(完整word版)平行四边形性质与判定经典例题练习
《平行四边形的性质与判定》典型例题

第1页,-共3页 《平行四边形的性质》 【2 】典范例题
例1 一个平行四边形的一个内角是它邻角的3倍,那么这个平行四边形的四个内角各是若干度? 例2 已知:如图,ABCD的周长为60cm,对角线AC.BD订交于点O,AOB的周长比BOC的周长多8cm,求这个平行四边形各边的长.
例3 已知:如图,在ABCD中,BDAC、交于点O,过O点作EF交AB.CD于E.F,那么OE.OF是否相等,解释来由.
例4已知:如图,ABCD的周长是cm36,由钝角极点D向AB,BC引两条高DE,DF,且cmDE34,cmDF35.求这个平行四边形的面积.
例5如图,已知:ABCD中,BCAE于E,CDAF于F,若60EAF,cmBE2,cmFD3.
求:AB.BC的长和ABCD的面积. 第2页,-共3页
《平行四边形的剖断》典范例题 例1 如图,△DAB.△EBC.△FAC都是等边三角形,试解释四边形AFED是平行四边形.
例2 如图,E.F分离是ABCD边AD和BC上的点,并且AE=CF,AF和BE订交于G,CE和DF订交于H.EF与GH是否互相等分,请解释来由.
例3 如图,在平行四边形ABCD中,A1.A2.A3.A4和B1.B2.B3.B4分离是AB和DC的五等分点,C1.C2和D1.D2分离是AD和BC的三等分点,若四边形C1A4D2B1的面积为1,求S平行四边形
ABCD.
例4 已知:如图,E,F分离为ABCD的边CD,AB上一点,AE∥CF,BE,CF分离交CF,AE于H,G. 求证:EG=FH.
例5 如图,已知:四边形ABCD中,AE⊥BD,CF⊥BD,E,F为垂足,且AE=CF,∠BAC=∠DCA. 求证:四边形ABCD是平行四边形. 第3页,-共3页
平行四边形性质和判定综合习题精选(答案详细)

平行四边形性质和判定综合习题一.解答题(共30小题)1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.10.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D 点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?11如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.12.已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.13.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分.14.如图:四边形ABCD中,MN∥AC,试说明MQ=NP.15.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.16.如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)17.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.18.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.19如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.20如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么;(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?21.如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.22.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED 是否为平行四边形?如果是,请证明之,如果不是,请说明理由.23.在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC 于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明.26.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm 的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q 同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.27.已知平行四边形的三个顶点的坐标分别为O(0,0)、A(2,0)、B(1,1),则第四个顶点C的坐标是多少?28.已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的高DE、DF,且cm,,求平行四边形ABCD的面积.29.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣3,),B(﹣2,3),C(2,3),点D在第一象限.(1)求D点的坐标;(2)将平行四边形ABCD先向右平移个单位长度,再向下平移个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?(3)求平行四边形ABCD与四边形A1B1C1D1重叠部分的面积?30.如图所示.四边形ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF.。
平行四边形性质与判定练习题

