有理点全体,则' E =______,o E =______,E =______. 3、设E 是n R 中点集,如果对任一点集T 都有

泛函分析习题解答

第七章 习题解答 1.设(X ,d )为一度量空间,令 }),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U 问),(0εx U 的闭包是否等于),(0εx S ? 解 不一定。例如离散空间(X ,d )。)1,(0x U ={0x },而)1,(0x S =X 。 因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。 2. 设 ],[b a C ∞是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。 证明 (1)若),(g f d =0,则) ()(1)()(max ) () ()()(t g t f t g t f r r r r b t a -+-≤≤=0,即f=g (2))()(1)()(max 2 1 ),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞ =∑ =d (f ,g )+d (g ,h ) 因此],[b a C ∞按),(g f d 成度量空间。 3. 设B 是度量空间X 中的闭集,证明必有一列开集ΛΛn o o o 21,包含B ,而且B o n n =?∞ =1 。 证明 令n n n o n n B x d Bo o .2,1},1 ),({K =<==是开集:设n o x ∈0,则存在B x ∈1,使 n x x d 1),(10<。设,0),(1 10>-=x x d n δ则易验证n o x U ?),(0δ,这就证明了n o 是 开集 显然B o n n ??∞=1 。若n n o x ∞ =?∈1 则对每一个n ,有B x n ∈使n x x d 1 ),(1< ,因此

泛函分析答案

泛函分析答案: 1、所有元素均为0的n ×n 矩阵 2、设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。 3、设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。 4、设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。 5、设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件: (1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x) (3) 三角不等式:d(x,y)≤d(x,z)+d(y,z)foreveryx,y,z ∈E n 维欧几里德空间常用距离定义: 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }T d 2(x,y)=(21 ||n i i i x y =-∑)1/2 d 1(x,y)=1 ||n i i i x y =-∑ d p (x,y)=(1 ||n p i i i x y =-∑)1/p d ∞(x,y)=1max ||i i i n x y ≤≤- 6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)?0(n ?∞),这时记作 0lim n n x x -->∞ =,或简单地记作x n ?x 0 7、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iffx=0 (2)||λx||=λ||x||,λ为常数 (3)||x+y||≤||x||+||y||,foreveryx,y ∈E 8、设E 为线性赋范空间,{x n }∞n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。若E 的基本列的收敛元仍属于E ,则称E 为完备的线性赋范空间,即为Banach 空间。线性赋范空间中的基本列不一定收敛。 9、有限维的线性赋范空间必然完备,所以它必定是Banach 空间。 10、如果内积空间能在由内积诱导的赋范空间完备,则此内积空间称为Hilbert 空间。 11、L 2 (a,b )为定义在(a,b)上平方可积函数空间,即设f(t)∈L 2 (a,b ),2|()|b a f t dt ?<∞。

最新泛函分析考试题集与答案

泛函分析复习题2012 1.在实数轴R 上,令p y x y x d ||),(-=,当p 为何值时,R 是度量 空间,p 为何值时,R 是赋范空间。 解:若R 是度量空间,所以R z y x ∈?,,,必须有: ),(),(),(z y d y x d z x d +≤成立 即p p p z y y x z x ||||||-+-≤-,取1,0,1-===z y x , 有2112=+≤p p p ,所以,1≤p 若R 是赋范空间,p x x x d ||||||)0,(==,所以R k x ∈?,, 必须有:||||||||||x k kx ?=成立,即p p x k kx ||||||=,1=p , 当1≤p 时,若R 是度量空间,1=p 时,若R 是赋范空间。 2.若),(d X 是度量空间,则)1,m in(1d d =,d d d +=12也是使X 成为度量空间。 解:由于),(d X 是度量空间,所以X z y x ∈?,,有: 1)0),(≥y x d ,因此0)1),,(m in(),(1≥=y x d y x d 和0) ,(1) ,(),(2≥+= y x d y x d y x d 且当y x =时0),(=y x d , 于是0)1),,(m in(),(1==y x d y x d 和0) ,(1) ,(),(2=+=y x d y x d y x d 以及若

