2019届高考物理第二轮精讲精练检测19

合集下载

2019高考物理大二轮复习 专题七 选考部分精练【共2套14页】

2019高考物理大二轮复习 专题七 选考部分精练【共2套14页】

本套资源目录2019高考物理大二轮复习专题七鸭部分7.1精练含解析2019高考物理大二轮复习专题七鸭部分7.2精练含解析选考部分(本栏目内容,在学生用书中以独立形式分册装订!) 1.(2018·江西南昌二模)(1)(5分)(多选)下列说法正确的是________。

(填正确答案标号。

选对1个得2分,选对2个得4分,选对3个得5分。

每选错1个扣3分,最低得分为0分)A.悬浮在水中的花粉的布朗运动反映了花粉分子的热运动B.荷叶上的小水滴呈球形是水的表面张力作用的结果C.彩色液晶显示器利用了液晶的光学性质具有各向异性的特点D.一定质量的理想气体吸收热量,其内能一定增加E.自然发生的热传递过程是向着分子热运动无序性增大的方向进行的(2)(10分)如图为一个喷雾器的截面示意图,箱里已装了14 L的水,上部密封了1 atm的空气1.0 L。

将阀门关闭,再充入1.5 atm的空气6.0 L。

设在所有过程中空气可看作理想气体,且温度不变。

(ⅰ)求充入1.5 atm的空气6.0 L后密封气体的压强;(ⅱ)打开阀门后,水从喷嘴喷出(喷嘴与水面等高),则当水箱内的气压降为 2.5 atm 时,水箱里的水还剩多少?(喷水的过程认为箱中气体的温度不变,不计阀门右侧的管中水的体积)解析:(1)布朗运动是微粒整体的运动而不是微粒分子的运动,但可以反映水分子的运动情况,A错误。

液体的表面张力总是使液体表面有收缩到最小的趋势,而在体积相同的情况下球的表面积最小,故B正确。

液晶显示器中液晶能在不同电压下发出不同颜色的光,故C正确。

改变物体内能的方式有做功与热传递两种,若一定质量的理想气体在吸收热量的同时还对外做功,则内能变化情况不能确定,D错误。

由于熵反映的就是系统的无序性大小,故由熵增加原理可知E正确。

(2)(ⅰ)题中p0=1 atm,V0=1.0 L,p1=1.5 atm,V1=6.0 L,根据玻意耳定律可得p1V1=p0V2,p0(V2+V0)=p2V0,解得p2=10 atm。

2019年高考物理二轮训练卷:带电粒子在复(组)合场中的运动 专题

2019年高考物理二轮训练卷:带电粒子在复(组)合场中的运动 专题

带电粒子在复(组)合场中的运动一、选择题(本题共8小题,在每小题给出的四个选项中,至少有一项符合题目要求)1.如图所示为一种获得高能粒子的装置,环形区域内存在垂直纸面、磁感应强度大小可调的均匀磁场,带电粒子可在环中做圆周运动。

A、B为两块中心开有小孔的距离很近的极板,原来电势均为零,每当带电粒子经过A板准备进入A、B之间时,A板电势升高为+U,B板电势仍保持为零,粒子在两板间的电场中得到加速;每当粒子离开B 板时,A板电势又降为零,粒子在电场的加速下动能不断增大,而在环形磁场中绕行半径不变。

若粒子通过A、B 板的时间不可忽略,则能定性反映A板电势U和环形区域内的磁感应强度B随时间t变化的关系的是()【答案】BC2.现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量比约为()A.11 B.12C.121 D.144【答案】D3.(2018届北京师范大学第二附属中学月考)为了测量某化工厂的污水排放量,技术人员在该厂的排污管末端安装了如图所示的测量计,该装置由绝缘材料制成,长、宽、高分别为a、b、c,左右两端开口,在垂直于上下底面方向加磁感应强度为B的匀强磁场,在前后两个内侧固定有金属板作为电极,污水充满管口从左向右流经该装置时,电压表将显示两个电极间的电压U.若用Q表示污水流量(单位时间内排出的污水体积),下列说法中正确的是()A. 若污水中正离子较多,则前表面比后表面电势高B. 前表面的电势一定低于后表面的电势,与哪种离子多少无关C. 污水中离子浓度越高,电压表的示数将越大D. 电压表示数U 与污水流量Q 成正比,与a 、b 、c 均无关 【答案】B4. 如图所示,导电物质为电子的霍尔元件位于两串联线圈之间,线圈中电流为I ,线圈间产生匀强磁场,磁感应强度大小B 与I 成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为I H ,与其前后表面相连的电压表测出的霍尔电压U H 满足:U H =k H I Bd,式中k 为霍尔系数,d 为霍尔元件两侧面间的距离。