平行四边形的性质和判定练习题1.能够判定四边形ABCD 是平行四边形的是( ).A .AB ∥CD ,AD=BC B .∠A=∠B ,∠C=∠D C .AB=CD ,AD=BC D .AB=AD ,CB=CD 2.具备下列条件的四边形中,不能确定是平行四边形的为( ). A .相邻的角互补 B .两组对角分别相等 C .一组对边平行,另一组对边相等 D .对角线交点是两对角线中点3.如下左图所示,四边形ABCD 的对角线AC 和BD 相交于点O ,下列判断正确的是( ). A .若AO=OC ,则ABCD 是平行四边形; B .若AC=BD ,则ABCD 是平行四边形; C .若AO=BO ,CO=DO ,则ABCD 是平行四边形;D .若AO=OC ,BO=OD ,则ABCD 是平行四边形4.如上右图所示,对四边形ABCD 是平行四边形的下列判断,正确的打“∨”,错误的打“×”. (1)因为AD ∥BC ,AB=CD ,所以ABCD 是平行四边形.( ) (2)因为AB ∥CD ,AD=BC ,所以ABCD 是平行四边形.( ) (3)因为AD ∥BC ,AD=BC ,所以ABCD 是平行四边形.( ) (4)因为AB ∥CD ,AD ∥BC ,所以ABCD 是平行四边形.( ) (5)因为AB=CD ,AD=BC ,所以ABCD 是平行四边形.( )5.已知AD ∥BC ,要使四边形ABCD 为平行四边形,需要增加条件__________________. 6、在□ABCD 中,若∠A -∠B =40°,则∠A =________,∠B =________.7、在平行四边形ABCD 中,∠A : ∠B=3:2,则∠C=_________ 度,∠D=_____________度. 8、如图,在平行四边形ABCD 中, BC=2AB, CA ⊥AB, 则∠B=______度,∠CAD=______度.9、已知:如图,在□ABCD 中,CE ⊥AB 于E ,CF ⊥AD 于F ,∠2=30°,则∠1______度、∠3______度10、已知平行四边形的周长是100cm, AB:BC=4 : 1,则AB 的长是________________. 11、若平行四边形周长为54cm ,两邻边之差为5cm ,则这两边的长度分别为_______.12、□ABCD 中,对角线AC 和BD 交于O ,若AC =8,BD =6,则边AB 长的取值范围是__________. 13、□ABCD 的周长为60cm ,其对角线交于O 点,若△AOB 的周长比△BOC 的周长多10cm ,则AB =__________,BC =__________.DCBA14、如图,□ABCD 的周长为16cm ,AC 与BD 相交于点O , OE ⊥AC 交AD 于E ,则△DCE 的周长是_________ 15.已知:如图,□ABCD 中,E 、F 分别是AB 、CD 上的点,AE CF ,M 、N 分别是DE 、BF 的中点。
平行四边形的判定及性质巩固练习(含参考答案)

平行四边形的判定及性质巩固练习题一.选择题(共6小题)1.下列条件能判定四边形ABCD是平行四边形的是()A.∠A=∠B,∠C=∠D B.AB=AD,BC=CDC.AB=CD,AD=BC D.AB∥CD,AD=BC2.在下列条件中,能够判定一个四边形是平行四边形的有()①一组对边平行,另一组对边相等②一组对边平行,一条对角线平分另一条对角线③一组对边平行,一组对角相等④一组对角相等,一条对角线平分另一条对角线A.1个B.2个C.3个D.4个3.依据所标数据,下列一定为平行四边形的是()A.B.C.D.4.在四边形ABCD中,AB∥CD,要判定四边形ABCD为平行四边形,可添加条件()A.AD=BC B.∠CDB=∠ABD C.AC平分∠DAB D.AO=CO5.从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD,这四个条件中选取两个,使四边形ABCD成为平行四边形,下面不能说明是平行四边形的是()A.①②B.①③C.②④D.①④6.下面给出的四边形ABCD中,∠A、∠B、∠C、∠D的度数之比,其中能判定四边形ABCD 是平行四边形的条件是()A.3:4:3:4B.3:3:4:4C.2:3:4:5D.3:4:4:3二.填空题(共2小题)7.如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点B到点D,使四边形OADB是平行四边形,则点D的坐标是.8.如图,在平面直角坐标系中.已知点A(3,0),B(﹣1,0),C(0,2),则以A,B,C为顶点的平行四边形的第四个顶点D的坐标为.三.解答题(共10小题)9.已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.10.如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.11.已知:如图,在四边形ABCD中,∠BAC=∠ACD=90°,AB=CD,点E是CD的中点.(1)求证:四边形ABCE是平行四边形;(2)若AC=4,AD=4,求四边形ABCE的面积.12.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.13.如图,四边形ABCD中,AB∥CD,AC与BD相交于点O,AO=CO,求证:四边形ABCD是平行四边形.14.如图,已知四边形ABCD为平行四边形,AE,CF分别平分∠BAD和∠BCD,交BD于点E,F,连接AF,CE.(1)若∠BCF=65°,求∠ABC的度数;(2)求证:四边形AECF是平行四边形.15.如图,已知在平行四边形ABCD中,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)若BF恰好平分∠ABE,连接AC、DE,求证:四边形ACED是平行四边形.16.如图,▱ABCD的对角线AC、BD相交于点O,且E、F、G、H分别是AO、BO、CO、DO的中点.