0)1),,(m in(),(1==y x d y x d 或0) ,(1) ,(),(2=+= y x d y x d y x d 均有0),(=y x d 成立,于是y x =成立 2)),(),(y x d x y d =, 因此),()1),,(m in()1),,(m in(),(11y x d y x d x y d x y d === 和),() ,(1) ,(),(1),(),(22y x d y x d y x d x y d x y d x y d =+=+= 3)),(),(),(z y d y x d z x d +≤,因此 }1),,(),(m in{)1),,(m in(),(1z y d y x d z x d z x d +≤= ),(),()1),,(m in()1),,(m in(11z y d y x d z y d y x d +=+≤ 以及设x x x f += 1)(,0)1(1)(2 >+='x x f ,所以)(x f 单增, 所以) ,(),(1),(),(),(1),(),(2z y d y x d z y d y x d z x d z x d z x d +++≤+= ),(),(1) ,(),(),(1),(z y d y x d z y d z y d y x d y x d +++++= ),(),() ,(1) ,(),(1),(22z y d y x d z y d z y d y x d y x d +=+++≤ 综上所述)1,m in(1d d =和d d d += 12均满足度量空间的三条件, 故),(1y x d 和),(2y x d 均使X 成为度量空间。

泛函分析试题一

泛函分析试题一 一、叙述问答题(第1小题18分,第小题20分,共38分) 1 叙述赋范线性空间的定义并回答下列问题. 设)||||,(11?E 和)||||,(22?E 是赋范线性空间, E 是1E 和2E 的直接和. 对任意E x ∈,定义 2211||||||||||||x x x +=, 其中),(21x x x =,11E x ∈, 22E x ∈. 验证||)||,(?E 为一个赋范线性空间. 2 叙述共鸣定理并回答下列问题. 设}{n T ),2,1( =n 是从Banach 空间E 到Banach 空间1E 上的有界线性算子列, 如果对E x ∈?, }{x T n 是1E 中的基本点列. 问: 是否存在),(1E E T β∈, 使得}{n T 按强算子拓扑收敛于T ? 如果存在, 给出证明, 如果不存在, 试举出反例. 二、证明题 (第1小题10分,第2小题15分,第3小题17分,共42分) 1. 设)(x f 是从距离空间X 到距离空间1X 中的连续映射,A 在X 中稠密,证明)(A f 在1X 中稠密. 2. 设),(ρX 为完备距离空间, A 是从X 到X 中的映射. 记 ),(),(sup 111 x x x A x A n n x x n ρρα≠=, 若级数+∞<∑+∞ =n n α1, 则A 在X 中存在唯一不动点. 3. 设H 是内积空间, H N M ?,, L 是M 和N 张成的线性子空间, 证明: ⊥⊥⊥=N M L . 三、应用题 (20分) 设),(t s K 在b s a b t a ≤≤≤≤,上连续, 试证明由ds t x s t K t Tx b a )(),())((?=定义的

数学专业参考材料书汇总整编推荐

学数学要多看书,但是初学者很难知道那些书好,我从网上收集并结合自己的经验进行了整理: 从数学分析开始讲起: 数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。当大四考研复习再看时会感觉轻松许多。数学系的数学分析讲三个学期共计15学分270学时。将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。 记住以下几点: 1,对于数学分析的学习,勤奋永远比天分重要。 2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。 3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。 4,看得懂的仔细看,看不懂的硬着头皮看。 5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。 6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。 7,经常回头看看自己走过的路 以上几点请在学其他课程时参考。 数学分析书: 初学从中选一本教材,一本参考书就基本够了。我强烈推荐11,推荐1,2,7,8。另外建议看一下当不了教材的16,20。 中国人自己写的:

1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒) 应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。网络上可以找到课后习题的参考答案,不过建议自己做。不少经济类工科类学校也用这一本书。里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。不过仍然不失为一本好书。能广泛被使用一定有它自己的一些优势。 2《数学分析》华东师范大学数学系著 师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。课本最后讲了一些流形上的微积分。虽然是师范类的书,难度比上一本有一些降低,不过还是值得一看的。3《数学分析》陈纪修等著 以上三本是考研用的最多的三本书。 4《数学分析》李成章,黄玉民 是南开大学一个系列里的数学分析分册,这套教材里的各本都经常被用到,总体还是不错的,是为教学改革后课时数减少后的数学系各门课编写的教材。 5《数学分析讲义》刘玉链 我的数学分析老师推荐的一本书,不过我没有看,最近应该出了新版,貌似是第五?版,最初是一本函授教材,写的应该比较详细易懂。不要因为是函授教材就看不起,事实上最初的函授工作都是由最好的教授做的。细说就远了,总之可以看看。 6《数学分析》曹之江等著 内蒙古大学数理基地的教材,偏重于物理的实现,会打一个很好的基础,不会盲目的向n 维扩展。适合初学者。国家精品课程的课本。

泛函分析试题

1. 对于积分方程 ()()() 1 t s x t e x t ds y t λ--=?为一给定的函数,λ为 常数,1λ<,求证存在唯一解()[]0,1x t ∈。 2. 设s 为一切实(或复)数列组成的集合,在s 中定义距离为 ()11,21+k k k k k k x y ξηρξη=-=-∑,其中, ()() 11,,,=,,n n x y ξξηη=??????。求证s 为 一完备的距离空间。 3. 在完备的度量空间(),x ρ中给定点列{}n x ,如果任意的0ε>, 存在基本列{}n y ,使(),0n n x y ρ<。求证{}n x 收敛。 4. 证明内积空间()(),,x 是严格凸的* B 空间 5. 为了()F C M ?使一个列紧集,必须且仅需F 是一致有界的 且等度连续的函数族。 6. 设 () ,A x y ?∈,求证(1). 1 sup x A AX ≤=,(2 ) 1 sup x A AX <=。 7. 设X 是一个Hilbert 空间,(),a x y 是X 上的共轭双线性函数, 并存在0M >,使得( ),a x y M x y ≤,则存在唯一的()A x ?∈, 使得 ()() ,,a x y x Ay =且 ()(),0,0 ,sup x y X X x y a x y A x y ∈?≠≠=。 8. 求证()2f L ?∈Ω,方程() 0u f u ?Ω?-?=Ω?? =??在内若解存在唯一。 9. 设X 是复线性空间,P 是X 上的半模,()00,0x X x ρ?∈≠。求 证存在X 上的线性泛函f 满足()()01.1f x =,()()() ()02.x f x x ρρ≤ 。 10. 叙述开映象定理并给出证明。 11. 叙述共鸣定理并给出证明。

泛函分析复习题

泛函分析期末复习题(2005-2006年度) (1)所有n n 矩阵可以构成一个线性空间。试问这个线性空间中的零元素是什么? (2)什么是线性空间的子空间?子空间是否一定包含零元素?为什么? (3)什么是线性流形? (4)什么是线性空间中的凸集? (5)如果一个度量能够成为一个线性空间上定义的距离,那么这个度量必须满足什么条件?试给出几个在n维欧几里德空间上常用的距离定义 (6)距离空间) X上的收敛是如何定义的? , (d

(7)线性空间上定义的范数必须满足哪些条件? (8)什么是巴拿赫空间?赋范空间中的基本列一定收敛吗? (9)有限维的线性赋范空间都是巴拿赫空间吗? (10)什么是希尔伯特空间? (11)),(2b L空间是如何构成的?在怎样的内积定义下其可以成为a 一个希尔伯特空间? (12)什么是算子?为什么要求算子T的定义域) D是一个子空 (T 间? (13)算子的范数是如何定义的?从直观角度谈谈对算子范数定义

的理解。 (14)线性算子的零空间一定是值域空间中的子空间吗? (15)什么是有界算子?举一个无界算子的例子。 (16)算子的强收敛是如何定义的? (17)设X为一个线性赋范空间,而Y为一个Banach空间。那么从X到Y的线性算子所构成的空间), L是否构成一个Banach空 (Y X 间? (18)什么是压缩映像原理?它在力学中有什么重要应用? (19)什么是泛函?什么是泛函的范数?