2019年高考物理大二轮复习 题型限时专练【共12套67页】

2019年高考物理大二轮复习 题型限时专练【共12套67页】

本套资源目录2019年高考物理大二轮复习题型限时专练10计算题(二) 2019年高考物理大二轮复习题型限时专练11计算题(三) 2019年高考物理大二轮复习题型限时专练12计算题(四) 2019年高考物理大二轮复习题型限时专练1选择题+押题(一) 2019年高考物理大二轮复习题型限时专练2选择题+押题(二) 2019年高考物理大二轮复习题型限时专练3选择题+押题(三) 2019年高考物理大二轮复习题型限时专练4选择题+押题(四) 2019年高考物理大二轮复习题型限时专练5实验题(一) 2019年高考物理大二轮复习题型限时专练6实验题(二) 2019年高考物理大二轮复习题型限时专练7实验题(三)2019年高考物理大二轮复习题型限时专练8实验题(四) 2019年高考物理大二轮复习题型限时专练9计算题(一)专练10 计算题(二)(时间:25分钟)24.(2018·辽宁五校联考)如图所示,AB 是长为L =1.2 m 、倾角为53°的斜面,其上端与一段光滑的圆弧BC 相切于B 点.C 是圆弧的最高点,圆弧的半径为R ,A 、C 两点与圆弧的圆心O 在同一竖直线上.物体受到与斜面平行的恒力作用,从A 点开始沿斜面向上运动,到达B 点时撤去该力,物体将沿圆弧运动,通过C 点后落回到水平地面上.已知物体与斜面间的动摩擦因数μ=0.5,恒力F =28 N ,物体可看成质点且m =1 kg.重力加速度g =10 m/s 2,sin53°=0.8,cos53°=0.6,求:(1)物体通过C 点时对轨道的压力大小;(结果保留一位小数) (2)物体在水平地面上的落点到A 点的距离.[解析] (1)根据题图,由几何知识得,OA 的高度H =Lsin53°=1.5 m圆轨道半径R =Ltan53°=0.9 m物体从A 到C 的过程,由动能定理得:L (F -μmg cos53°)-mg (H +R )=12mv 2解得:v =2 3 m/s物体在C 点,由牛顿第二定律得:F N +mg =m v 2R由牛顿第三定律得物体通过C 点时对轨道的压力大小F ′N =F N =3.3 N (2)物体离开C 点后做平抛运动 在竖直方向:H +R =12gt 2在水平方向:x =vt 解得:x =2.4 m[答案] (1)3.3 N (2)2.4 m25.(2018·湖北黄冈质检)如图,带电荷量为q =+2×10-3C 、质量为m =0.1 kg 的小球B 静置于光滑的水平绝缘板右端,板的右侧空间有范围足够大的、方向水平向左、电场强度E =103N/C 的匀强电场.与B 球形状相同、质量为0.3 kg 的绝缘不带电小球A 以初速度v 0=10 m/s 向B 运动,两球发生弹性碰撞后均逆着电场的方向进入电场,在电场中两球又发生多次弹性碰撞,已知每次碰撞时间极短,小球B 所带电荷量始终不变,取重力加速度g =10 m/s 2.求:(1)第一次碰撞后瞬间两小球的速度大小; (2)第二次碰撞前瞬间小球B 的动能; (3)第三次碰撞的位置. [解析] (1)第一次碰撞时两小球动量守恒,即3mv 0=3mv 1+mv 2 机械能守恒,即12·3mv 20=12·3mv 21+12mv 22解得碰后瞬间A 的速度v 1=5 m/s ,B 的速度v 2=15 m/s(2)碰后A 、B 两球进入电场,竖直方向二者相对静止,均做自由落体运动;水平方向上,A 做匀速运动,B 做匀减速直线运动,其加速度大小为a B =qEm=20 m/s 2设经过t 时间两小球再次相碰,则有v 1t =v 2t -12a B t 2解得t =1 s此时,B 的水平速度为v x =v 2-a B t =-5 m/s(负号表明方向向左) 竖直速度为v y =gt =10 m/s 故第二次碰前B 的动能为E k B =12m (v 2x +v 2y )=6.25 J(3)第二次碰撞时,A 、B 两小球水平方向上动量守恒3mv 1+mv x =3mv 1′+mv x ′水平方向上机械能守恒12·3mv 21+12mv 2x =12·3mv 1′2+12mv x ′2解得第二次碰后水平方向A 的速度v 1′=0,B 的速度v x ′=10 m/s故第二次碰撞后A 竖直下落(B 在竖直方向上的运动与A 相同),水平方向上,B 做匀减速直线运动设又经过t ′时间两小球第三次相碰,则有v x ′t ′-12a B t ′2=0解得t ′=1 s因此,第三次相碰的位置在第一次碰撞点右方x =v 1t =5 m 下方y =12g (t +t ′)2=20 m[答案] (1)5 m/s 15 m/s (2)6.25 J (3)见解析专练11 计算题(三)(时间:25分钟)24.(2018·福州市高三期末)如图所示,一离子以初速度v 0沿某方向垂直射入宽为L 、方向垂直于纸面向外的匀强磁场,在磁场中偏转后垂直射入同宽度的电场,穿出电场的出射点与进入磁场的入射点在同一水平线上,已知电场强度为E ,在电场区域中运动时发生的侧移量为h ,不计离子所受重力.(1)求该离子的电性和比荷(即电荷量q 与其质量m 的比值); (2)求离子在磁场中的偏转半径r 与磁感应强度B 的大小;(3)试比较离子分别在电场和磁场中运动的时间大小关系,并说出理由. [解析] (1)根据离子在磁场中的偏转方向,利用左手定则可判断离子带正电 离子在匀强电场中做类平抛运动 水平方向有L =v 0t 竖直方向有h =12at 2而a =Eq m联立以上各式可得q m =2hv 20EL2(2)如图,离子在磁场中做半径为r 的匀速圆周运动 由几何关系有(r -h )2+L 2=r 2解得r =L 2+h 22h由洛伦兹力提供向心力有qv 0B =m v 20r联立以上各式可得B =EL 2v 0L 2+h 2(3)离子在电场中运动的时间小于其在磁场中运动的时间,因为离子在电场中运动时,水平方向的分速度与离子在磁场中运动的速度相同,离子在电场中沿水平方向做匀速直线运动,在磁场中做匀速圆周运动,弧长大于电场的宽度,所以离子在磁场中运动的时间长.[答案] (1)带正电 2hv 20EL 2 (2)L 2+h22h EL 2v 0L 2+h 2(3)见解析25.(2018·郑州一中高三测试)如图所示,光滑的轻质定滑轮上绕有轻质柔软细线,线的一端系一质量为2m 的重物,另一端系一质量为m 、电阻为R 的金属杆.在竖直平面内有足够长的平行金属导轨PQ 、EF ,其间距为L .在Q 、F 之间连接有阻值为R 的电阻,其余电阻不计.一匀强磁场与导轨平面垂直,磁感应强度为B 0.开始时金属杆置于导轨下端QF 处,将重物由静止释放,当重物下降h 时恰好达到稳定速度而后匀速下降.运动过程中金属杆始终与导轨垂直且接触良好,不计一切摩擦和接触电阻,重力加速度为g .(1)求重物匀速下降时的速度v ;(2)求重物从释放到下降h 的过程中,电阻R 中产生的热量Q R ;(3)设重物下降h 时的时刻t =0,此时速度为v 0,若从t =0开始,磁场的磁感应强度B 逐渐减小,且金属杆中始终不产生感应电流,试写出B 随时间t 变化的关系.[解析] (1)重物匀速下降时,金属杆匀速上升,金属杆受力平衡.设细线对金属杆的拉力为T ,金属杆所受安培力为F由平衡条件得T =mg +F 由安培力公式得F =B 0IL 根据闭合电路欧姆定律I =ER +R根据法拉第电磁感应定律E =B 0Lv 对重物由平衡条件得T =2mg 综合上述各式,解得v =2mgRB 20L2(2)设电路中产生的总热量为Q ,由能量守恒定律得 2mgh -mgh =12(2m )v 2+12mv 2+Q由串联电路特点知,电阻R 中产生的热量为Q R =12Q则Q R =12mgh -3m 3g 2R2B 40L4(3)金属杆中恰好不产生感应电流时,磁通量不变,则有Φ0=Φt即B 0hL =B (h +x )L 式中x =v 0t +12at 2对系统,由牛顿第二定律有a =2mg -mg 2m +m =g3则磁感应强度B 随时间t 变化的关系为B =B 0h h +v 0t +g 6t2=6B 0h6h +6v 0t +gt 2[答案] (1)2mgR B 20L 2 (2)12mgh -3m 3g 2R2B 40L 4(3)B =6B 0h6h +6v 0t +gt2专练12 计算题(四)(时间:25分钟)24. (2018·贵州普通高中监测)如图所示,两光滑平行金属导轨置于水平面(纸面)内,轨道间距为l ,左端连有阻值为R 的电阻.一金属杆置于导轨上,金属杆右侧存在磁感应强度大小为B 、方向竖直向下的匀强磁场区域.现对金属杆施加一水平向右的恒力,使其进入磁场区域做初速度为零的变加速直线运动,到达图中虚线位置(仍在磁场中)时速度达到最大,最大值为22v 0,金属杆与导轨始终保持垂直且接触良好.除左端所连电阻外,其他电阻忽略不计.求:(1)对金属杆施加的水平向右恒力F 的大小; (2)金属杆达到最大速度时,电阻R 的热功率.[解析] (1)当安培力大小等于水平恒力F 时金属杆的速度最大,设此时的电流为I ,则F =F 安 F 安=BIl I =E R E =Bl22v 0 联立解得F =2B 2l 2v 02R(2)设金属杆达到最大速度时,电阻R 的热功率为P ,则P =I 2R联立解得P =B 2l 2v 202R[答案] (1)2B 2l 2v 02R (2)B 2l 2v 22R25.(2018·安徽省百所高中一模)P 、P ′是平行板电容器的两极板,如图甲所示,P 接电源正极,P ′接电源负极,两极板间电压变化如图乙所示.O 处有一离子源,能不断逸出比荷为q m =1×108 C/kg 的正离子,离子逸出时的速度不计,经板间电场加速后,沿虚线OO ′穿过平行板电容器,从O ′处射出(离子在加速过程中可认为板间电压不变).已知平行板电容器极板长为0.1 m ,O 、O ′分别是P 、P ′两极板的中点.平行板电容器右侧存在大小为B (未知)、方向垂直纸面向外的匀强磁场(未画出).在P ′板右侧相距L =0.05 m 处有一荧光屏MM ′,M 点与O ′点等高,MM ′长220m ,M 端固定在铰链上,MM ′可绕M 点在图示位置与虚线位置之间转动.(1)当MM ′处于竖直位置时,欲使所有离子均不能打在MM ′上,求磁感应强度B 的取值范围.(2)若B =0.2 T ,则当MM ′从图示竖直位置沿M 点顺时针转动多大角度时,荧光屏上的发光长度最大?最大长度是多少?[解析] (1)离子在电场中运动的过程中,根据qU =12mv 2得,v = 2qU mv m = 2qU mm =1×106m/s 根据洛伦兹力提供向心力,有qvB =mv 2r ,得r =mv qB,可知速度越大,离子在磁场中做圆周运动的半径也越大,假设出射速度最大的离子刚好不能击中MM ′,如图1所示则r max =L =0.05 m结合r max =mv m qB得B =0.2 T欲使所有离子均不能打在MM ′上,则B ≥0.2 T(2)离子从O ′点射出时,速度大小不同,但方向均垂直于平行板向右,这些离子在磁场中做圆周运动的轨迹圆相切于O ′点,如图2所示,不管MM ′转动多大角度,总有某个离子运动的轨迹圆和MM ′相切,假设切点为N ,如图3所示,根据几何关系,恒有MN =O ′M =L ,N 点是所有离子中能击中MM ′上的最远位置,故所有离子中能击中MM ′的最远点与M 点的距离为L如图4所示,根据几何关系分析可得,当MM ′转至虚线位置时,速度最大的离子击中MM ′的位置是所有离子中能击中MM ′且与M 点最近的位置,设该击中点为N ′,由于此时∠O ′M ′M =45°,即速度偏向角为45°,故此时离子垂直击中MM ′,M ′N ′=L =0.05 m则MM ′的发光长度NN ′=MN -MN ′=L -⎝ ⎛⎭⎪⎫220 m -L =2-220 m [答案] (1)B ≥0.2 T (2)45°2-220 m专练1 选择题+选考题(一)(时间:30分钟)一、选择题(本题共8小题,在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求.)14.(2018·石家庄质检(一))飞艇常常用于执行扫雷、空中预警、电子干扰等多项作战任务.如图所示为飞艇拖曳扫雷具扫除水雷的模拟图.当飞艇匀速飞行时,绳子与竖直方向的夹角恒为θ角.已知扫雷具质量为m ,重力加速度为g ,扫雷具所受浮力不能忽略,下列说法正确的是( )A .扫雷具受3个力作用B .绳子拉力大小为mg cos θC .水对扫雷具作用力的水平分力小于绳子拉力D .绳子拉力一定大于mg[解析] 扫雷具受到重力、绳子拉力、水的阻力、水的浮力共4个力作用,选项A 错误;设扫雷具所受水的浮力为f ,绳子的拉力为F ,由F cos θ=mg -f ,解得绳子拉力F =mg -f cos θ,选项B 错误;水对扫雷具的作用力包括竖直向上的浮力和水平向右的阻力,绳子拉力在水平方向的分力大小等于水的阻力(即水对扫雷具作用力的水平分力),所以水对扫雷具作用力的水平分力小于绳子拉力,选项C 正确;在竖直方向,重力竖直向下,浮力竖直向上,则由mg =f +F cos θ可知,无法判断绳子拉力与重力mg 的大小关系,选项D 错误.[答案] C15.(2018·陕西质检(一))如图所示,菱形ABCD 的对角线相交于O 点,两个等量异种点电荷分别固定在AC 连线上的M 点与N 点,且OM =ON ,则( )A.A、C两处电势、场强均相同B.A、C两处电势、场强均不相同C.B、D两处电势、场强均相同D.B、D两处电势、场强均不相同[解析] 以无穷远处为零势能点,则A处电势为正,C处电势为负,故A、C两处电势不同,由场强叠加原理知A处场强方向向左,C处场强方向也向左,且大小相同,故A、C 两处的电场强度相同,A、B错误;B、D两处场强大小相等,方向均水平向右,两处的电势均为0,C正确,D错误.[答案] C16.(2018·河北名校联盟)2017年6月19日,长征三号乙遥二十八火箭发射中星9A 卫星过程中出现变故,由于运载火箭的异常,卫星没有按照原计划进入预定轨道.经过航天测控人员的配合和努力,通过多次轨道调整,卫星成功变轨进入同步卫星轨道.卫星变轨原理图如图所示,卫星从椭圆轨道Ⅰ远地点Q改变速度进入地球同步轨道Ⅱ,P点为椭圆轨道近地点.下列说法正确的是( )A.