(1)求证:四边形EFGH是平行四边形;(2)若AC+BD=36,AB=12,求△OEF的周长.17.已知:如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别在AO,CO上,且AE=CF,求证:∠EBO=∠FDO.18.如图,在四边形ABCD中,AB∥CD,∠BAD的平分线AE交CD于点F,交BC的延长线于点E,且AB=BE.(1)求证:四边形ABCD是平行四边形;(2)连接BF,若BF⊥AE,∠E=60°,AB=6,求四边形ABCD的面积.2023年03月03日124****5100的初中数学组卷参考答案与试题解析一.选择题(共6小题)1.下列条件能判定四边形ABCD是平行四边形的是()A.∠A=∠B,∠C=∠D B.AB=AD,BC=CDC.AB=CD,AD=BC D.AB∥CD,AD=BC【解答】解:A、由∠A=∠B,∠C=∠D,不能判定四边形ABCD是平行四边形,故本选项不符合题意;B、由AB=AD,BC=CD,不能判定四边形ABCD是平行四边形,故本选项不符合题意;C、由AB=CD,AD=BC,能判定四边形ABCD是平行四边形,故本选项符合题意;D、由AB∥CD,AD=BC,不能判定四边形ABCD是平行四边形,故本选项不符合题意;故选:C.2.在下列条件中,能够判定一个四边形是平行四边形的有()①一组对边平行,另一组对边相等②一组对边平行,一条对角线平分另一条对角线③一组对边平行,一组对角相等④一组对角相等,一条对角线平分另一条对角线A.1个B.2个C.3个D.4个【解答】解:①错误.这个四边形有可能是等腰梯形;②正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形;③正确.可证明等角的补角相等;④错误.不可证明全等.故选:B.3.依据所标数据,下列一定为平行四边形的是()A.B.C.D.【解答】解:A、只有一组对边平行不能确定是平行四边形,故A选项不符合题意;B、80°+110°≠180°,故B选项不符合条件;C、不能判断出任何一组对边是平行的,故C选项不符合题意;D、有一组对边平行且相等的四边形是平行四边形,故D选项符合题意;故选:D.4.在四边形ABCD中,AB∥CD,要判定四边形ABCD为平行四边形,可添加条件()A.AD=BC B.∠CDB=∠ABD C.AC平分∠DAB D.AO=CO【解答】解:判定四边形ABCD是平行四边形添加的条件是OA=OC,理由如下:∵AB∥CD,∴∠ABD=∠CDB,∠BAO=∠OCD,∵OA=OC,∴△AOB≌△COD(AAS),∴OB=OD,又∵OA=OC,∴四边形ABCD是平行四边形,故选:D.5.从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD,这四个条件中选取两个,使四边形ABCD成为平行四边形,下面不能说明是平行四边形的是()A.①②B.①③C.②④D.①④【解答】解:根据平行四边形的判定,符合条件的有4种,分别是:①②、③④、①③、②④.故选:D.6.下面给出的四边形ABCD中,∠A、∠B、∠C、∠D的度数之比,其中能判定四边形ABCD 是平行四边形的条件是()A.3:4:3:4B.3:3:4:4C.2:3:4:5D.3:4:4:3【解答】解:根据平行四边形的两组对角分别相等,可知A正确.故选:A.二.填空题(共2小题)7.如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点B到点D,使四边形OADB是平行四边形,则点D的坐标是(+1,1).【解答】解:∵A(,0),∴OA=,∵四边形OADB是平行四边形,∴BD=OA=,BD∥OA,∵B(1,1),∴D(+1,1),故答案为:(+1,1).8.如图,在平面直角坐标系中.已知点A(3,0),B(﹣1,0),C(0,2),则以A,B,C为顶点的平行四边形的第四个顶点D的坐标为(4,2)或(﹣4,2)或(2,﹣2).【解答】解:①如图1,以AB为边时,A(3,0)、B(﹣1,0)两点之间的距离为:3﹣(﹣1)=4,∴第四个顶点的纵坐标为2,横坐标为0+4=4,或0﹣4=﹣4,即D(4,2)或D′(﹣4,2);②如图2,以AB为对角线时,∵从C(0,2)到B(﹣1,0),是横坐标减1,纵坐标减2,∴第四个顶点D的横坐标为:3﹣1=2,纵坐标为0﹣2=﹣2,即D(2,﹣2)综上所述,第四个顶点D的坐标为(4,2)或(﹣4,2)或(2,﹣2).故答案为:(4,2)或(﹣4,2)或(2,﹣2).三.解答题(共10小题)9.已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.【解答】证明:∵AB∥CD,∴∠DCA=∠BAC,∵DF∥BE,∴∠DF A=∠BEC,∴∠AEB=∠DFC,在△AEB和△CFD中,∴△AEB≌△CFD(ASA),∴AB=CD,∵AB∥CD,∴四边形ABCD为平行四边形.10.如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.【解答】证明:∵BE⊥AD,CF⊥AD,∴∠AEB=∠DFC=90°,∵AB∥CD,∴∠A=∠D,在△AEB与△DFC中,,∴△AEB≌△DFC(ASA),∴BE=CF.∵BE⊥AD,CF⊥AD,∴BE∥CF.∴四边形BECF是平行四边形.11.已知:如图,在四边形ABCD中,∠BAC=∠ACD=90°,AB=CD,点E是CD的中点.(1)求证:四边形ABCE是平行四边形;(2)若AC=4,AD=4,求四边形ABCE的面积.【解答】(1)证明:∵∠BAC=∠ACD=90°,∴AB∥EC,∵点E是CD的中点,∴,∵,∴AB=EC,∴四边形ABCE是平行四边形;(2)解:∵∠ACD=90°,AC=4,,∴,∵,∴AB=2,∴S平行四边形ABCE=AB•AC=2×4=8.12.