厦门大学2011级理工类高等数学期末试题-A答案
大学高等数学期末考试题及答案详解(计算题)

大学数学期末高等数学试卷(计算题)一、解答下列各题(本大题共16小题,总计80分)1、(本小题5分).d )1(22x x x ⎰+求2、(本小题5分) 求极限 lim x x x x x x →-+-+-23321216291243、(本小题5分)求极限limarctan arcsin x x x →∞⋅1 4、(本小题5分)⎰-.d 1x x x 求5、(本小题5分) .求dt t dx d x ⎰+2021 6、(本小题5分)⎰⋅.d csc cot 46x x x 求7、(本小题5分) .求⎰ππ2121cos 1dx x x8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==⎧⎨⎪⎩⎪=cos sin (),22 9、(本小题5分).求dx x x ⎰+301 10、(本小题5分)求函数 的单调区间y x x =+-42211、(本小题5分) .求⎰π+202sin 8sin dx x x 12、(本小题5分).,求设 dx t t e t x kt )sin 4cos 3()(ωω+=-13、(本小题5分) 设函数由方程所确定求.y y x y y x dy dx =+=()ln ,226 14、(本小题5分)求函数的极值y e e x x =+-215、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--12131101101111222216、(本小题5分) .d cos sin 12cos x x x x ⎰+求 二、解答下列各题(本大题共2小题,总计14分)1、(本小题7分),,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿2、(本小题7分) .8232体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y ==三、解答下列各题 ( 本 大 题6分 )设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230一学期期末高数考试(答案)一、解答下列各题(本大题共16小题,总计77分)1、(本小题3分)⎰+x x x d )1(22 ⎰++=222)1()1d(21x x =-++12112x c .2、(本小题3分) 解原式:lim =--+→x x x x 22231261812 =-→lim x x x 261218 =23、(本小题3分)因为arctan x <π2而limarcsin x x →∞=10故limarctan arcsin x x x →∞⋅=10 4、(本小题3分) ⎰-x x x d 1 x x x d 111⎰----= ⎰⎰-+-=x x x 1d d =---+x x c ln .1 5、(本小题3分)原式=+214x x6、(本小题4分) ⎰⋅x x x d csc cot 46⎰+-=)d(cot )cot 1(cot 26x x x =--+171979cot cot .x x c 7、(本小题4分)原式=-⎰cos ()1112x d x ππ=-sin 112x ππ=-1 8、(本小题4分) 解: dy dx e t t e t t t t t =+-22222(sin cos )(cos sin ) =+-e t t t t t t (sin cos )(cos sin )2222 9、(本小题4分)令 1+=x u 原式=-⎰24122()u u du=-2535312()u u =11615 10、(本小题5分) ),(+∞-∞函数定义域 01)1(222='=-=-='y x x x y ,当 (][)+∞<'>∞->'<,1011,01函数的单调减区间为,当函数单调增区间为, 当y x y x 11、(本小题5分)原式=--⎰d x x cos cos 9202π=-+-163302ln cos cos x x π=162ln12、(本小题6分) dx x t dt ='()[]dt t k t k e kt ωωωωsin )34(cos )34(+--=- 13、(本小题6分) 2265yy y y x '+'='=+y yx y 315214、(本小题6分) 定义域,且连续(),-∞+∞'=--y e e x x 2122() 驻点:x =1212ln 由于''=+>-y e e x x 20 22)21ln 21(,,=y 故函数有极小值15、(本小题8分) 原式=++++++++--→∞lim ()()()()()()x x x x x x x 1121311011011112222 =⨯⨯⨯⨯=101121610117216、(本小题10分) dx x x dx x x x ⎰⎰+=+2sin 2112cos cos sin 12cos :解⎰++=x x d 2sin 211)12sin 21(=++ln sin 1122x c 二、解答下列各题(本大题共2小题,总计13分)1、(本小题5分)设晒谷场宽为则长为米新砌石条围沿的总长为 x xL x x x ,,()51225120=+> '=-=L