卫星在椭圆轨道Ⅰ运行时,在P点的速度等于在Q点的速度B.卫星在椭圆轨道Ⅰ的Q点速度小于在同步轨道Ⅱ的Q点的速度C.卫星在椭圆轨道Ⅰ的Q点加速度大于在同步轨道Ⅱ的Q点的加速度D.卫星耗尽燃料后,在微小阻力的作用下,机械能减小,轨道半径变小,动能变小[解析] 卫星在椭圆轨道Ⅰ运行时,由开普勒第二定律知,离中心天体越近,运行速度越大,因此卫星在P 点的速度大于在Q 点的速度,选项A 错误;卫星由椭圆轨道Ⅰ改变速度进入地球同步轨道Ⅱ时要点火加速,因此,卫星在椭圆轨道Ⅰ的Q 点速度小于在同步轨道Ⅱ的Q 点的速度,选项B 正确;根据牛顿第二定律知,卫星在椭圆轨道Ⅰ的Q 点加速度等于在同步轨道Ⅱ的Q 点的加速度,选项C 错误;卫星耗尽燃料后,在微小阻力的作用下,机械能减小,速度减小,卫星做近心运动,轨道半径减小,根据G Mm r 2=m v 2r可得v = GM r,即轨道半径变小,速度变大,动能变大,选项D 错误.[答案] B 17.(2018·陕西摸底)如图,电路中定值电阻阻值R 大于电源内阻阻值r .闭合开关,电路稳定后,将滑动变阻器滑片向下滑动,理想电压表V 1、V 2、V 3示数变化量的绝对值分别为ΔU 1、ΔU 2、ΔU 3,理想电流表A 示数变化量的绝对值为ΔI ,下列说法错误的是( )A .A 的示数增大B .V 2的示数增大C .ΔU 3与ΔI 的比值大于rD .ΔU 1大于ΔU 2[解析] 理想电压表V 1、V 2、V 3的示数分别是定值电阻两端的电压、路端电压、滑动变阻器两端的电压,理想电流表A 的示数是干路中的电流.滑动变阻器滑片向下滑动,其有效电阻变小,根据闭合电路欧姆定律可知,干路中的电流增大,A 示数增大,内电压增大,路端电压减小,即V 2示数减小,故选项A 正确,B 错误;因为ΔU 1ΔI =R 、ΔU 2ΔI =r ,而R >r ,所以ΔU 1>ΔU 2,故选项D 正确;因为ΔU 3>ΔU 2、ΔU 2ΔI =r ,所以ΔU 3ΔI>r ,故选项C 正确. [答案] B18.(2018·武汉调研)一物块从固定斜面底端沿倾角为θ的斜面上滑,到达最大高度后又返回斜面底端.已知物块下滑的时间是上滑时间的2倍,则物块与斜面间的动摩擦因数为( )A.13tan θB.12tan θC.35tan θ D .tan θ[解析] 物块沿斜面上滑时的加速度大小a 1=g sin θ+μg cos θ,则s =12a 1t 2;物块沿斜面下滑时的加速度大小a 2=g sin θ-μg cos θ,则s =12a 2(2t )2,联立解得μ=35tan θ,选项C 正确.[答案] C19.(2018·福州高三期末)氢原子能级如图所示,已知可见光光子的能量在1.61 eV ~3.10 eV 范围内,则下列说法正确的是( )A .氢原子由n =2能级跃迁到n =1能级,放出的光子为可见光B .大量氢原子处于n =4能级时,向低能级跃迁能发出6种频率的光子C .处于基态的氢原子电离需要释放13.6 eV 的能量D .氢原子处于n =2能级时,可吸收2.86 eV 能量的光子跃迁到高级能[解析] 大量处于n =4能级的氢原子向低能级跃迁时,先从n =4能级分别向下面的三个能级各画一条线,可画三条;再从n =3能级出发,分别向下面二个能级各画一条线,可画两条;再从n =2能级出发,向下面一能级画一条线,可画一条;则总共可画6条,即能发出6种频率的光子,B 正确;处于n =2能级的氢原子,吸收2.86 eV 能量的光子,-3.4 eV +2.86 eV =-0.54 eV ,跃迁到n =5能级,选项D 正确.[答案] BD20.(2018·四川五校联考)如图所示,在x >0,y >0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy 平面向里,大小为B .现有一质量为m 、电荷量为q 的带正电粒子,从x 轴上的某点P 沿着与x 轴成30°角的方向射入磁场.不计重力的影响,则下列说法正确的是( )A .只要粒子的速率合适,粒子就可能通过坐标原点B .粒子在磁场中运动所经历的时间可能为5πm 3qBC .粒子在磁场中运动所经历的时间可能为πm qBD .粒子在磁场中运动所经历的时间可能为πm 6qB[解析] 带正电粒子由P 点与x 轴成30°角入射,则粒子运动轨迹的圆心在过P 点与速度方向垂直的方向上,粒子在磁场中要想到达坐标原点,转过的圆心角肯定大于180°,如图所示,而因磁场有边界,故粒子不可能通过坐标原点,A 错误;由于P 点的位置不定,所以粒子在磁场中的轨迹圆弧对应的圆心角也不同,最大的圆心角为圆弧与y 轴相切时,偏转角度为300°,运动的时间t =56T =5πm 3qB,根据粒子运动的对称性,可知粒子的运动半径无限大时,对应的最小圆心角也一定大于120°,所以运动时间t ′>13T =2πm 3qB,故粒子在磁场中运动的时间范围是2πm 3qB <t ″≤5πm 3qB,BC 正确,D 错误.[答案] BC21.(2018·辽宁五校联考)如图所示,图中两条平行虚线间存在有匀强磁场,虚线间的距离为2L ,磁场方向垂直纸面向里.abcd 是位于纸面内的梯形闭合线框,ad 与bc 间的距离为2L 且均与ab 垂直,ad 边长为2L ,bc 边长为3L ,t =0时刻,c 点与磁场区域左边界重合.现使线框以恒定的速度v 沿垂直于磁场区域边界的方向穿过磁场区域,取沿a →b →c →d →a 方向的感应电流为正,则在线框穿过磁场区域的过程中,感应电流I 及a 、b 间电势差U 随时间t 变化的关系图线可能是( )[解析] 在线框dc 边逐渐进入磁场的过程中,线框切割磁感线的有效长度逐渐增大,根据法拉第电磁感应定律和闭合电路欧姆定律可知,产生的感应电动势和感应电流逐渐增大;dc 边完全进入后,线框切割磁感线的有效长度不变,产生的感应电动势和感应电流恒定;dc 边出磁场过程,线框切割磁感线的有效长度逐渐减小,根据法拉第电磁感应定律和闭合电路欧姆定律,产生的感应电动势和感应电流逐渐减小,但此时通过线框的磁通量仍一直增大,电流为正;dc 边完全出磁场后,ab 边进入匀强磁场切割磁感线,产生的感应电动势和感应电流恒定,但电流为负,所以B 正确,A 错误;在0~3⎝ ⎛⎭⎪⎫L v时间段,线框右侧部分切割磁感线产生感应电动势,相当于电源,a 、b 之间的电势差与电流成正比,图象与电流图象类似;在3~5⎝ ⎛⎭⎪⎫L v 时间线段框左侧部分切割磁感线产生感应电动势,相当于电源,a 、b 之间的电势差为正值,D 正确,C 错误.[答案] BD二、选考题(从两道题中任选一题作答)33.(2018·昆明高三摸底)[物理——选修3-3](1)(多选)下列说法正确的是________.A .处于完全失重的水滴呈球形,是液体表面张力作用的结果B .液体与固体接触处的附着层都有收缩的趋势C .液体与气体接触处的表面层都有收缩的趋势D .毛细管插入浸润液体中管内液面会上升E .毛细管插入不浸润液体中管内液面会上升(2)一定质量的理想气体,状态从A →B →C →A 的变化过程可用如图所示的p —V 图线描述,气体在状态C 时温度为T C =300 K ,求:①气体在状态A 时的温度T A ,并比较A 、B 状态时气体的温度;②若气体在A →B 过程中吸热500 J ,则在A →B 过程中气体内能如何变化?变化了多少?[解析] (1)处于完全失重的水滴呈球形,是液体表面张力作用的结果,之所以是球形,是因为液体表面张力有使表面积收缩到最小的趋势,选项A 正确;液体与固体接触处的附着层不一定都有收缩的趋势,当附着层内分子间距离小于液体内部分子间距离时,液体与固体间表现为浸润;附着层内分子间的距离大于r 0时,附着层有收缩的趋势,表现为不浸润,选项B 错误;液体与气体接触的表面层分子相对稀疏,分子间距离大于液体内部分子间的距离,故液体与气体接触处的表面层都有收缩的趋势,选项C 正确;浸润液体情况下容器壁对液体的吸引力较强,附着层内分子密度较大,分子间距较小,故液体分子间作用力表现为斥力,附着层内液面升高,故浸润液体呈凹液面,不浸润液体呈凸液面,毛细管插入浸润液体中管内液面会上升,选项D 正确,E 错误.(2)①气体从C →A 、B →C ,根据理想气体状态方程可得p C V C T C =p A V A T A解得T A =300 Kp C V C T C =p B V BT B解得T B =600 KT B >T A(也可用A 、B 位于两条不同的等温线上,由p —V 图象的物理意义可知T B >T A ) ②气体在A →B 过程压强不变W =-pΔV由热力学第一定律:ΔU =Q +W可得气体内能增加了ΔU =200 J[答案] (1)ACD (2)①300 K T B >T A ②内能增加 200 J 34.(2018·安徽百所高中一模)[物理——选修3-4](1)(多选)一条绳子两端为A 点和B 点,沿绳子建立坐标系,如图甲所示,每隔1 m 选一个坐标点,图乙为A 点的振动图象,图丙为B 点的振动图象,两质点各振动一个周期,分别形成两列波相对传播,波速均为2 m/s ,则下列说法正确的是________.A .两列波的波长都是2 mB .两列波在t =2.5 s 时开始相遇C .t =3 s 时,x =4 m 处质点为振动加强点D .t =3 s 时,x =4 m 处质点的位移大小为40 cmE .两列波相遇的时间为0.5 s(2)如图所示为截面为四分之三圆的玻璃柱,圆弧ABC 面镀银,圆弧的半径为10 6 cm.一细光束垂直OA 并从OA 的中点D 射入玻璃柱,玻璃柱对该光的折射率为2,光在真空中的传播速度为c =3×108m/s ,求:①光从玻璃柱中射出时的光线与入射光的夹角; ②光在玻璃柱中传播的时间(结果保留三位有效数字).[解析] (1)A 、B 两点的振动周期均为1 s ,波速均为2 m/s ,由v =λT得波长均为2 m ,A 正确;当B 点开始振动时,A 点振动引起的振动形式传播到x =2 m 处,两列波经过t =32 s=1.5 s 同时传播到x =5 m 处,因此在t =2.5 s 时两列波相遇,B 正确;x =4 m 处的质点与x =2 m 处为一个波长的距离,与x =8 m 处为两个波长的距离,距离之差为一个波长,因此该点为振动加强点,C 正确;t =3 s 时,A 点振动引起的振动形式在x =4 m 处位移为0,B 点振动引起的振动形式在x =4 m 处位移也为0,因此t =3 s 时,x =4 m 处质点的位移大小为0,D 错误;以其中一列波为参考系,另一列波相对传播速度为2v ,相遇时相对传播距离为2λ,则相遇时间t =2λ2v=T ,即t =1 s ,E 错误.(2)①光射入玻璃柱后的光路如图所示,在E 点有sin ∠DEO =12,得∠DEO =30°由几何关系知,∠DEO =∠BEO =∠EBO =∠OBF 光在OC 面上射出时的入射角r =30° 由折射定律n =sin isin r得光从OC 面射出时的折射角i =45°则光从玻璃柱中射出时的光线与入射光的夹角为i ′=135° ②光在玻璃柱中传播的路程为s =DE +EB +BFDE =R cos30° BE =2R cos30° BF =Rcos30°光在玻璃柱中传播的速度为v =c n 光在玻璃柱中传播的时间为t =s v代入数据解得t =4.33×10-9s[答案] (1)ABC (2)①135° ②4.33×10-9s专练2 选择题+选考题(二)(时间:30分钟)一、选择题(本题共8小题,在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求.)14.(2018·海南省五校一模)真空中有一平行板电容器,电容为C ,两极板分别由铂和钾(其极限频率分别为ν1和ν2)制成,板间距离为d .现用频率为ν(ν2<ν<ν1)的单色光持续照射两极板内表面,假设所有逸出的电子都能垂直运动到另一极板,忽略电子的重力和电子之间的相互作用,电子的电荷量为e ,普朗克常量为h ,则电容器两极板最终带电情况是( )A .钾极板带负电,带电荷量为C h ν-ν2eB .钾极板带正电,带电荷量为C h ν-ν2eC .铂极板带负电,带电荷量为C h ν-ν1eD .铂极板带正电,带电荷量为Ch ν-ν1e[解析] 当用频率为ν的单色光持续照射两极板内表面时,只在钾极板上发生光电效应,所以钾极板带正电,铂极板带负电.根据爱因斯坦光电效应方程得12mv 2=hν-hν2,在两极板间所形成的最大电压为U =hν-hν2e ,所以钾极板的带电荷量为C h ν-ν2e,即B 正确.[答案] B15.(2018·汉中高三检测)在维护和检修高压供电线路时,为了不影响城市用电,电工经常要在高压线上带电作业.为了保障电工的安全,电工全身要穿上用金属丝线编织的衣服(如图甲).图乙中电工站在高压直流输电线的A 供电线上作业,其头顶上方有B 供电线,B 供电线的电势高于A 供电线的电势.虚线表示电工周围某一截面上的等势面,c 、d 、e 、f 是不同等势面上的四个点,以下说法中正确的是( )A.在c、d、e、f四点中,c点的电场最强B.在c、d、e、f四点中,f点的电势最高C.若将某电子由c移到f,其电势能将增大D.若将电子在d点由静止释放,它会向e点所在等势面运动[解析] 依据等势线的疏密程度,可知在c、d、e、f四点中,f点的电场最强,选项A 错误;因B供电线的电势高于A供电线的电势,则在c、d、e、f四点中,c点的电势最高,选项B错误;若将某电子由c移到f,即从高电势移动到低电势,又电子带负电,则其电势能将增大,选项C正确;沿着电场线方向,电势是降低的,故电场线方向为从c指向f,若将某电子在d点由静止释放,在电场力作用下,它会向c点所在等势面运动,选项D错误.[答案] C16.(2018·福州市高三期末)甲、乙两车沿水平方向做直线运动,某时刻刚好经过同一位置,此时甲的速度为5 m/s,乙的速度为10 m/s,以此时作为计时起点,它们的速度随时间变化的关系如图所示,则( )A.在t=4 s时,甲、乙两车相距最远B.在t=10 s时,乙车恰好回到出发点C.乙车在运动过程中速度的方向保持不变D.乙车做加速度先增大后减小的变加速运动[解析] v-t图线与横轴所围成的面积表示物体的位移,在0~4 s时间内,乙车始终在甲车前方,但t=10 s时,乙车停止运动,甲车已超过乙车,且两车的距离比t=4 s时。