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【解答】证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.13.如图,四边形ABCD中,AB∥CD,AC与BD相交于点O,AO=CO,求证:四边形ABCD是平行四边形.【解答】证明:∵AB∥CD,∴∠DCO=∠BAO,在△DCO和△BAO中,,∴△DCO≌△BAO(ASA),∴DO=BO,∵AO=CO,∴四边形ABCD是平行四边形.14.如图,已知四边形ABCD为平行四边形,AE,CF分别平分∠BAD和∠BCD,交BD于点E,F,连接AF,CE.(1)若∠BCF=65°,求∠ABC的度数;(2)求证:四边形AECF是平行四边形.【解答】(1)解:∵CF平分∠BCD,∴∠BCD=2∠BCF=65°×2=130°,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC=180°﹣∠BCD=180°﹣130°=50°;(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∠BAD=∠DCB,∴∠ABE=∠CDF,∵∠BAE=∠BAD,∠DCF=∠DCB,∴∠BAE=∠DCF,∴△ABE≌△CDF(ASA).∴∠AEB=∠CFD,AE=CF,∴∠AEF=∠CFE,∴AE∥CF,∴四边形AECF是平行四边形.15.如图,已知在平行四边形ABCD中,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)若BF恰好平分∠ABE,连接AC、DE,求证:四边形ACED是平行四边形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,∴BE=CD;(2)∵BE=AB,BF平分∠ABE,∴AF=EF,在△ADF和△ECF中,,∴△ADF≌△ECF(ASA),∴DF=CF,又∵AF=EF,∴四边形ACED是平行四边形.16.如图,▱ABCD的对角线AC、BD相交于点O,且E、F、G、H分别是AO、BO、CO、DO的中点.(1)求证:四边形EFGH是平行四边形;(2)若AC+BD=36,AB=12,求△OEF的周长.【解答】证明:(1)∵四边形ABCD是平行四边形∴AO=CO,BO=DO,∵E、F、G、H分别是AO、BO、CO、DO的中点.∴EO=AO,GO=CO,FO=BO,HO=DO∴EO=GO,FO=HO∴四边形EFGH是平行四边形;(2)∵AC+BD=36,∴AO+BO=18,∴EO+FO=9∵E、F分别是AO、BO的中点,∴EF=AB,且AB=12∴EF=6,∴△OEF的周长=OE+OF+EF=9+6=1517.已知:如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别在AO,CO上,且AE=CF,求证:∠EBO=∠FDO.【解答】证明:连接DE、BF,如图所示:∵四边形ABCD是平行四边形,∴OB=OD,OA=OC,∵AE=CF,∴OE=OF,∴四边形BEDF是平行四边形,∴BE∥DF,∴∠EBO=∠FDO.18.如图,在四边形ABCD中,AB∥CD,∠BAD的平分线AE交CD于点F,交BC的延长线于点E,且AB=BE.(1)求证:四边形ABCD是平行四边形;(2)连接BF,若BF⊥AE,∠E=60°,AB=6,求四边形ABCD的面积.【解答】证明:(1)∵AB=BE,∴∠E=∠BAE,∵AF平分∠BAD,∴∠DAF=∠BAE,∴∠DAF=∠E,∴AD∥BE,又∵AB∥CD,∴四边形ABCD是平行四边形;(2)∵AB=BE,∠E=60°,∴△ABE是等边三角形,∴BA=AE=6,∠BAE=60°,又∵BF⊥AE,∴AF=EF=3,∴BF===3,∴S△ABF=AF×BF=×3×3=,∴▱ABCD的面积=2×S△ABF=9.。
《平行四边形的性质与判定》典型例题

《平行四边形的性质》典型例题例1一个平行四边形的一个内角是它邻角的3倍,那么这个平行四边形的四个内角各是多少度?例2已知:如图,ABCD的周长为60cm,对角线AC、BD相交于点O,∆的周长多8cm,求这个平行四边形各边的长.AOB∆的周长比BOC例3 已知:如图,在ABCD中,BDAC、交于点O,过O点作EF交AB、CD于E、F,那么OE、OF是否相等,说明理由.例4 已知:如图,ABCD 的周长是cm 36,由钝角顶点D 向AB ,BC 引两条高DE ,DF ,且cm DE 34=,cm DF 35=.求这个平行四边形的面积.例5 如图,已知:ABCD 中,BC AE ⊥于E ,CD AF ⊥于F ,若︒=∠60EAF ,cm BE 2=,cm FD 3=.求:AB 、BC 的长和ABCD 的面积.《平行四边形的判定》典型例题例1如图,△DAB、△EBC、△FAC都是等边三角形,试说明四边形AFED是平行四边形.例2如图,E、F分别是ABCD边AD和BC上的点,并且AE=CF,AF和BE相交于G,CE和DF相交于H、EF与GH是否互相平分,请说明理由.例3如图,在平行四边形ABCD中,A1、A2、A3、A4和B1、B2、B3、B4分别是AB和DC 的五等分点,C1、C2和D1、D2分别是AD和BC的三等分点,若四边形C1A4D2B1的面积为1,求S平行四边形ABCD.例4已知:如图,E,F分别为ABCD的边CD,AB上一点,AE∥CF,BE,CF分别交CF,AE于H,G.求证:EG=FH.例5如图,已知:四边形ABCD中,AE⊥BD,CF⊥BD,E,F为垂足,且AE=CF,∠BAC=∠DCA.求证:四边形ABCD是平行四边形.平行四边形的面积一,导入今天,我把一位老朋友带来了,(课件出示一副七巧板)对,七巧板!用七巧板可以拼出各种不同的图案,下面大家要边观察边想,说一说你的发现!(课件分别出示四幅图案)师:谁来说一说你的发现!生1:我发现它们的形状各不相同。