(20) 什么是线性赋泛空间X 的共轭空间?线性赋泛空间X 的共轭 空间是否总是完备的? (21) 什么是弱收敛?弱收敛与强收敛之间是什么关系? (22) 什么是的Gateaux 微分? (23) 什么是泛函的(一阶)变分?它是如何定义的? (24) 形如dt t x t x t g t x J b a ))(),(,())(('?=的泛函,其对应的Euler-Lagrange 方程是什么? (25) 什么是结构的应变能密度?什么是余能密度?二者关系如 何?试画图说明。

《泛函分析》课程教学大纲-黎永锦

《泛函分析》教学大纲 Functional Analysis 课程编号: 适用专业:数学与应用数学 总学时数:学分: 一、本课程简介 《泛函分析》是现代数学中的的主要数学分支之一,它综合地运用分析、代数和拓扑的观点、方法,来研究数学中的许多问题,它在抽象空间上研究类似于实数上的分析问题,形成了综合运用代数和拓扑来分析处理问题的方法.通过这一课程,能使学生了解泛函分析的基本思想、原理及在各门学科中的应用,掌握泛函分析中主要的基本概念和重要的基本理论,学会用代数、分析和拓扑综合处理问题的新方法,弄清有限维空间与无穷维空间的差别,学会无穷维空间中处理线性问题的分析方法,该课程是学习其他数学分支与科研工作的重要基础. 二、本课程与其他课程的关系 《泛函分析》、《抽象代数》、《拓扑学》是现代数学的重要课程,它综合了分析、代数和拓扑的研究方法,因此学生最好有数学分析、线性代数、空间解析几何及点集拓扑学的基础. 三、教学内容、学时安排和基本要求 本课程主要是线性泛函分析的基本理论,重点介绍距离空间和赋范空间的基础,Banach空间最重要的定理,如Hahn-Banach保范延拓定理、逆算子定理、一致有界原理和Riesz表示定理等.

本课程学时为54学时. (一)度量空间(12学时) 1、具体内容 度量空间的基本概念,度量空间中开集、闭集、完备性与可分性、连续映照的概念、距离空间中列紧集、紧集上连续映照的性质、不动点定理. 2、基本要求 (1)正确理解度量空间基本概念、度量空间点列收敛等概念. (2)理解并掌握度量空间中的内点,极限点,开集闭集,闭包等. (3)理解并掌握列紧集及紧集的概念,紧集、列紧集上的连续映射的性质. (5)熟练掌握压缩映照原理及其应用. 3、重点、难点 重点:度量空间的紧性、不动点定理. 难点:具体度量空间上紧性的判别、压缩映射的构造及不动点定理的具体应用. (二)赋范线性空间(10学时) 1、具体内容 赋范空间的定义,范数的等价性,有限维赋范空间, Schauder基等. 2、基本要求 (1)理解线性空间和范数的概念以及相关的例子. (2)掌握范数的等价性及判别方法. (3)掌握具有基的Banach空间、有限维赋范线性空间的性质. (4)线性连续泛函与Hahn-Banach保范延扩定理. 3、重点、难点 重点:有限维赋范空间的性质和Hahn-Banach保范延扩定理. 难点:Hahn-Banach保范延扩定理及其推论的应用. (三) 有界线性算子(10学时) 1、具体内容

距离空间 泛函分析第四章习题第一部分(1-18)