x x 2512162 唯一驻点 ''=>=L x x 10240163 即为极小值点 故晒谷场宽为米长为米时可使新砌石条围沿所用材料最省165121632,,= 2、(本小题8分)解 :,,.x x x x x x 232311288204====V x x dx x x dx x =-⎡⎣⎢⎤⎦⎥=-⎰⎰ππ()()()223204460428464=⋅-⋅π()1415164175704x x π=-π=35512)7151(44 三、解答下列各题( 本 大 题10分 )证明在连续可导从而在连续可导:()(,),,[,];,.f x -∞+∞03又f f f f ()()()()01230====则分别在上对应用罗尔定理得至少存在[,],[,],[,](),011223f x ξξξξξξ1231230112230∈∈∈'='='=(,),(,),(,)()()()使f f f 即至少有三个实根'=f x (),0,,,0)(它至多有三个实根是三次方程又='x f由上述有且仅有三个实根'f x ()参考答案一。
2011华南理工大学高等数学下期末考试答案

2011-2012学年第二学期《高等数学》答案一.填空题(每小题4分,共20分)1.函数2249z x y =+在点()2,1的梯度为grad z ={16,18};2.函数44222z x y x xy y =+---的极值点是()()1,1,,1,1--;3.假设L 为圆222x y a +=的右半部分,则22Lx y ds +=⎰____2a π;4.设22e sin (2)x A y xy z xzy =+++i j k ,则(1,0,1)div |A = 0 ,5.设13y =,223y x =+,233e x y x =++都是方程22(2)(2)(22)66x x y x y x y x '''---+-=-的解,则方程的通解为 2123e x y c x c =++.二.(本题8分)计算三重积分222()x y z dv Ω++⎰⎰⎰,其中Ω是由2221x y z ++=所围成的闭球体.解:⎰⎰⎰⋅=122020sin dr r r d d ϕϕθππ4’π54= 4’三. (本题8分)证明:(),f x y xy =在点()0,0处连续,()0,0x f 与()0,0y f 存在,但在()0,0处不可微.证 ()0l i m 00,0x y x y f →→== ,故(),f x y 在点()0,0处连续; 2’又由定义()()(),00,00,0lim00x x f x f f x →-==-, ()0000,0lim00y y y f y →⋅-==-; 2’但22000limxy x yx yρ→--⋅-⋅+不存在,故在()0,0 处不可微。
4’四.(本题8分)设函数),(y x u 有连续偏导数,试用极坐标与直角坐标的转化公式θθsin ,cos r y r x == ,将xuyy u x∂∂-∂∂变换为θ,r 下的表达式. 解,u u r u u u r ux r x x y r y yθθθθ∂∂∂∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂∂∂∂ 2’ 再由cos ,sin x r y y θθ==,分别对,x y 求导数,得1cos sin 0sin cos r r x x r r x x θθθθθθ∂∂⎧=-⎪⎪∂∂⎨∂∂⎪=+⎪∂∂⎩和0cos sin 0sin cos r r y y r r y y θθθθθθ∂∂⎧=-⎪∂∂⎪⎨∂∂⎪=+⎪∂∂⎩解得sin cos ,r x x r θθθ∂∂==-∂∂,cos sin ,r y x rθθθ∂∂==∂∂从而sin cos u u u x r r θθθ∂∂∂=-∂∂∂,cos sin u u u y r r θθθ∂∂∂=+∂∂∂, 4’ 所以x u yy u x ∂∂-∂∂=θ∂∂u2’五.(8分)计算22d d L x y y xx y -+⎰ ,其中L 为(1)圆周()()22111x y -+-=(按反时针方向);解:()()222222222222222x x y x x y x y x x y y x y x y x y ⎛⎫⎛⎫∂+-⋅-∂-=== ⎪ ⎪∂+∂+⎝⎭⎝⎭++,而且原点不在该圆域内部,从而由格林公式,原式0= 4’ (2)闭曲线1x y +=(按反时针方向).解:()()222222222222222x x y x x y x y x x y y x y x y x y ⎛⎫⎛⎫∂+-⋅-∂-=== ⎪ ⎪∂+∂+⎝⎭⎝⎭++, 原式()1122d d d d 1001120.01L L Dx y y x x y y x dxdy x y π--===+=+⎰⎰⎰⎰ 4’六.(8分)计算d y S ∑⎰⎰,∑是平面4=++z y x 被圆柱面122=+y x 截出的有限部分. 解: 4,1,1x y z x y z z =--=-=-,1113dS dxdy dxdy =++=,:01,02D r θπ≤≤≤≤ 原式3D ydxdy =⎰⎰4’1232203sin 3cos 03ar d r dr ππθθθ==-⋅=⎰⎰ 4’七.(8分)计算曲面积分2I yzdzdx dxdy ∑=+⎰⎰,其中∑为上半球面224z x y =--的上侧解 取1∑为xOy 平面上圆224x y +≤的下侧,记Ω为1∑与∑所围的空间闭区域。