(完整word版)人教版八年级数学(下)平行四边形练习题

人教版八年级数学(下)平行四边形练习题1.如图1,四边形ABCD 是平行四边形,则:1)∠ADC= , ∠BCD = ; 2)边AB = , BC = .2.求如图2所示的四边形ABCD 的面积= .图1 图23.平行四边形ABCD 中,AB = 25cm ,BE ⊥CD 于E ,且BE =37cm ,四边形ABCD 的面积 .4.从平行四边形的一个锐角的顶点做两条高线,如果这两条高线的夹角是135°,这个平行四边形的锐角的度数是 .5.在四边形ABCD 中,AC 、BD 相交于点O ,(1)若AD =8cm ,AB =4cm ,那么 当BC =__ _cm ,CD =__ _cm 时,四边形ABCD 为平行四边形;(2)若AC =10cm ,BD =8cm ,那么当AO =__ _cm ,DO =_ __cm 时,四边形ABCD 为平行四边形.6.(1)在ABCD 中,∠A= 50,则∠B= 度,∠C= 度,∠D= 度.(2)如果ABCD 中,∠A —∠B=40度,则∠A= 度,∠B= 度,∠C= 度,∠D= 度. (3)如果ABCD 的周长为28cm ,且AB :BC=2∶5,那么AB= cm ,BC= cm ,CD= cm , DA= cm .7如图:在ABCD 中,如果EF ∥AD ,GH ∥CD ,EF 与GH 相交与点O ,那么图中的平行四边形一共有( ). (A )4个 (B )5个 (C )8个 (D )9个 8.如图,ABCD 中,AE ⊥BD ,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是____ ___cm .9.在直角三角形ABC 中,∠C=90°,AB=2AC ,∠A= 。
10.如图,△ABC 中,D 、E 、F 分别是AB 、AC 、BC 的中点, (1)若EF=5cm ,则AB= cm ;若BC=9cm ,则DE= cm ; (2)中线AF 与DE 中位线有什么特殊的关系?证明你的猜想.DCBA58°°28 323cAB DC5cm4cm11.如图,在平行四边形ABCD 中,下列各式不一定正确的是( )A .∠1+∠2=180°B .∠2+∠3=180°C .∠3+∠4=180°D .∠2+∠4=180°12.在平行四边形ABCD 中,∠B=110°,延长AD 至F ,延长CD 至E ,连接EF ,则∠E+∠F=( )A .110°B .30°C .50°D .70°13. 如图,E F ,是平行四边形ABCD 的对角线AC 上的点, CE AF .请你猜想:BE 与DF 有怎样的位置..关系和数量..关系? 并对你的猜想加以证明:猜想: 证明:14.已知:如图,平行四边形ABCD 中,点E 、F 分别在CD 、AB 上,DF ∥BE ,EF 交BD 于点O .求证:EO =OF .15.如图所示,已知ABCD 的对角线交于O ,过O 作直线交AB 、CD 的反向延长线于E 、F ,求证:OE =OF .A BCDE F5 第11题图第12题图16.如图,在□ABCD中, O为对角线AC的中点,过点O作一条直线分别与AB、CD交于点M、N,•点E、F在直线MN上,且OE=OF.(1)图中共有几对全等三角形,请把它们都写出来;(2)求证:∠MAE=∠NCF.17.如图所示,平行四边形ABCD的对角线A C、BD相交于点O,E、F是直线AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形.18.如图所示,某城市部分街道示意图,AF∥BC,EC⊥BC,BA∥DE,BD∥AE,EF=FC,甲、乙两人同时从B站乘车到F站,甲乘1路车,路线是B→A→E→F,乙乘2路,路线是B→D→C→F,假设两车速度相同,途中耽误时间相同,那么谁先到达F站,请说明理由.19.如图所示,已知AD与BC相交于E,∠1=∠2=∠3,BD=CD,∠ADB=90°,CH⊥AB于H,CH交AD于F.(1)求证:CD∥AB;(2)求证:△BDE≌△ACE;(3)若O为AB中点,求证:OF=12BE.第8题图20. 如图所示,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?21. 如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,求△ABC的周长22.如图,CB∥OA,∠B=∠A=100°,E、F在CB上,且满足∠FOC=∠AOC,OE平分∠BOF.(1)求∠EOC的度数;(2)若平行移动AC,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(3)在平行移动AC的过程中,是否存在某种情况,使∠OEB=∠OCA?若存在,求出∠OCA度数;若不存在,说明理由.。
平行四边形重难点考点真题(word+答案)
专题平行四边形1.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
平行四边形用符号“□ABCD”表示,如平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”。
2.平行四边形的性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等;(3)平行四边形的对角线互相平分。
3.平行四边形的判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)对角线互相平分的四边形是平行四边形;(5)两组对角分别相等的四边形是平行四边形。