2019高考物理二轮专项练习精品卷--磁场

2019高考物理二轮专项练习精品卷--磁场

2019高考物理二轮专项练习精品卷--磁场考试范围:磁场选择题〔此题共10小题,每题4分,共40分。

在每题给出的四个选项中,有的只有一个选项符合题目要求,有的有多个选项符合题目要求。

全部选对的得4分,选对但不全的得2分,有选错的得0分。

〕1、电子作近核运动的时候,产生了垂直于相对运动方向的磁场。

如下图所示,为某种用来束缚原子的磁场的磁感线分布情况,以O 点〔图中白点〕为坐标原点,沿Z 轴正方向磁感应强度大小的变化最有可能为 〔 〕【思路点拨】我们可以从条形磁铁和蹄形磁铁的磁感线分布看出,两极处磁感线最密,而磁铁的两极处磁场最强。

因此磁感线的疏密可以反映磁场的强弱,磁感线分布密的地方磁场就强,反之那么弱。

【答案】C【解析】磁感线是为了形象地描述磁场而人为假想的曲线。

其疏密程度反映磁场的强弱,磁感线越密的地方磁场越强,沿Z 轴正方向磁感线由密到疏再到密,即磁感应强度由大到小再到大,只有C 正确。

2、如右图所示,有一个正方形的匀强磁场区域ABCD ,E 是AD 的中点,F 是CD 的中点,如果在A 点沿对角线方向以速度V 射入一带负电的带电粒子,恰好从E 点射出,那么〔〕A 、如果粒子的速度增大为原来的二倍,将从D 点射出B 、如果粒子的速度增大为原来的三倍,将从F 点射出C 、如果粒子的速度不变,磁场的磁感应强度变为原来的二倍,也将从D 点射出D 、只改变粒子的速度使其分别从E 、D 、F 点射出时,从F 点射出所用时间最短【命题立意】主要考查带电粒子在匀强磁场中做匀速圆周运动的半径公式、周期公式。

【思路点拨】假设带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率V 做匀速圆周运动。

①轨道半径公式:R =MV /QB ②周期公式:T =2πM /QB 。

【答案】AD【解析】作出示意图如下图,根据几何关系可以看出,当粒子从D 点射出时,轨道半径增大为原来的二倍,由半径公式qB mvR =可知,速度也增大为原来的二倍,选项A 正确,显然选项C 错误;当粒子的速度增大为原来的四倍时,才会从F 点射出,选项B 错误;据粒子的周期公式qB mT π2=,可见粒子的周期与速度无关,在磁场中的运动时间取决于其轨迹圆弧所对应的圆心角,所以从E 、D 射出时所用时间相等,从F 点射出时所用时间最短。

2019届高考物理二轮训练卷:安培力与带电粒子在磁场中的运动 专题

2019届高考物理二轮训练卷:安培力与带电粒子在磁场中的运动 专题

安培力与带电粒子在磁场中的运动一、选择题(本题共8小题,在每小题给出的四个选项中,至少有一项符合题目要求)1. 一圆筒处于磁感应强度大小为B 的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示.图中直径MN 的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M 射入筒内,射入时的运动方向与MN 成30°角.当筒转过90°时,该粒子恰好从小孔N 飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为( )A.3BωB.2BωC.BωD.2Bω【答案】A2.如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O 和y 轴上的点a (0,L )一质量为m 、电荷量为e 的电子从a 点以初速度v 0平行于x 轴正方向射入磁场,并从x 轴上的b 点射出磁场,此时速度方向与x 轴正方向的夹角为60˚下列说法中正确的是A. 电子在磁场中做圆周运动的圆心坐标为(0,0)B. 电子在磁场中做圆周运动的圆心坐标为(0,-2L )C. 电子在磁场中运动的时间为D. 电子在磁场中运动的时间为【答案】D3. 平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外.一带电粒子的质量为m ,电荷量为q (q >0).粒子沿纸面以大小为v 的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角.已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场.不计重力.粒子离开磁场的出射点到两平面交线O 的距离为( )A.2mvqBC.2mvqBD.4mvqB【答案】D4. 如图所示,在0≤x 、0≤y ≤a 范围内有垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .坐标原点O 处有一个粒子源,在某时刻发射大量质量为m 、电荷量为+q 的带电粒子,它们的速度方向均在xOy 平面的第一象限内.已知粒子在磁场中做圆周运动的周期为T ,半径介于2a 到3a 之间,则下列说法正确的是( )A .最先从磁场上边界飞出的粒子经历的时间为12T B .最先从磁场上边界飞出的粒子经历的时间小于12T C .最后从磁场中飞出的粒子经历的时间为6T D .最后从磁场中飞出的粒子经历的时间大于6T 【答案】BC5.(2018山东省泰安市期末)已知通电长直导线产生的磁场中某点的磁感应强度满足(其中k 为比例系数,I 为电流强度,r 为该点到直导线的距离)。