物理11级高等数学第一学期期末试题答案(A)

第 1 页 共 2 页陇东学院2011——2012学年第一学期物电学院非物理学专业高等数学课程期末试题答案(A)一、选择题(每小题2分,共20分).1.若函数()y f x =在点0x 处连续,则0lim ()x x f x →( B )A .不存在;B .等于0()f x ;C .存在但不等于0()f x ;D .不确定.2. 1lim (1)xx x→∞-=( D )A .1;B .e ;C .∞;D .1e.3. =∞→xx x sin lim( B )A .1;B .0;C .∞;D .不存在但不为∞.4.下列说法正确的是( C )A .有界数列必收敛;B .单调数列必收敛;C .收敛数列必有界;D .发散数列必无界.5. 若函数()sin f x x =,则()f x 在点0x =处( A )A .连续但不可导;B .连续且可导;C .可导但不连续;D .不连续也不可导.6.若函数()f x 在区间[],a b 上连续,在区间(,)a b 内可导,则在区间(,)a b 内至少存在一点ξ, 使得()f ξ'= ( C )A .0;B .1;C .()()f b f a b a--; D .()()f b f a -7. 下列各式正确的是( A )A .()()f x dx f x C '=+⎰; B .22()()x a df x dx f x dx=⎰; C .()()x ad f x dx f x dx'=⎰; D .()()bad f x dx f x dx=⎰8.121arctan 1x dx x-=+⎰( D )A .2π; B .4π; C . 2; D . 0 .9.若0()0f x '=,0()0f x ''>,则0x 为函数()f x 的 ( A )A . 极小值点;B .极大值点;C .非极值点;D . 不一定是极值点.10.若广义积分1padx x+∞⎰收敛,则( B )A .1p ≤;B .1p >;C .0p ≤;D .01p <<.二、填空题(每小题3分,共15分).11.420sin xdx π=⎰316π;12.设2ln(1)y x =+, 则微分dy =221x dx x+;13.曲线22tx t y e⎧=⎨=⎩在1t =相应的点处的切线方程y ex e =+; 14. 函数xy e =的n 阶麦克劳林公式为231()1!2!3!!nxnx xxxe o x n =+++++;15.微分方程2dy xy dx=的通解2xy Ce=.三、计算题(每小题5分,共40分).16.解:32322111323363limlimlim6221321x x x x x x x x x x x x x →→→-+-===---+--;或3232211132(1)(2)23limlimlim121(1)(1)x x x x x x x x x x x x x x →→→-+-++===+--+-+17.解:22cos limlim cos 1x x x t dt x x→→==⎰;试 卷 密 封 装 订 线院 系 班 级 姓 名 学 号第 2 页 共 2 页18.解: 两端取对数 ln sin ln y x x =,再求导1cos ln sin y x x x yx'=+,得 sin sin (cos ln )x x y x x x x'=+19.解:两端求导 0y e y y xy ''++=,从而yy y x e'=-+20.解:21143()(2)(3)3256x x dx dx dx x x x x x x ++==------+⎰⎰⎰=434ln(3)3ln(2)32dxdxx x x x -=-----⎰⎰21.解:22ln ln (sin cos )sin cos x x x x dx dx x xdx xx+=+⎰⎰⎰22311ln (ln )sin (sin )ln sin 23xd x xd x x x C =+=++⎰⎰22.解:11111000222222ttt tt te dt tee dt e e=-=-=⎰⎰⎰23.解:2111arctan lim arctan arctan 12441x dx x x xπππ+∞+∞→+∞==-=-=+⎰四、应用题(共20分)24.讨论函数1y x x=+的性态,描绘函数图象.(8分)解:(,0)(0,)x ∈-∞⋃+∞,函数是奇函数 221x y x-'=, 32y x''=,令0,0y y '''==,得1x =±1lim lim ()x x y x x→→=+=∞ ∴有铅直渐近线0x =又21limlim (1)1x x y k xx→→==+= ,1lim ()lim ()0x x b y kx x x x→∞→∞=-=+-=∴有斜渐近线y x =25.求抛物线2y x =与直线1x =所围平面图形的面积A 以及此图形绕x 轴旋转所成的旋转体的体积V .(6分)解:13124433A x ===⎰,11222V xdx xπππ===⎰26.求二阶常系数齐次微分方程230y y y '''--=的通解.