4.平行四边形的面积:S平行四边形=底边长×高=ah【例题1】(2019▪广西池河)如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是()A.∠B=∠F B.∠B=∠BCF C.AC=CF D.AD=CF【例题2】(2018湖北黄石)如图,△ABC是等腰直角三角形,∠ACB=90°,分别以AB,AC为直角边向外作等腰直角△ABD和等腰直角△ACE,G为BD的中点,连接CG,BE,CD,BE与CD交于点F.(1)判断四边形ACGD的形状,并说明理由.(2)求证:BE=CD,BE⊥CD.专题知识回顾专题典型题考法及解析一、选择题1. (福建福州)平面直角坐标系中,已知□ABCD的三个顶点坐标分别是A(m,n),B ( 2,-l ),C(-m,-n),则点D的坐标是()A.(-2 ,l ) B.(-2,-l ) C.(-1,-2 ) D .(-1,2 )2.(河北省)关于□ABCD的叙述,正确的是()A.若AB⊥BC,则□ABCD是菱形 B.若AC⊥BD,则□ABCD是正方形C.若AC=BD,则□ABCD是矩形 D.若AB=AD,则□ABCD是正方形3.(湖南湘西)下列说法错误的是()A.对角线互相平分的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形4.(2019•山东临沂)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND5.(山东淄博)如图,△ABC的面积为16,点D是BC边上一点,且BD=14BC,点G是AB上一点,点H 在△ABC内部,且四边形BDHG是平行四边形.则图中阴影的面积是()专题典型训练题A. 3B. 4C. 5D. 6 二、填空题6.(2019广西百色)四边形具有不稳定性.如图,矩形ABCD 按箭头方向变形成平行四边形A 'B 'C 'D ',当变形后图形面积是原图形面积的一半时,则∠A '= .6.(2019湖南娄底)如图,平行四边形ABCD 的对角线 AC 、BD 交于点 O ,点 E 是 AD 的中点,△BCD 的周长为 18,则△DEO 的周长是 .7.( 2019河南省)如图,在□ABCD 中,BE⊥AB交对角线AC 于点E ,若∠1=20°,则∠2的度数是_________.8.( 2019湖北省十堰市)如图,在平行四边形ABCD 中,AB=213cm,AD=4cm,A C ⊥BC,则△DBC 比△ABC 的周长长__________cm.9.(2019浙江金华)如图,已知AB △CD ,BC △DE .若△A =20°,△C =120°,则△AED 的度数是 .BF10.(江苏省无锡市)如图,已知□OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为_______.11. (2019•湖北武汉)如图,在▱ABCD中,E.F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为.三、解答题12.(2019徐州)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.13.(2019湖南郴州)如图,平行四边形ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.14. (湖南省永州市)如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD.(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.15.(2019安徽)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.16.(2019湖南张家界)如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.17. (2019•南京)如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.18.(2018海南)如图,将▱ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.(1)求证:四边形CEDF是平行四边形;(2)若AB=3,AD=4,∠A=60°,求CE的长.19.(2019辽宁本溪)如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.20.(江苏省扬州市)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M 处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.21.(2019四川省凉山州)如图,□ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD 分别交于点E、F。
平行四边形的性质及判定_典型例题