2019届高考物理二轮复习 专题五 三大观点的应用(学案+练习)【共4套67页】

2019届高考物理二轮复习 专题五 三大观点的应用(学案+练习)【共4套67页】

本套资源目录2019届高考物理二轮复习专题五三大观点的应用第1讲三大观点在力学综合问题中的应用学案2019届高考物理二轮复习专题五三大观点的应用第1讲三大观点在力学综合问题中的应用课后演练强化提能2019届高考物理二轮复习专题五三大观点的应用第2讲三大观点在电磁学综合问题中的应用学案2019届高考物理二轮复习专题五三大观点的应用第2讲三大观点在电磁学综合问题中的应用课后演练强化提能第1讲 三大观点在力学综合问题中的应用真题再现考情分析(2017·高考全国卷Ⅱ)为提高冰球运动员的加速能力,教练员在冰面上与起跑线相距s 0和s 1(s 1<s 0)处分别放置一个挡板和一面小旗,如图所示.训练时,让运动员和冰球都位于起跑线上,教练员将冰球以初速度v 0击出,使冰球在冰面上沿垂直于起跑线的方向滑向挡板;冰球被击出的同时,运动员垂直于起跑线从静止出发滑向小旗.训练要求当冰球到达挡板时,运动员至少到达小旗处.假定运动员在滑行过程中做匀加速运动,冰球到达挡板时的速度为v 1,重力加速度大小为g .求(1)冰球与冰面之间的动摩擦因数; (2)满足训练要求的运动员的最小加速度.解析:(1)设冰球的质量为m ,冰球与冰面之间的动摩擦因数为μ,由动能定理得-μmgs 0=12mv 21-12mv 20①解得μ=v 20-v212gs 0.② (2)冰球到达挡板时,满足训练要求的运动员中,刚好到达小旗处的运动员的加速度最小.设这种情况下,冰球和运动员的加速度大小分别为a 1和a 2,所用的时间为t .由运动学公式得v 20-v 21=2a 1s 0③v 0-v 1=a 1t ④s 1=12a 2t 2⑤联立③④⑤式得a 2=s 1(v 1+v 0)22s 20. 答案:见解析[命题点分析] 牛顿第二定律、运动学公式 [思路方法]时间是解决两个运动问题的桥梁,把握住冰球到挡板的时间与运动员到旗的时间是相等的,各自利用运动学公式联立求解(2016·高考全国卷Ⅰ)某游乐园入口旁有一喷泉,喷出的水柱将一质量为M 的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S 的喷口持续以速度v 0竖直向上喷出;玩具底部为平板(面积略大[命题点分析] 动量定理、机械能守恒定律于S);水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g.求:(1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度.解析:(1)设Δt时间内,从喷口喷出的水的体积为ΔV,质量为Δm,则Δm=ρΔV①ΔV=v0SΔt②由①②式得,单位时间内从喷口喷出的水的质量为ΔmΔt=ρv0S.③(2)设玩具悬停时其底面相对于喷口的高度为h,水从喷口喷出后到达玩具底面时的速度大小为v.对于Δt时间内喷出的水,由能量守恒得12(Δm)v2+(Δm)gh=12(Δm)v20④在h高度处,Δt时间内喷射到玩具底面的水沿竖直方向的动量变化量的大小为Δp=(Δm)v⑤设水对玩具的作用力的大小为F,根据动量定理有FΔt=Δp⑥由于玩具在空中悬停,由力的平衡条件得F=Mg⑦联立③④⑤⑥⑦式得h=v202g-M2g2ρ2v20S2.⑧答案:(1)ρv0S(2)v202g-M2g2ρ2v20S2[思路方法]由玩具在空中悬停知其受力平衡,而本题的难点在于求水对玩具的冲力,而冲力的关键是单位时间内水的质量.注意空中的水柱并非圆柱体,要根据初时速度乘以时间后再乘以喷泉出口面积S求出流量,从而求质量命题规律研究及预测近几年高考中对力学综合知识的考查一般体现在计算中,尤其在动量成为必考内容后,其考核更加多样化.对于一般的力学问题要涉及以下知识点:①牛顿运动定律结合运动学公式处理有规律的运动;②动能定理结合能量守恒定律处理变力及曲线运动问题;③动量定理结合能量守恒定律处理碰撞、爆炸、反冲类问题.此部分在复习中要有效地寻求解题的突破口用动力学观点解决多过程问题[高分快攻]某电视台有一幼儿园小朋友参加的闯关节目——高低滑梯.如图所示,高滑梯的平台到水平地面的距离为h ,其右侧与一个曲面滑梯PA 相连,参赛者小帅(可视为质点)从P 点由静止下滑,经过平台上的A 点后向左做匀减速直线运动,依次经过B 、C 两点后落在地面上的D 点(有保护措施,不会摔伤).已知从A 运动到B 的时间等于从B 运动到C 的时间,且B 到C 的距离为l ,A 到B 的距离为2l .低滑梯在水平地面上,其右侧与一个曲面滑梯QA ′相连,QA ′与PA 完全相同,参赛者小唐(也可视为质点)从Q 点由静止下滑,经过平台上的A ′点后向左做匀减速直线运动,依次经过B ′、C ′两点后最终恰好停在D 点.已知A 与A ′、B 与B ′、C 与C ′都在同一竖直平面内,高低滑梯都是由相同材料制成的.求:(1)C 到D 的水平距离x ;(2)参赛者与滑梯平台间的动摩擦因数μ.[解析] (1)设小唐做匀减速运动的加速度大小为a ,离开C ′点时的速度为v (小帅经过C 点的速度也为v ),从A ′点运动到B ′点的时间为t ,则小唐从B ′点运动到C ′点的时间也为t ,根据运动学公式得l =vt +12at 2,l +2l =v ·2t +12a (2t )2C 到D 的水平距离x 即C ′到D 的水平距离,由运动学公式得v 2=2ax解得x =l8.(2)小帅离开C 点之后做平抛运动,设小帅在空中运动的时间为t ′,有h =12gt ′2,x =vt ′设参赛者小唐的质量为m ,由牛顿第二定律得μmg =ma 联立解得μ=l32h .[答案] 见解析[突破训练](2018·合肥高三质检)足够长光滑斜面BC 的倾角α=53°,小物块与水平面间的动摩擦因数μ=0.5,水平面与斜面之间在B 点有一小段弧形连接,一质量m =2 kg 的小物块静止于A 点.现用与水平方向成α=53°的恒力F 拉小物块,如图所示,小物块经t 1=4 s 到达B 点,并迅速撤去拉力F ,A 、B 两点相距x 1=4 m(已知sin 53°=0.8,cos 53°=0.6,g 取10 m/s 2).求: (1)恒力F 的大小;(2)小物块从B 点沿斜面向上运动的最大距离x 2; (3)小物块停止运动时到B 点的距离x 3. 解析:(1)AB 段加速度a 1=2x 1t 21=0.5 m/s 2根据牛顿第二定律,有F cos α-μ(mg -F sin α)=ma 1解得:F =ma 1+μmg cos α+μsin α=2×0.5+0.5×2×100.6+0.5×0.8N =11 N.(2)到达B 点时,小物块的速度v =a 1t 1=2 m/s在BC 段的加速度:a 2=g sin 53°=8 m/s 2,方向沿斜面向下由v 2=2a 2x 2得:x 2=v 22a 2=222×8m =0.25 m.(3)小物块从B 向A 运动过程中,由μmg =ma 3 解得:a 3=μg =5 m/s 2滑行的位移x 3=v 22a 3=222×5m =0.4 m ,小物块停止运动时,离B 点的距离为0.4 m.答案:(1)11 N (2)0.25 m (3)0.4 m用功能观点解决力学综合问题[高分快攻]若过程只有动能和势能的相互转化,应首先考虑应用机械能守恒定律. 若过程涉及摩擦力做功,一般应考虑应用动能定理或能量守恒定律. 若过程涉及电势能和机械能之间的转化,应考虑应用能量守恒定律. (2016·高考全国卷Ⅰ)如图,一轻弹簧原长为2R ,其一端固定在倾角为37°的固定直轨道AC 的底端A 处,另一端位于直轨道上B 处,弹簧处于自然状态.直轨道与一半径为56R 的光滑圆弧轨道相切于C 点,AC=7R ,A 、B 、C 、D 均在同一竖直平面内.质量为m 的小物块P 自C 点由静止开始下滑,最低到达E 点(未画出).随后P 沿轨道被弹回,最高到达F 点,AF =4R .已知P 与直轨道间的动摩擦因数μ=14,重力加速度大小为g .(取sin 37°=35,cos 37°=45)(1)求P 第一次运动到B 点时速度的大小. (2)求P 运动到E 点时弹簧的弹性势能.(3)改变物块P 的质量,将P 推至E 点,从静止开始释放.已知P 自圆弧轨道的最高点D 处水平飞出后,恰好通过G 点.G 点在C 点左下方,与C 点水平相距72R 、竖直相距R .求P 运动到D 点时速度的大小和改变后P 的质量. [解析] (1)根据题意知,B 、C 之间的距离为l =7R -2R ①设P 到达B 点时的速度为v B ,由动能定理得mgl sin θ-μmgl cos θ=12mv 2B ②式中θ=37°联立①②式并由题给条件得v B =2gR .③(2)设BE =x .P 到达E 点时速度为零,设此时弹簧的弹性势能为E p .P 由B 点运动到E 点的过程中,由动能定理有mgx sin θ-μmgx cos θ-E p =0-12mv 2B ④ E 、F 之间的距离为l 1=4R -2R +x ⑤P 到达E 点后反弹,从E 点运动到F 点的过程中,由动能定理有 E p -mgl 1sin θ-μmgl 1cos θ=0⑥联立③④⑤⑥式并由题给条件得x =R ⑦E p =125mgR .⑧(3)设改变后P 的质量为m 1.D 点与G 点的水平距离x 1和竖直距离y 1分别为x 1=72R -56R sin θ⑨y 1=R +56R +56R cos θ⑩式中,已应用了过C 点的圆轨道半径与竖直方向夹角仍为θ的事实.设P 在D 点的速度为v D ,由D 点运动到G 点的时间为t .由平抛运动公式有y 1=12gt 2⑪x 1=v D t ⑫联立⑨⑩⑪⑫式得v D =355gR ⑬设P 在C 点速度的大小为v C .在P 由C 点运动到D 点的过程中机械能守恒,有 12m 1v 2C =12m 1v 2D +m 1g ⎝ ⎛⎭⎪⎫56R +56R cos θ⑭ P 由E 点运动到C 点的过程中,由动能定理有 E p -m 1g (x +5R )sin θ-μm 1g (x +5R )cos θ=12m 1v 2C ⑮联立⑦⑧⑬⑭⑮式得m 1=13m .答案:(1)2gR (2)125mgR (3)355gR 13m[突破训练] 光滑的同心圆轨道圆心为O ,半径分别为R 、2R ,固定在竖直平面内,A 、B 两个小球用长为3R 的轻杆连接后分别套在圆轨道上.开始时使连接A 、B 两小球的轻杆在两圆轨道左半边且竖直,现由静止释放,轻杆恰好能滑到水平位置,如图所示.不计空气阻力. (1)求A 、B 两小球的质量之比;(2)为了使A 小球能到达O 点正上方,在开始位置释放A 小球时,应至少使A 小球具有多大的初速度v 0?(3)求A 、B 两小球组成的系统在开始位置由静止释放后,A 小球的最大速度. 解析:(1)轻杆恰好能滑到水平位置.由系统机械能守恒,有m B g |Δh B |-m A g |Δh A |=0 由几何关系|Δh A |=(3-1)R ,|Δh B |=R 联立以上式子可得m A m B =3+12. (2)从开始释放到A 小球刚好到达O 点正上方,如图1所示,由机械能守恒定律有m A g |Δh ′A|+m B g |Δh ′B |=12m A v 20由几何关系|Δh ′A |=(3+2)R |Δh ′B |=12R联立以上两式可得v 0=(3+33)gR .(3)如图2所示,设从开始释放到B 与O 连线与水平方向成θ角时A 的速度最大,由系统机械能守恒,有m B gR sin θ+m A gR [2sin ⎝⎛⎭⎪⎫2π3-θ-3]=12m A v 2A +12m B v 2B由运动的合成与分解得v A sin π6=v B整理得v 2A =4(3-1)gR (sin θ+cos θ-1)=4(3-1)gR ·[2sin(φ+θ)-1] 其中φ=π4,当θ=π4时,v 2A 最大解得v A max =2(3-1)(2-1)gR . 答案:见解析动量与能量观点解决综合力学问题[高分快攻]动量与能量综合的题目往往物理过程较多,情境复杂,把复杂的情境与过程划分为多个单一情境,并恰当地选择相应的动量或能量知识解答.当物体受到恒力作用发生运动状态的改变而且又涉及时间时,一般选择用动力学方法解题.当涉及功、能和位移时,一般选用动能定理、机械能守恒定律、功能关系或能量守恒定律解题,题目中出现相对位移时,应优先选择能量守恒定律. 当涉及多个物体及时间时,一般考虑动量定理、动量守恒定律.当涉及细节并要求分析力时,一般选择牛顿运动定律,对某一时刻的问题选择牛顿第二定律求解.复杂问题的分析一般需选择能量的观点、运动与力的观点综合解题.如图所示,在光滑水平轨道上有一小车质量为M 2,它下面用长为L 的轻绳系一质量为M 1的砂袋.现有一质量为m 的子弹水平射击砂袋,且子弹射入砂袋后并未穿出,而是与砂袋一起摆过一定角度θ,试求子弹射入砂袋时的速度v 0的大小.[解析] 子弹射入砂袋前后动量守恒,设子弹射入砂袋后二者的共同速度为v 1,由动量守恒定律可得mv 0=(M 1+m )v 1此后在绳摆动过程中,砂袋(含子弹)在水平方向做减速运动,而小车在水平方向做加速运动,当砂袋(含子弹)与小车具有共同的水平速度时,绳与竖直方向的夹角达到最大,砂袋(含子弹)在竖直方向上的速度为零,在这一过程中系统机械能守恒.设子弹、砂袋、小车三者的共同速度为v 2,由机械能守恒定律有:12(M 1+m )v 21=(M 1+m )gL (1-cos θ)+12(M 1+M 2+m )v 22 从子弹入射前到砂袋摆动至最高点,整个系统在水平方向上不受外力,在水平方向上系统动量守恒,有mv 0=(M 1+M 2+m )v 2联立解得v 0=M 1+m m2(M 1+M 2+m )M 2gL (1-cos θ).[答案] 见解析不少同学简单地将此类问题看成“冲击摆”,还是没有很好地分析物理过程,盲目模仿,没有建立正确的物理模型.事实上,本题情境设置与“冲击摆”的区别在于悬点并不固定,而是随着小车往前移动的.当摆摆到最高点时,砂袋(含子弹)只是竖直方向的速度为零,而水平方向依然具有一定的速度,即在最高点处砂袋(含子弹)仍具有动能.[突破训练] 如图所示,竖直平面内有一个半径为 R =0.8 m 的固定光滑四分之一圆弧轨道PM ,P 为圆弧轨道的最高点.圆弧轨道最底端M 处平滑连接一长 s =4.8 m 的固定粗糙水平轨道MN ,N 端为一个竖直弹性挡板,质量分别为m A =2 kg 、m B =1 kg 的物块A 、B 静止于M 点,它们中间夹有少量炸药,炸药突然爆炸,A 恰好不能从 P 端滑出,B 与挡板碰撞时没有能量损失.A 、B 与水平轨道MN 间的动摩擦因数为μ=0.25,A 、B 均可视为质点,g 取 10 m/s 2,问:(1)A 刚滑上圆弧轨道时对轨道的压力为多大? (2)炸药爆炸时有多少化学能转化为A 、B 的机械能?