第四章习题第一部分(1-18) 1. 在 1中令ρ1(x , y ) = (x - y )2,ρ2(x , y ) = | x - y |1/2,,问ρ1, ρ2是否为 1上的距离? [解] 显然ρ1, ρ2满足距离空间定义中的非负性和对称性. 但ρ1不满足三角不等式:取点x = -1, y = 0, z = 1,则 ρ1(x , z ) = 4 > 2 = ρ1(x , y ) + ρ1(y , z ),所以ρ1不是 1上的距离。 而?x , y , z ∈ 1, ρ2(x , y ) = ||||2||||||||||y z z x y z z x y z z x y x -?-+-+-≤-+-≤- ||||)||||(2y z z x y z z x -+-=-+-==ρ2(x , z ) + ρ2(z , y ); 所以ρ2是 1上的距离. 2. 设(X , ρ)是距离空间,令ρ1(x , y ) = n y x ),(ρ,?x , y ∈X .证明(X , ρ1)也是距离空 间. [证明] 显然ρ1满足距离空间定义中的非负性和对称性, 故只需证明ρ1满足三角不等式即可. 实际上?x , y , z ∈X ,n n y z z x y x y x ),(),(),(),(1ρρρρ+≤= n n n n n y z z x n z y x M y z z x )),(),((),,,(),(),(ρρρρ+=++≤ ),(),(),(),(11y z z x y z z x n n ρρρρ+=+=. 3. 设(X , ρ)是距离空间,证明 | ρ(x , z ) - ρ(y , z ) | ≤ ρ(x , y ),?x , y , z ∈X ; | ρ(x , y ) - ρ(z , w ) | ≤ ρ(x , z ) + ρ(y , w ),?x , y , z , w ∈X . [证明] ?x , y , z , w ∈X ,由三角不等式有 - ρ(x , y ) ≤ ρ(x , z ) - ρ(y , z ) ≤ ρ(x , y ),故第一个不等式成立. 由第一个不等式可直接推出第二个不等式: | ρ(x , y ) - ρ(z , w ) | ≤ | ρ(x , y ) - ρ(y , z ) | + | ρ(y , z ) - ρ(z , w ) | ≤ ρ(x , z ) + ρ(y , w ). 4. 用Cauchy 不等式证明(| ζ1 | + | ζ1 | + ... + | ζn | )2 ≤ n (| ζ1 |2 + | ζ1 |2 + ... + | ζn |2 ). [证明] 在P159中的Cauchy 不等式中令a i = | ζi |,b i = 1,?i = 1, 2, ..., n 即可. 5. 用图形表示C [a , b ]上的S (x 0, 1). [注] 我不明白此题意义,建议不做. 6. 设(X , d )是距离空间,A ? X ,int(A )表示A 的全体内点所组成的集合.证明int(A ) 是开集. [证明] 若A = ?,则int(A ) = ?,结论显然成立. 若A ≠ ?,则?x ∈ A ,?r > 0使得S (x , r ) ? A . 对?y ∈ S (x , r ),令s = r - d (x , y ),则s > 0,并且S (y , s ) ? S (x , r ) ? A ; 所以y ∈ int(A ).故S (x , r ) ? int(A ),从而int(A )是开集. 7. 设(X , d )是距离空间,A ? X ,A ≠ ?.证明:A 是开集当且仅当A 是开球的并. [证明] 若A 是开球的并,由于开球是开集,所以A 是开集.