平行四边形的性质及判定 (典型例题) 1.平行四边形及其性质.平行四边形及其性质例1 如图,O 是ABCD 对角线的交点.△OBC 的周长为59,BD=38,AC=24,则AD=____若△OBC 与△OAB 的周长之差为15,则AB=ABCD 的周长=____.例2 判断题判断题(1)两条对边平行的四边形叫做平行四边形.两条对边平行的四边形叫做平行四边形.( ) (2)平行四边形的两角相等.平行四边形的两角相等.( ) (3)平行四边形的两条对角线相等.平行四边形的两条对角线相等.( ) (4)平行四边形的两条对角线互相平分.平行四边形的两条对角线互相平分.( ) (5)两条平行线中,一条直线上任一点到另一条直线的垂线段叫做两条平行线的距离.做两条平行线的距离. ( )(6)平行四边形的邻角互补.平行四边形的邻角互补. ( )例3 .如图1,在ABCD中,E、F是AC上的两点.且AE=CF.求证:ED∥BF.例4 如图已知在△ABC中DE∥BC∥FG,若BD=AF、求证;DE+FG=BC.例5 如图ABCD中,∠ABC=3∠A,点E在CD上,CE=1,EF⊥CD交CB延长线于F,若AD=1,求BF的长.的长.例6 如图1,ABCD中,对角线AC长为10cm,∠CAB=30°,AB 长为6cm ,求ABCD 的面积.的面积.例7 如图,E 、F 分别在ABCD 的边CD 、BC 上,且EF ∥BD求证:S △ACE=S △ABF例8 如图,在ABCD 中,BE 平分∠B 交CD 于点E ,DF 平分∠D 交AB 于点F ,求证BF=DE .证明:证明:例9 如图,CD的Rt△ABC斜边AB上的高,AE平分∠BAC 交CD于E,EF∥AB,交BC于点F,求证CE=BF.例10 如图,已知ABCD的周长为32cm,AB∶BC=5∶3,AE⊥BC于E,AF⊥DC于F,∠EAF=2∠C,求AE和AF的长.的长.2.平行四边形的判定.平行四边形的判定例1 填空题填空题(1)如图1,四边形ABCD与四边形BEFC都是平行四边形,则四边形AEFD是__,理由是__(2) 如图2,D 、E 分别在△ABC 的边AB 、AC 上,DE=EF ,AE=EC ,DE ∥BC 则四边形ADCF 是__,理由是__,四边形BCFD 是__,理由是___例2 如图,四边形ABCD 中,AB=CD .∠ADB=∠CBD=90°.求证:四边形ABCD 是平行四边形.是平行四边形.分析:判定一个四边形是平行四边形,有三类五个判定方法,这三类也是按边、角和对角线分类,具体的五个方法如下表:这三类也是按边、角和对角线分类,具体的五个方法如下表:因此必须根据已知条件与图形结构特点,选择判定方法.因此必须根据已知条件与图形结构特点,选择判定方法.例3 如图,ABCD中,E、G、F、H分别是四条边上的点,互相平分.且AE=CF,BG=DH,求证:EF与GH互相平分.例4 如图,ABCD中,AE⊥BD于E,CF⊥BD于F.是平行四边形.求证:四边形AECF是平行四边形.例5 如图,ABCD中,E、F分别在AD、BC上,且AE=CF,AF、BE相交于G,CE、DF相交于H求证:EF与GH互相平分互相平分例6 如图,已知ABCD 中,EF 在BD 上,且BE=DF ,点G 、H 在AD 、CB 上,且有AG=CH ,GH 与BD 交于点O ,求证EG HF例7 如图,ABCD 中,AE ⊥BD 于E ,CF ⊥BD 于F ,G 、H 分别为AD 、BC 的中点,求证:EF 和GH 互相平分.互相平分.例8 如图如图,已知线段,已知线段a 、b 与∠α,求作:ABCD ,使∠ABC=∠α,AB=a ,BC=b ,常见的平行四边形作图有以下几种:常见的平行四边形作图有以下几种:(1)已知两邻边(AB 、BC)和夹角(∠B).(2)已知一边(BC)和两条对角线(AC ,BD).(3)已知一边(BC)和这条边与两条对角线的夹角(如∠DBC,∠ACB).(4)已知一边(CD)和一个内角(∠ABC)以及过这个角的顶点的一条对角线(BD,且BD>CD)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十九章 四边形 19.1.1 平行四边形的性质 第一课时 一、自主学习 目标导学 1、理解平行四边形有关概念以及记作方法。2、探索并掌握平行四边形的有关性质、平行线间的距离。并能运用性质解决实际问题。 ● 自学生疑 1、 叫平行四边形 2、平行四边形的性质 1)边 2)角 3)对角线 4)对称性 3.若一凸多边形的内角和等于它的外角和,则它的边数是________. 二、合作学习 合作探究 【探究一】平行四边形的定义 1、定义: 2、表示方法: 3、平行四边形与长方形、正方形、菱形、梯形的关系: 【探究二】平行四边形的性质 1、根据定义可得到什么性质? 用几何语言叙述:
2、根据定义如何判定一个四边形为平行四边形? 用几何语言叙述: 2、通过量一量,折一折,看看平行四边形的边、角、对角线、对称性还存在什么性质? 边: ; 角: ; 对角线: ; 对称性: 。 3、证明你所得到的性质:
4、用几何语言叙述平行四边形的性质:
练一练: 1.已知:平行四边形的周长为28cm,相邻两边的差为4cm,则相邻两边长为 、 。
2.如图,在ABCD中,对角线AC、BD相交于点O,图中全等三角形共有________对.
3.ABCD中,若∠A∶∠B=1∶3,那么∠A=_____,∠B=______,∠C=______,∠D=_____.
4.如图,ABCD 的对角线AC和BD相较于点O,如果AC=10,BD=12,AB=m,那么m的取值范围是 。 ● 精讲精练 例:如图,EF,是平行四边形ABCD的对角线AC上的点,CEAF请你猜想:BE与DF有怎样的位置..关系和数量..关系?并对你的猜想加以证明.(多种方法)
变式:1、已知ABCD的对角线交于O,过O作直线交AB、CD的反向延长线于E、F,求证:OE=OF.
2、(07日照)如图,在周长为20cm的□ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为 cm.
A B C D
E
F
ABCD
O
E三、用中学习 1.平行四边形的周长等于56 cm,两邻边长的比为3∶1,那么这个平行四边形较长的边长为_______. 2、在□ABCD中,∠A+∠C=270°,则∠B=______,∠C=______. 3.如图,□ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为( )A.8.3 B.9.6 C.12.6 D.13.6
4、如图,在□ABCD中,AB=AC,若□ABCD的周长为38 cm,△ABC的周长比□ABCD的周长少10 cm,求□ABCD的一组邻边的长.