(3)适当改变PM 的轨道半径,保持其他条件不变,使炸药爆炸后,A 与B 刚好能同时回到M 处发生碰撞,碰撞后粘在一起,A 、B 最终停在水平轨道上的位置距离M 点多远?(结果保留 2 位有效数字)解析:(1)设A 刚滑上圆弧轨道的速度为 v A ,因为A 刚好滑到P 点,由机械能守恒定律有: 12m A v 2A =m A gR ① 设A 在M 点受到的支持力为F ,根据牛顿第二定律得:F -m A g =m A v 2AR②联立①②式并代入数据,解得 F =60 N ③由牛顿第三定律知,A 物块在M 点对轨道压力的大小为60 N . (2)设刚爆炸时B 物块的速度为v B ,由动量守恒定律有:m A v A -m B v B =0④根据能量守恒定律知炸药爆炸时转化为A 和B 的机械能为E =12m A v 2A +12m B v 2B ⑤联立①④⑤式并代入数据,解得:E =48 J .⑥ (3)设B 返回M 点时的速度为v 1,根据动能定理有: -2μm B g s =12m B v 21-12m B v 2B ⑦设A 、B 在M 点碰撞后共同速度为v ,根据动量守恒定律有:m A v A -m B v 1=(m A +m B )v ⑧ 设A 、B 静止时离M 点距离为L ,由动能定理有: -μ(m A +m B )gL =0-12(m A +m B )v 2⑨联立①④⑦⑧⑨式并代入数据,解得L =0.36 m. 答案:(1)60 N (2)48 J (3)0.36 m动量观点和能量观点的选取原则(1)动量观点①对于不涉及物体运动过程中的加速度而涉及物体运动时间的问题,特别对于打击一类的问题,因时间短且冲力随时间变化,应用动量定理求解,即Ft =mv -mv 0.②对于碰撞、爆炸、反冲一类的问题,若只涉及初、末速度而不涉及力、时间,应用动量守恒定律求解. (2)能量观点①对于不涉及物体运动过程中的加速度和时间问题,无论是恒力做功还是变力做功,一般都利用动能定理求解.②如果物体只有重力和弹簧弹力做功而又不涉及运动过程中的加速度和时间问题,则采用机械能守恒定律求解.③对于相互作用的两物体,若明确两物体相对滑动的距离,应考虑选用能量守恒定律建立方程.用三大观点解决滑块——滑板模型[高分快攻]应用三大观点解决滑块——滑板问题的关键是分析运动过程,要特别注意“二者共速”这个临界点,“共速”时往往会发生摩擦力突变(滑动摩擦力变为静摩擦力),运动状态突变(相对滑动变为相对静止)等情况.处理这类问题时要善于借助v -t 图象进行分析,借助图象中围成的面积很容易求出二者间的位移差.如图所示为某工地一传输工件的装置,AB 为一段足够大且固定的14圆弧轨道,圆弧半径R =5.6 m ,B C 为一段足够长的水平轨道,CD 为一段固定的14圆弧轨道,圆弧半径r =1 m ,三段轨道均光滑.一长为L =2 m 、质量为M =1 kg 的平板小车最初停在B C 轨道的最左端,小车上表面刚好与AB 轨道相切,且与CD 轨道最低点处于同一水平面.一可视为质点、质量为m =2 kg 的工件从距AB 轨道最低点的高度为h 处沿轨道自由滑下,滑上小车后带动小车向右运动,小车与CD 轨道左端碰撞(碰撞时间极短)后即被粘在C 处.工件只有从CD 轨道最高点飞出,才能被站在台面DE 上的工人接住.工件与小车的动摩擦因数为μ=0.5,取g =10 m/s 2,求:(1)若h 为2.8 m ,则工件滑到圆弧底端B 点时对轨道的压力为多大? (2)要使工件能被站在台面DE 上的工人接住,则h 的取值范围为多少?[解析] (1)工件从起点滑到圆弧轨道底端B 点,设到B 点时的速度为v B ,根据动能定理有mg h =12mv 2B工件做圆周运动,在B 点,由牛顿第二定律得N -mg =m v 2BR联立解得N =40 N由牛顿第三定律知,工件滑到圆弧底端B 点时对轨道的压力为N ′=N =40 N.(2)由于B C 轨道足够长,要使工件能到达CD 轨道,工件与小车必须能够达到共速,设工件刚滑上小车时的速度为v 0,工件与小车达到共速时的速度为v 1,假设工件到达小车最右端才与其共速,规定向右为正方向,则对于工件与小车组成的系统 由动量守恒定律得mv 0=(m +M )v 1 由动能定理得μmgL =12mv 20-12(m +M )v 21对于工件从AB 轨道滑下的过程,由机械能守恒定律得mg h 1=12mv 20代入数据解得h 1=3 m要使工件能从CD 轨道最高点飞出,h 1=3 m 时物块有从AB 轨道滑下且不脱离小车的最大速度,设其从轨道下滑的最小高度为h′,刚滑上小车的速度为v ′0,与小车达到共速时的速度为v ′1,刚滑上CD 轨道的速度为v ′2,规定向右为正方向,由动量守恒定律得mv ′0=(m +M )v ′1由动能定理得μmgL =12mv ′20-12Mv ′21-12mv ′22工件恰好滑到CD 轨道最高点,由机械能守恒定律得 12mv ′22=mgr 工件在AB 轨道滑动的过程,由机械能守恒定律得mg h ′=12mv ′2联立并代入数据解得h′=187m 综上所述,要使工件能到达CD 轨道最高点,应使h 满足187 m<h ≤3 m.[答案] 见解析[突破训练] 质量为M =3.0 kg 的平板小车静止在光滑水平面上,如图(a )所示.当t =0时,两个质量都是m =1.0 kg 的小物体A 和B (均可看做质点),分别从左端和右端以大小为v 1=4.0 m/s 和v 2=2.0 m/s 的水平速度冲上小车C ,当它们在车上停止滑动时,没有相碰.A 、B 与车面的动摩擦因数都是μ=0.20,g 取10 m/s 2.(1)求A 、B 在车上停止滑动时车的速度. (2)车的长度至少是多少?(3)在图(b )所给出的坐标系中画出0~4.0 s 内小车运动的速度-时间图象.解析:(1)以水平向右为正方向,设A 、B 在车上停止滑动时,车的速度为v ,根据动量守恒定律可得m (v 1-v 2)=(M +2m )v解得v =0.40 m/s ,方向水平向右.(2)设A 、B 在车上相对于车滑动的距离分别为l 1和l 2,由功能关系可得μmgl 1+μmgl 2=12mv 21+12mv 22-12(2m +M )v 2解得l 1+l 2=4.8 m ,即车长至少为4.8 m. (3)车的运动可分为以下三个阶段:第一阶段:A 、B 同时在车上滑行时,小物体对车的摩擦力大小均为μmg ,方向相反,车受力平衡而保持不动.当B 的速度减为0时,此过程结束.设这段时间内小物体的加速度大小为a ,根据牛顿第二定律有μmg =ma 得小物体的加速度大小a =μg设B 到t 1时刻停止滑动,则t 1-0=v 2a=1.0 s第二阶段:B 停止运动后,A 继续在车上滑动.设到t 2时刻物体A 与车有共同速度v ,则有v =(v 1-v 2)-a (t 2-t 1)解得t 2=1.8 s第三阶段:t 2时刻之后,车以速度v 做匀速直线运动,小车运动的速度-时间图象如图所示.答案:见解析, (建议用时:40分钟)1.(2017·高考天津卷)如图所示,物块A 和B 通过一根轻质不可伸长的细绳相连,跨放在质量不计的光滑定滑轮两侧,质量分别为m A =2 kg 、m B =1 kg.初始时A 静止于水平地面上,B 悬于空中.现将B 竖直向上再举高h =1.8 m(未触及滑轮),然后由静止释放.一段时间后细绳绷直,A 、B 以大小相等的速度一起运动,之后B 恰好可以和地面接触.取g =10 m/s 2,空气阻力不计.求: (1)B 从释放到细绳刚绷直时的运动时间t ; (2)A 的最大速度v 的大小; (3)初始时B 离地面的高度H .解析:(1)B 从释放到细绳刚绷直前做自由落体运动,有h =12gt 2①代入数据解得t =0.6 s .②(2)设细绳绷直前瞬间B 速度大小为v B ,有v B =gt ③细绳绷直瞬间,细绳张力远大于A 、B 的重力,A 、B 相互作用,由动量守恒得m B v B =(m A +m B )v ④ 之后A 做匀减速运动,所以细绳绷直后瞬间的速度v 即为A 的最大速度,联立②③④式,代入数据解得v =2 m/s.⑤(3)细绳绷直后,A 、B 一起运动,B 恰好可以和地面接触,说明此时A 、B 的速度为零,这一过程中A 、B 组成的系统机械能守恒,有 12(m A +m B )v 2+m B gH =m A gH ⑥ 代入数据解得H =0.6 m. 答案:见解析2.如图是阿毛同学的漫画中出现的装置,描述了一个“吃货”用来做“糖炒栗子”的“萌”事儿:将板栗在地面小平台上以一定的初速度经两个四分之一圆弧衔接而成的轨道,从最高点P 飞出进入炒锅内,利用来回运动使其均匀受热.我们用质量为m 的小滑块代替栗子,借用这套装置来研究一些物理问题.设大小两个四分之一圆弧半径分别为2R 、R ,小平台和圆弧均光滑.将过锅底的纵截面看做是由两个斜面AB 、C D 和一段光滑圆弧组成.斜面与小滑块间的动摩擦因数均为0.25,而且不随温度变化.两斜面倾角均为θ=37°,AB =C D =2R ,A 、D 等高,D 端固定一小挡板,小滑块碰撞它不损失机械能.滑块的运动始终在包括锅底最低点的竖直平面内,重力加速度为g .(1)如果滑块恰好能经P 点飞出,为了使滑块恰好沿AB 斜面进入锅内,应调节锅底支架高度使斜面的A 、D 点离地高为多少?(2)接(1)问,求滑块在锅内斜面上运动的总路程;(3)对滑块的不同初速度,求其通过最高点P 和小圆弧最低点Q 时受压力之差的最小值.解析:(1)设滑块恰好经P 点飞出时速度为v P ,由牛顿第二定律有mg =mv 2P2R得v P =2gR到达A 点时速度方向要沿着斜面AB ,则v y =v P tan θ=342gR 所以A 、D 点离地高度为h =3R -v 2y2g =3916R .(2)进入A 点时滑块的速度为v =v P cos θ=542gR假设经过一个来回能够回到A 点,设回来时动能为E k ,则E k =12mv 2-4μmg cos θ·2R <0,所以滑块不会滑到A 而飞出.因mg sin θ>μmg cos θ,则根据动能定理得mg ·2R sin θ-μmg cos θ·s =0-12mv 2得滑块在锅内斜面上运动的总路程s =221R16.(3)设滑块的初速度和经过最高点时的速度分别为v 1、v 2由牛顿第二定律,在Q 点F 1-mg =mv 21R在P 点F 2+mg =mv 222R所以F 1-F 2=2mg +m (2v 21-v 22)2R由机械能守恒有12mv 21=12mv 22+mg ·3R得v 21-v 22=6gR 为定值代入v 2的最小值(v 2=v P =2gR )得压力差的最小值为9mg .答案:(1)3916R (2)221R16(3)9mg3.(2016·高考全国卷Ⅱ)轻质弹簧原长为2l ,将弹簧竖直放置在地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l .现将该弹簧水平放置,一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5l 的水平轨道,B 端与半径为l 的光滑半圆轨道B C D 相切,半圆的直径B D 竖直,如图所示.物块P 与AB 间的动摩擦因数μ=0.5.用外力推动物块P ,将弹簧压缩至长度l ,然后放开,P 开始沿轨道运动.重力加速度大小为g . (1)若P 的质量为m ,求P 到达B 点时速度的大小,以及它离开圆轨道后落回到AB 上的位置与B 点之间的距离;(2)若P 能滑上圆轨道,且仍能沿圆轨道滑下,求P 的质量的取值范围.解析:(1)依题意,当弹簧竖直放置,长度被压缩至l 时,质量为5m 的物体的动能为零,其重力势能转化为弹簧的弹性势能.由机械能守恒定律,弹簧长度为l 时的弹性势能 E p =5mg l①设P 的质量为M ,到达B 点时的速度大小为v B ,由能量守恒定律得E p =12Mv 2B +μMg ·4l ②联立①②式,取M =m 并代入题给数据得v B =6g l ③若P 能沿圆轨道运动到D 点,其到达D 点时的向心力不能小于重力,即P 此时的速度大小v 应满足mv 2l-mg ≥0④ 设P 滑到D 点时的速度为v D ,由机械能守恒定律得 12mv 2B =12mv 2D +mg ·2l⑤ 联立③⑤式得v D =2g l ⑥v D 满足④式要求,故P 能运动到D 点,并从D 点以速度v D 水平射出.设P 落回到轨道AB 所需的时间为t ,由运动学公式得2l =12gt 2⑦P 落回到轨道AB 上的位置与B 点之间的距离为s =v D t ⑧联立⑥⑦⑧式得s =22l .⑨(2)为使P 能滑上圆轨道,它到达B 点时的速度不能小于零.由①②式可知5mgl >μMg ·4l ⑩ 要使P 仍能沿圆轨道滑回,P 在圆轨道上的上升高度不能超过半圆轨道的中点C .由机械能守恒定律有12Mv 2B ≤Mgl ⑪ 联立①②⑩⑪式得53m ≤M <52m .答案:见解析4.如图所示,长L =5.5 m 、质量M =2 kg 的滑板A 静止在水平地面上,在滑板右端放一质量m =1 kg 的小滑块(可视为质点).已知滑板A 与地面的动摩擦因数μ1=0.2,滑块B 与A 的动摩擦因数μ2=0.1,可认为A 与地面、A 与B 间的最大静摩擦力等于滑动摩擦力,g =10 m/s 2.试求:(1)要将滑板从滑块下抽出,施加在滑板上的水平拉力至少要大于多少? (2)若施加的水平拉力F =11 N ,要使滑板从滑块下抽出,F 作用的最短时间. 解析:(1)B 在A 上的最大加速度:a B =μ2mg m=1 m/s 2要使A 从B 下抽出,必须满足:a A >a B ① 对A 由牛顿第二定律得:F -μ1(M +m )g -μ2mg =Ma A ②联立①②代入数据解得:F >9 N . (2)当F =11 N ,代入②式解得: 滑板加速度大小a A 1=2 m/s 2此时B 的加速度大小a B =1 m/s 2F 作用t 秒时相对滑动的距离Δx 1=12a A 1t 2-12a B t 2③此时A 、B 速度大小分别为v A =a A 1t ④ v B =a B t ⑤撤去F 后,B 的加速度大小仍为:a B =1 m/s 2A 做匀减速运动的加速度大小为 a A 2=μ1(m +M )g +μ2mg M=3.5 m/s 2若滑到滑板左端时,两者相对静止,相对滑动的距离为Δx 2 由相对运动得:(v A -v B )2=2(a A 2+a B )Δx 2⑥ 由题意得:Δx 1+Δx 2=L ⑦联立③④⑤⑥⑦代入数据,解得:t =3 s.。