哲学家Strongart自学数学的非常故事的真实经历

女士们先生们,我是Strongart。记得在我24岁生日那天,曾经写过一段自学数学的小故事。现在又是一年多过去了,就再介绍一点回到家之后的情况吧,顺便把以前的故事精简一下。 其实我从小启蒙教育就比较好,倒不是有什么专门的培训,只是上小学之前都在家里,有意无意地从爷爷那里学了很多东西。到上小学的时候,我就已经能熟练掌握四则运算,可惜后来进了学校就停滞了,对数字的感觉明明已经非常敏锐了,还得跟他们一起背什么乘法口诀表!直到四年级的时候为准备竞赛,数学老师给我们几个数学好的学生开小灶。在不到一个学期的时间里学完了五六年级的数学,一点都不觉得有什么困难。 此后又是一段长期的停滞,直到一天我偶然发现一本书,是讲如何教育孩子成材的,其中有许多天才成长的故事深深打动了我。记得里面有一句大意是这样的:在孩子成熟之前,只要有一个小小的起点,让他体会到自己独特的价值并为之努力,那么他成年后将远远超过其他一般的人。那时我不知是初一还是初二,只是对这样的语句有一种模糊的体验。 后来,在放假前无意间有个顽皮的同学送了我一本高中的《立体几何》,促使我真正走上了自学数学的道路,再结合家里一些已经发黄了的中等数学教辅,到中考前已经完成相当于高中的数学课程。幸好当时能在大学附近的一个临时的小书店里买到了两本《数学分析》,然后就开始为按定义证明极限苦恼,能问老师吗?我不敢,因为直觉告诉我这是犯规的,可能这就是“潜规则”的压力了。 刚开始看《数学分析》真的很困难,手头只有一本教科书,习题只能做开头的几道。特别是极限初论讲完之后直接进入极限绪论,像有限覆盖定理之类的东西直到后来看到拓扑才真正明白。直到后来看到微分学,又在一堆中高考的辅导书里挖掘到一本微积分词典,才算是稍微送了口气。记得当时“违规”用导数做出道难题,反倒没办法讲给别人听,只轻轻说了“导数”两个字(据说现在高中数学讲导数了,很人性啊!那时的标准答案是用了一个BT的不等式的技巧),惹得他们看外星人一样的看我! 回顾高中以前的经历,运气要占了很大的因素,可后来就没那么巧了。第一年没考上大学,又买不到合适的数学书,就这样看了大半年像什么概率统计、数学物理

泛函分析答案

泛函分析题1_3列紧集p19 1.3.1 在完备的度量空间中,求证:为了子集A是列紧的,其充分必要条件是对?ε > 0,存在A的列紧的ε网. 证明:(1) 若子集A是列紧的,由Hausdorff定理, ?ε > 0,存在A的有限ε网N. 而有限集是列紧的,故存在A的列紧的ε网N. (2) 若?ε > 0,存在A的列紧的ε/2网B. 因B列紧,由Hausdorff定理,存在B的有限ε/2网C. 因C ?B ?A,故C为A的有限ε网. 因空间是完备的,再用Hausdorff定理,知A是列紧的. 1.3.2 在度量空间中,求证:紧集上的连续函数必是有界的,并且能达到它的上、下确界. 证明:设(X, ρ)是度量空间,D是紧子集,f : D→ 是连续函数. (1) 若f无上界,则?n∈ +,存在x n∈D,使得f (x n) > 1/n. 因D是紧集,故D是自列紧的. 所以{x n}存在收敛子列x n(k) →x0∈D (k→∞). 由f的连续性,f (x n(k))→f (x0) (k→∞). 但由f (x n) > 1/n知f (x n)→ +∞(n→∞), 所以 f (x n(k))→ +∞ (k→∞),矛盾. 故f有上界.同理,故f有下界. (2) 设M = sup x∈D f(x),则?n∈ +,存在y n∈D,使得f (y n) > M- 1/n. {y n}存在子列y n(k) →y0∈D (k→∞). 因此f ( y0 ) ≥M. 而根据M的定义,又有f ( y0 ) ≤M. 所以f ( y0 ) = M.因此f能达到它的上确界. 同理,f能达到它的下确界. 1.3.3 在度量空间中,求证:完全有界的集合是有界的,并通过考虑l 2的子集E = {e k }k≥ 1,其中e k = { 0, 0, ..., 1, 0, ... } (只是第k个坐标为1,其余都是0 ),来说明一个集合可以是有界的但不完全有界的. 证明:(1) 若A是度量空间(X, ρ)中的完全有界集. 则存在A的有限1-网N = { x0, x1, x2, ..., x n }. 令R = ∑1 ≤j≤nρ(x0, x j) + 1. 则?x∈A,存在某个j使得0 ≤j≤n,且ρ(x, x j) < 1. 因此,ρ(x, x0) ≤ρ(x, x j) + ρ(x j, x0) ≤ 1 + ∑1 ≤j≤nρ(x0, x j) = R. 所以A是度量空间(X, ρ)中的有界集. (2) 注意到ρ(e k , e j) = 21/2 ( ?k ≠ j ), 故E中任意点列都不是Cauchy列. 所以,E中任意点列都没有收敛子列(否则,该收敛子列就是Cauchy列,矛盾).

相关文档
最新文档