第二课时 一、自主学习 目标导学 1、进一步熟悉平行四边形的性质。 2、能熟练运用平行四边形的性质解决问题,会求平行四边形的面积。 自学生疑 1.在□ABCD中,∠A∶∠B∶∠C∶∠D的值的比可能是( ) A.1∶2∶3∶4 B.1∶2∶2∶1 C.1∶1∶2∶2 D.2∶1∶2∶1 2.和直线l距离为8 cm的直线有______条. 二、合作学习 合作探究 1、画图熟记平行四边形的性质 2、平行四边形的面积 (1)作出下图中能表示两平行线间距离的线段。结论:两平行线间的距离 。
(2)如何求平行四边形的面积: 练一练: 1、如图,在ABCDY中,AB=10cm,AB边上的高DH=4cm,BC=6cm,则BC边上的高DF的长为 。
2、如图,在ABCDY中,13,5,,ABADACBC则ABCDSY=
精讲精练: 例、在ABCV中,90BAC,AD是高,ABC的平分线交AD于点E,//,EFBC交AC于点F,求证:AE=CF. 变式:如图,已知ABCDY中,M是BC的中点,且AM=9,BD=12,AD=10,求ABCDSY 三、用中学习 1、如图,ABCDY中,BECD于E,BFAD于F,CE=2,DF=1,60EBF,则ABCDY的面积为 。
2、如图,在ABCDY中,AEBC于E,AFCD于F,若AE=4,AF=6,ABCDY的周长为40,求ABCDY的面积。
3、(2007浙江金华)国家级历史文化名城——金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有ABEFDC∥∥,BCGHAD∥∥,那么下列说法中错误的是( ) A.红花、绿花种植面积一定相等 B.紫花、橙花种植面积一定相等 C.红花、蓝花种植面积一定相等 D.蓝花、黄花种植面积一定相等 4、(09中考)如图,在ABCDY中,32BAD,分别以BC、CD为边向外作BCEV和DCFV,使BE=BC,DF=DC,EBCCDF,延长AB交边EC于点H,点H在E、C两点之
间,连接AE、AF。(1)求证:ABEFDAVV;(2)当AEAF时,求EBH的度数。
19.1.2 平行四边形的判定 第一课时 一、自主学习 目标导学 学会从边的角度判断一个四边形为平行四边形的方法,并能初步解决问题。 ● 自学生疑 1、“平行四边形的两组对边分别平行”的逆命题为 。 2、“平行四边形的两组对边分别相等”的逆命题为 。 二、合作学习
黄 蓝
紫
橙 红
绿
A
G E
D
H
C F
B
例3 合作探究 【探究一】根据平行四边形的定义如何判定四边形为平行四边形。
用几何语言叙述: 【探究二】两组对边相等的四边形是否为平行四边形。
用几何语言叙述: 【探究三】一组对边平行且相等的四边形是否为平行四边形。
用几何语言叙述: 归纳:从四边形的边的角度如何判断一个四边形为平行四边形?
特别注意:一组对边平行另一组对边相等和有两条边相等并且另两条边也相等的四边形不一定是平行四边形。 练一练: 1、A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC=AD;④BC∥AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有( ) A.3种 B.4种 C.5种 D.6种 2、如图,AB∥CD∥EF,BC∥AD,AC为∠BAD的平分线,图中与∠AOE相等(不含∠AOE)的角有( ) A.2个 B.3个 C.4个 D.5个
精讲精练: 例1.如图,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?
变式:如图,在ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,则四边形KLMN为平行四边形吗?说明理由.(口述)
例2:已知如图:在ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.(多种方法)
变式:在□ABCD中,点M、N在对角线AC上,且AM=CN,求证:四边形BMDN是平行四边形吗?(多种方法) 三、用中学习 过关检测 1.下列条件中不能确定四边形ABCD是平行四边形的是( ) A.AB=CD,AD∥BC B.AB=CD,AB∥CD C.AB∥CD,AD∥BC D.AB=CD,AD=BC 2.四边形ABCD中,AD∥BC,要判别四边形ABCD是平行四边形,还需满足条件 3.如图,□ABCD中,E、F分别在BA、DC的延长线上,且AE=21AB,CF=21CD,AF和CE的关系如何?说明理由.
4、(2009湖北黄冈)如图,在△ABC中,∠ACB=90°,点E为AB中点,连结CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使AF=CE.求证:四边形ACEF是平行四边形. B
D C A
F E 第二课时 一、自主学习 目标导学 1、学会从角和对角线的角度判定四边形为平行四边形的方法。 2、能灵活选择判定四边形为平行四边形的方法解决问题。 自学生疑 1、“平行四边形的两组对角分别相等”的逆命题为 。 2、“平行四边形的两条对角线互相平分”的逆命题为 。 二、合作学习 合作探究 【探究一】两组对角分别相等的四边形是否为平行四边形 量量下面的四边形的两组对角的度数,看看是否分别相等?若想等,能否证明这个四边形为平行四边形。
判定方法四: 。 用几何语言叙述:
【探究二】两条对角线互相平分的四边形是否为平行四边形 如下图,AC与BD相较于点O,且OA=OC,OB=OD,四边形ABCD是否为平行四边形?