2019高考物理新金版大二轮精练:专题一 力与运动1.1

姓名,年级:时间:课时作业(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(1~5题为单项选择题,6~11题为多项选择题)1.(2018·河南开封二模)一铁架台放在水平地面上,其上用轻质细线悬挂一小球,开始时细线竖直.现将水平力F作用于小球上,使其缓慢地由实线位置运动到虚线位置,铁架台始终保持静止。

则在这一过程中( )A.水平力F变小B.细线的拉力不变C.铁架台对地面的压力变大D.铁架台所受地面的摩擦力变大解析:对小球受力分析,如图所示,受细线拉力、重力、水平力F,根据平衡条件,有:F=mg tan θ,θ逐渐增大则F逐渐增大,故A错误;由图可知,细线的拉力F=错误!,θ增大,F T增大,故BT错误;以整体为研究对象,根据平衡条件得F f=F,则F f逐渐增大,F N=(M+m)g,F N保持不变,故C错误,D正确。

答案: D2。

如图所示,两根通电直导体棒用四根长度相等的绝缘细线悬挂于O1、O2两点,已知O1O2连线水平,导体棒静止时绝缘细线与竖直方向的夹角均为θ,保持导体棒中的电流大小和方向不变,在导体棒所在空间加上匀强磁场后绝缘细线与竖直方向的夹角均增大了相同的角度,下列分析正确的是()A.两导体棒中的电流方向一定相同B.所加磁场的方向可能沿x轴正方向C.所加磁场的方向可能沿z轴正方向D.所加磁场的方向可能沿y轴负方向解析:在导体棒所在空间加上匀强磁场后绝缘细线与竖直方向的夹角均增大了相同的角度,则两导体棒中的电流方向一定相反,且电流大小相等,选项A错误;由左手定则可知,所加磁场的方向可能沿z轴正方向,选项C正确,B、D错误。

答案:C3。

如图所示,质量为m,带电荷量为-q的微粒以速度v与水平方向成45°角进入匀强电场和匀强磁场,磁场方向垂直纸面向里,如果微粒做匀速直线运动,则下列说法正确的是()A.微粒受电场力、洛伦兹力、重力三个力作用B.微粒受电场力、洛伦兹力两个力作用C.匀强电场的电场强度E=错误!D.匀强磁场的磁感应强度B=错误!解析:因为微粒做匀速直线运动,所以微粒所受合力为零,受力分析如图所示,微粒在重力、电场力和洛伦兹力作用下处于平衡状态,可知,qE=mg,qvB=错误!mg,得电场强度E=错误!,磁感应强度B=错误!,因此A正确。

2019年高考物理二轮练习精品试题:1-2力与物体的直线运动

2019年高考物理二轮练习精品试题:1-2力与物体的直线运动注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!无论是单选、多选还是论述题,最重要的就是看清题意。

在论述题中,问题大多具有委婉性,尤其是历年真题部分,在给考生较大发挥空间的同时也大大增加了考试难度。

考生要认真阅读题目中提供的有限材料,明确考察要点,最大限度的挖掘材料中的有效信息,建议考生答题时用笔将重点勾画出来,方便反复细读。

只有经过仔细推敲,揣摩命题老师的意图,积极联想知识点,分析答题角度,才能够将考点锁定,明确题意。

1、(2018·海南单科,1)根据牛顿第二定律,以下表达正确的选项是()、A、物体加速度的大小跟它的质量和速度大小的乘积成反比B、物体所受合力必须达到一定值时,才能使物体产生加速度C、物体加速度的大小跟它所受作用力中的任一个的大小成正比D、当物体质量改变但其所受合力的水平分力不变时,物体水平加速度大小与其质量成反比2、(多项选择)(2018·盐城模拟)如图2-6所示,滑轮A可沿倾角为θ的足够长光滑轨道下滑,滑轮下用轻绳挂着一个重力为G的物体B,下滑时,物体B 相对于A静止,那么下滑过程中()、图2-6A、B的加速度为g sinθB、绳的拉力为G cosθC、绳的方向保持竖直D、绳的拉力为G3、(多项选择)质量为0.3kg的物体在水平面上做直线运动,图2-7中的两条直线分别表示物体受水平拉力和不受水平拉力的v-t图象,那么以下说法中正确的选项是(g取10m/s2) ()、图2-7A、水平拉力大小可能等于0.3NB、水平拉力大小一定等于0.1NC、物体的摩擦力大小一定等于0.1ND、物体的摩擦力大小可能等于0.2N4.(2018·安徽理综,22)质量为0.1kg的弹性球从空中某高度由静止开始下落,该下落过程对应的v-t图象如图2-8所示、球与水平地面相碰后离开地面时的速度大小为碰撞前的34.设球受到的空气阻力大小恒为f,取g=10m/s2,求:图2-8(1)弹性球受到的空气阻力f的大小;(2)弹性球第一次碰撞后反弹的高度h.5、中央电视台曾推出一个游戏节目——推矿泉水瓶、选手们从起点开始用力推瓶一段时间后,放手让瓶向前滑动,假设瓶最后停在桌上有效区域内,视为成功;假设瓶最后没有停在桌上有效区域内或在滑行过程中倒下均视为失败、其简化模型如图2-9所示,AC是长度为L1=5m的水平桌面,选手们将瓶子放在A点,从A点开始用一恒定不变的水平推力推瓶,BC为有效区域、图2-9BC长度L2=1m,瓶子质量m=0.5kg,瓶子与桌面间的动摩擦因数μ=0.4,g =10m/s2.某选手作用在瓶子上的水平推力F=20N,瓶子沿AC做直线运动,假设瓶子可视为质点,该选手要想游戏获得成功,试问:(1)推力作用在瓶子上的时间最长为多少?(2)推力作用在瓶子上的距离最小为多少?参考答案1、D[物体加速度的大小与质量和速度大小的乘积无关,A项错误;物体所受合力不为0,那么a≠0,B项错误;加速度的大小与其所受的合力成正比,C项错误、]2、AB[分析滑轮A受力知a=g sinθ,由于下滑时,物体B相对于A静止,因此物体B的加速度也为g sinθ;对物体B受力分析得绳的拉力为G cosθ,绳的方向保持与斜面垂直、]3、BD[因为未知F方向是否与v同向,也未知a、b两线哪个对应有F拉,哪个对应无F拉,所以由图只可以知道a线对应合外力为0.1N,b线对应合外力为0.2N,所以C不对,通过分情况讨论,A错,B、D对、]4、解析(1)由v-t图象可知,小球下落过程的加速度为a 1=ΔvΔt=4-00.5m/s2=8m/s2根据牛顿第二定律,得mg-f=ma1所以弹性球受到的空气阻力f=mg-ma1=(0.1×10-0.1×8)N=0.2N.(2)小球第一次反弹后的速度v1=34×4m/s=3m/s,根据牛顿第二定律,得弹性球上升的加速度为a 2=mg+fm=0.1×10+0.20.1m/s2=12m/s2,根据v2-v20=-2ah,得弹性球第一次反弹的高度h=v212a=322×12m=0.375m.答案(1)0.2N(2)0.375m5、解析(1)要想获得成功,瓶子滑到C点时速度恰好为0,力作用时间最长,设最长时间为t1,力作用时的加速度为a1、位移为x1,撤力时瓶子的速度为v1,撤力后瓶子的加速度为a2、位移为x2,那么:F-μmg=ma1,-μmg=ma2,v1=a1t1,2a1x1=v21,2a2x2=-v21,x1+x2=L1,解得:t1=16s.(2)要想获得成功,瓶子滑到B点时速度恰好为0,力作用距离最小,设最小距离为x3,撤力时瓶子的速度为v2,那么:2a1x3=v22,2a2(L1-L2-x3)=-v22,解得:x3=0.4m答案(1)16s(2)0.4m。

2019年高考物理二轮练习精品试题:1-7带电粒子在复合场中的运动

2019年高考物理二轮练习精品试题:1-7带电粒子在复合场中的运动注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!无论是单选、多选还是论述题,最重要的就是看清题意。

在论述题中,问题大多具有委婉性,尤其是历年真题部分,在给考生较大发挥空间的同时也大大增加了考试难度。

考生要认真阅读题目中提供的有限材料,明确考察要点,最大限度的挖掘材料中的有效信息,建议考生答题时用笔将重点勾画出来,方便反复细读。

只有经过仔细推敲,揣摩命题老师的意图,积极联想知识点,分析答题角度,才能够将考点锁定,明确题意。

1、(2018·海口调研测试)如图7-6所示空间分为Ⅰ,Ⅱ,Ⅲ三个足够长的区域,各边界面相互平行,其中Ⅰ,Ⅱ区域存在匀强电场E I=1.0×104V/m,方向垂直边界面竖直向上;EⅡ=34×105V/m,方向水平向右,Ⅲ区域磁感应强度B=5.0T,方向垂直纸面向里,三个区域宽度分别为d1=5.0m,d2=4.0m,d3=10m、一质量m=1.0×10-8kg、电荷量q=1.6×10-6C的粒子从O点由静止释放,粒子重力忽略不计、图7-6求:(1)粒子离开区域Ⅰ时的速度大小;(2)粒子从区域Ⅱ进入区域Ⅲ时的速度方向与边界面的夹角;(3)粒子在Ⅲ区域中运动的时间和离开Ⅲ区域时的速度方向与边界面的夹角、2、(2018·重庆理综,24)有人设计了一种带电颗粒的速率分选装置,其原理如图7-7所示,两带电金属板间有匀强电场,方向竖直向上,其中PQNM矩形区域内还有方向垂直纸面向外的匀强磁场、一束比荷(电荷量与质量之比)均为1 k的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O′O进入两金属板之间,其中速率为v0的颗粒刚好从Q点处离开磁场,然后做匀速直线运动到达收集板、重力加速度为g.PQ=3d,NQ=2d,收集板与NQ的距离为l,不计颗粒间相互作用、求(1)电场强度E的大小;(2)磁感应强度B的大小;(3)速率为λv0(λ>1)的颗粒打在收集板上的位置到O点的距离、图7-73、(2018·郑州市预测)如图7-8甲所示,两平行金属板长度l不超过0.2m,两板间电压U随时间t变化的U-t图象如图7-8乙所示、在金属板右侧有一左边界为MN、右边无界的匀强磁场,磁感应强度B=0.01T,方向垂直纸面向里、现有带正电的粒子连续不断地以速度v0=105m/s射入电场中,初速度方向沿两板间的中线OO′方向、磁场边界MN与中线OO′垂直、带电粒子的比荷q m=108C/kg,粒子的重力和粒子之间的相互作用力均可忽略不计、图7-8(1)在每个粒子通过电场区域的时间内,可以把板间的电场强度当做恒定的、请通过计算说明这种处理能够成立的理由、(2)设t=0.1s时刻射入电场的带电粒子恰能从金属板边缘穿越电场射入磁场,求该带电粒子射出电场时速度的大小、(3)对于所有经过电场射入磁场的带电粒子,设其射入磁场的入射点和从磁场射出的出射点间的距离为d,试判断:d的大小是否随时间变化?假设不变,证明你的结论;假设变化,求出d的变化范围、参考答案1、解析(1)由动能定理得mv212=qE I d1 ①得:v1=4×103m/s ②(2)粒子在区域Ⅱ做类平抛运动、设水平向右为y轴,竖直向上为x轴,粒子进入区域Ⅲ时速度与边界的夹角为θtanθ=vxvy③vx=y1v y=at ④a=qEⅡm⑤t=d2v1⑥把数值代入得θ=30°⑦(3)粒子进入磁场时的速度v2=2v1 ⑧粒子在磁场中运动的半径R=mv2qB=10m=d3 ⑨由于R=d3,粒子在磁场中运动所对的圆心角为60°粒子在磁场中运动的时间t=T6=π×10-24s ⑩粒子离开Ⅲ区域时速度与边界面的夹角为60°⑪答案(1)4×103m/s(2)30°(3)π×10-24s60°2、解析(1)设带电颗粒的电荷量为q,质量为m.有Eq=mg将qm=1k代入,得E=kg.(2)如图甲所示,有qv0B=m v2R,R2=(3d)2+(R-d)2得B=kv5d.图甲图乙(3)如图乙所示,有qλv0B=m λv2R1,tanθ=3dR21-3d2,y1=R1-R2 1-3d2,y2=l tanθ,y=y1+y2,得y=d(5λ-25λ2-9)+3l25λ2-9.答案见解析3、解析(1)带电粒子在金属板间运动的时间为t=lv≤2×10-6s,由于t远小于T(T为电压U的变化周期),故在t时间内金属板间的电场可视为恒定的、另解:在t时间内金属板间电压变化ΔU≤2×10-3V,由于ΔU远小于100V(100V 为电压U最大值),电压变化量特别小,故t时间内金属板间的电场可视为恒定的、(2)t=0.1s时刻偏转电压U=100V,由动能定理得12qU=12mv21-12mv20,代入数据解得v1=1.41×105m/s.(3)设某一时刻射出电场的粒子的速度大小为v,速度方向与OO′夹角为θ,那么v=vcos θ,粒子在磁场中有qvB=mv2R,由几何关系得d=2R cosθ,由以上各式解得d=2mv0 qB,代入数据解得d=0.2m,显然d不随时间变化、答案(1)见解析(2)1.41×105m/s(3)d=0.2m不随时间变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。 课时冲关练(九)

带电粒子在组合场、复合场中的运动 (45分钟,100分) 一、选择题(本大题共7小题,每小题8分,共56分) 1.(2018·武汉一模)回旋加速器是加速带电粒子的装置,其主体部分是两个D形金属盒,两金属盒处在垂直于盒底的匀强磁场中,与高频交流电源相连接后,使粒子每次经过两盒间的狭缝时都能得到加速,如图所示。现要增大带电粒子从回旋加速器射出时的动能,下列方法可行的是 ( ) A.仅减小磁场的磁感应强度 B.仅减小狭缝间的距离 C.仅增大高频交流电压 D.仅增大金属盒的半径 【解析】选D。要使带电粒子从回旋加速器射出时的动能增大,即射出时的速度增大,粒子在磁场中做圆周运动,洛伦兹力提供向心力qvB=m错误!未找到引用源。,所以v=错误!未找到引用源。,可见要增大速度,需增大磁场的磁感应强度,增大金属盒的半径,D正确,A、B、C错误。 2.(2018·三明模拟)如图所示为一种获得高能粒子的装 置,环形区域内存在垂直纸面向外、大小可调节的均匀磁场,质量为m,电荷量为+q的粒子在环中做半径为R的圆周运动,A、B为两块中心开有小孔的极板,原来电势都为零,每当粒子顺时针飞经A板时,A板电势升高为U,B板电势仍保持为零,粒子在两板间电场中得到加速,每当粒子离开B板时,A板电势又降为零,粒子在电场一次次加速下动能不断增大,而绕行半径不变 ( ) A.粒子从A板小孔处由静止开始在电场作用下加速,绕行n圈后回到A板时获得的总动能为2nqU B.在粒子绕行的整个过程中,A板电势可以始终保持为U C.在粒子绕行的整个过程中,每一圈的周期不变 D.为使粒子始终保持在半径为R的圆轨道上运动,磁场必须周期性递增,则粒子绕行第n圈时的磁感应强度为错误!未找到引用源。 【解析】选D。粒子每绕行一圈,电场做一次正功为qU,由题意知,A、B错;粒子绕行第n圈时的速度为v,则nqU=错误!未找到引用源。mv2,周期T=错误!未找到引用源。,为使粒子始终保持在半径为R的圆轨道上运动,磁场必须周期性递增,则粒子绕行第n圈时的磁感应强度为B=错误!未找到引用源。=错误!未找到引用源。,故C错,D对。 3.如图所示,空间存在相互垂直的匀强电场和匀强磁场,电场的方向竖直向下,磁场方向垂直纸面向里,一带电油滴P恰好处于静止状态,则下列说法正确的是 ( ) A.若仅撤去磁场,P可能做匀加速直线运动 B.若仅撤去电场,P可能做匀加速直线运动 C.若给P一初速度,P不可能做匀速直线运动 D.若给P一初速度,P可能做匀速圆周运动 【解析】选D。P处于静止状态,带负电荷,mg=qE,若仅撤去磁场,P仍静止,A错误;仅撤去电场,P向下加速,同时受到洛伦兹力,将做复杂的曲线运动,B错误;给P一初速度,若垂直磁场方向,因mg=qE,P受洛伦兹力作用,将做匀速圆周运动,D正确;若初速度平行磁场方向,P做匀速直线运动,C错误。 4.(2018·沈阳一模)如图所示,空间存在足够大、正交的匀强电、磁场,电场强度为E、方向竖直向下,磁感应强度为B、方向垂直纸面向里。从电、磁场中某点P由静止释放一个质量为m、带电量为+q的粒子(粒子受到的重力忽略不计),其运动轨迹如图中虚线所示。对于带电粒子在电、磁场中下落的最大高度H,下面给出了四个表达式,用你已有的知识计算可能会有困难,但你可以用学过的知识对下面的四个选项做出判断。你认为正确的是 ( )

A.错误!未找到引用源。 B.错误!未找到引用源。 C.错误!未找到引用源。 D.错误!未找到引用源。 【解析】选A。由动能定理知,在滑到最低点过程中, qEH=错误!未 找到引用源。mv2,若最低点qE=qvB,则H=错误!未找到引用源。,但最低点洛伦兹力应大于电场力,故此结果不是要求的值,但H的单位一定跟错误!未找到引用源。的相同,故A正确,B、C、D错误。 5.速度相同的一束粒子由左端射入质谱仪后分成甲、乙两束,其运动轨迹如图所示,其中S0A=错误!未找到引用源。S0C,则下列相关说法中正确的是 ( )

A.甲束粒子带正电,乙束粒子带负电 B.甲束粒子的比荷大于乙束粒子的比荷 C.能通过狭缝S0的带电粒子的速率等于错误!未找到引用源。 D.若甲、乙两束粒子的电荷量相等,则甲、乙两束粒子的质量比为3∶2 【解析】选B。由左手定则可判定甲束粒子带负电,乙束粒子带正电,A错误;粒子在磁场中做圆周运动满足B2qv=m错误!未找到引用源。,即错误!未找到引用源。=错误!未找到引用源。,由题意知r甲所以甲束粒子的比荷大于乙束粒子的比荷,B正确;由qE=B1qv知能通过狭缝S0的带电粒子的速率等于错误!未找到引用源。,C错误;由错误!未找到引用源。=错误!未找到引用源。知错误!未找到引用源。=错误!未找到引用源。,D错误。 6.如图所示,在xOy直角坐标系中,第Ⅰ象限内分布着方向垂直纸面向里的匀强磁场,第Ⅱ象限内分布着沿y轴负方向的匀强电场。初速度为零、带电荷量为q、质量为m的粒子经过电压为U的电场加速后,从x轴上的A点垂直x轴进入磁场区域,重力不计,经磁场偏转后过y轴上的P点且垂直于y轴进入电场区域,在电场中偏转并击中x轴上的C点。已知OA=OC=d。则磁感应强度B和电场强度E可表示为 ( ) A.B=错误!未找到引用源。,E=错误!未找到引用源。 B.B=错误!未找到引用源。,E=错误!未找到引用源。 C.B=错误!未找到引用源。,E=错误!未找到引用源。 D.B=错误!未找到引用源。,E=错误!未找到引用源。 【解析】选B。设带电粒子经电压为U的电场加速后速度为v,则qU=错误!未找到引用源。mv2;带电粒子进入磁场后,洛伦兹力提供向心力,qBv=错误!未找到引用源。,依题意可知r=d,联立可解得B=错误!未找到引用源。,带电粒子在电场中偏转,做类平抛运动,设经时间t从P点到达C点,由d=vt,d=错误!未找到引用源。t2,联立可解得E=错误!未找到引用源。。故B正确。 7.(2018·漳州八校模拟)如图所示,一个质量为m、带电量为+q的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B的匀强磁场中。现给圆 环一个水平向右的初速度v0,在以后的运动中下列说法正确的是 ( ) A.圆环可能做匀减速运动 B.圆环不可能做匀速直线运动 C.圆环克服摩擦力所做的功一定为错误!未找到引用源。m错误!未找到引用源。 D.圆环克服摩擦力所做的功可能为错误!未找到引用源。m错误!未找到引用源。-错误!未找到引用源。 【解析】选D。若v0>错误!未找到引用源。,圆环做加速度减小的减速运动直至匀速运动,则圆环克服摩擦力所做的功为错误!未找到引用源。m错误!未找到引用源。-错误!未找到引用源。,C错D对;若v0=错误!未找到引用源。,圆环做匀速运动,B错;若v0找到引用源。,圆环做加速度增大的减速运动直至停止,A错。 二、计算题(本大题共3小题,共44分。需写出规范的解题步骤) 8.(14分)(2018·天津高考)一圆筒的横截面如图所示,其圆心为O。筒内有垂直于纸面向里的匀强磁场,磁感应强度为B。圆筒下面有相距为d的平行金属板M、N,其中M板带正电荷,N板带等量负电荷。质量为m、电荷量为q的带正电粒子自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方向射入磁场中。粒子与圆筒发生两次碰撞后仍从S孔射出,设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求: (1)M、N间电场强度E的大小。 (2)圆筒的半径R。 (3)保持M、N间电场强度E不变,仅将M板向上平移错误!未找到引用源。d,粒子仍从M板边缘的P处由静止释放,粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n。 【解题指南】解答本题时应从以下三点进行分析: (1)先根据带电粒子在磁场中碰撞前后速度的大小没有变化,确定粒子做圆周运动的半径相同,运动具有对称性; (2)再根据对称性确定带电粒子做圆周运动的圆心角和半径; (3)最后根据加速电场电压变化前后的比例关系,找出速度变化前后的比例关系,进而确定变化后的圆心角和半径及碰撞次数。 【解析】(1)设两板间的电压为U,由动能定理得 qU=错误!未找到引用源。mv2 ①(2分) 由匀强电场中电势差与电场强度的关系得 U=Ed ②(1分) 联立以上式子可得 E=错误!未找到引用源。 ③(1分) (2)粒子进入磁场后做匀速圆周运动,运用几何关系作出圆心为O′,圆半径为r。设第一次碰撞点为A,由于粒子与圆筒发生两次碰撞又从S孔射出,因此,SA弧所对的圆心角∠AOS等于错误!未找到引用源。。

由几何关系得 r=Rtan错误!未找到引用源。 ④(1分) 粒子运动过程中洛伦兹力充当向心力,由牛顿第二定律得qvB=m错误!未找到引用源。 ⑤(2分) 联立④⑤式得 R=错误!未找到引用源。 ⑥(1分) (3)保持M、N间电场强度E不变,M板向上平移错误!未找到引用源。d后,设板间电压为U′,则 U′=错误!未找到引用源。=错误!未找到引用源。 ⑦(1分) 设粒子进入S孔时的速度为v′,由①式看出 错误!未找到引用源。=错误!未找到引用源。

相关文档
最新文档