(6分)解:特征方程2230r r --=,特征根121,3r r ==,通解为2312x xy C e C e =+五、证明题(5分)选做一题27.证明当0x >时,ln(1)x x >+证:令()ln(1)f x x x =-+,则当0x >时,1()1011x f x xx'=-=>++故()f x 在[)0,x 上单调增加,因此当0x >时,()ln(1)(0)0f x x x f =-+>= 即 当0x >时,ln(1)x x >+28.证明方程510x x +-=只有一个正根.证:令5()1f x x x =+-,则()f x 在(,)-∞+∞内连续,且(0)10,(1)10f f =-<=>,由零点定理知,()f x 在(0,1)内至少有一个零点.又4()510f x x '=+>,所以5()1f x x x =+-只有一个零点,在(0,1)内,故方程510x x +-=只有一个正根.。
2011年福建高考理科数学试卷与答案

2011年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷第3至6页。
第Ⅱ卷第21题为选考题,其他题为必考题。
满分150分。
注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号,姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3.考试结束,考生必须将试题卷和答题卡一并交回。
参考公式:样本数据1x ,2x ,…,n x 的标准差 锥体体积公式222121()()()]n s x x x x x x n =−+−−[++ 13V Sh = 其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式V Sh = 2344,3S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 是虚数单位,若集合S ={-1,0,1},则A.i ∈SB. 2i ∈SC. 3i ∈SD.2i∈S 2.若a ∈R ,则a =2是(1)(2)0a a −−=的A.充分而不必要条件 B 必要而不充分条件C.充要条件 C.既不充分又不必要条件 3.若tan α=3,则2sin 2cos αα的值等于 A.2 B.3 C.4 D.64.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于 A.14 B.13 C. 12 D.235.1(2)xex dx +⎰等于A.1B.1e −C.eD.1e +6.5(12)x +的展开式中,2x 的系数等于A.80B.40C.20D.107.设圆锥曲线E 的两个焦点分别为1F ,2F ,若曲线E 上存在点P 满足1||PF :12||F F :2||PF =4:3:2,则曲线E 的离心率等于A.12或32 B.23或2 C. 12或2 D. 23或328.已知O 是坐标原点,点A (-1,1),若点(,)M x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM •的取值范围是A.[-1.0]B.[0.1]C.[0.2]D.[-1.2]9.对于函数()f x =sin a x bx c ++(其中a ,b ∈R ,c ∈Z ),选取a ,b ,c 的一组值计算(1)f 和(1)f −,所得出的正确结果一定不可能.....是 A.4和6 B.3和1 C.2和4 D.1和210.已知函数()f x =xe x +,对于曲线y =()f x 上横坐标成等差数列的三个点A ,B ,C ,给出以下判断:①ABC ∆一定是钝角三角形②ABC ∆可能是直角三角形 ③ABC ∆可能是等腰三角形 ④ABC ∆不可能是等腰三角形 其中,正确的判断是A.①③B.①④C. ②③D.②④ 注意事项:用0.5毫米黑色签字笔在答题卡上书写答案,在试题卷上作答,答案无效。
14-15第一学期微积分I高等数学期末试卷及答案(A卷)

一、计算下列各题:(每小题4分,共36分)1.求极限)0(21lim 1>++++∞→p nn p pp p n 。
2.求2cos ()x t x f x e dt =⎰的导数。
3.求由曲线3y x =-,1x =,2x =,0y =所围成的图形面积。
4.计算广义积分20x x e dx +∞-⎰。
厦门大学《微积分I 》课程期末试卷试卷类型:(理工类A 卷) 考试日期 2015.1.215.计算定积分120sin 2x x dx π⎡⎤⎛⎫⎢ ⎪⎢⎝⎭⎢⎣⎰。
6.求方程2x ydy dx +=的通解。
7.求不定积分2(1)(1)xdx x x ++⎰。
8.求方程1y y x x'-=的通解。
9.已知11y =,21y x =+,231y x =+都是微分方程2222x y xy y '''-+=的解,求此方程的通解。
二、计算下列各题:(每小题5分,共30分)1. 求极限20)(02sin limx dt e x x t x x ⎰-→⋅。
2.计算22sin 2cos x x dx x ππ-⎤⎥+⎦⎰。
3.设函数)(x y y =由方程1cos 020322=+⎰⎰dt t dt e x y t 决定,求dxdy 。
4. 求微分方程32y y ''=满足初始条件00|1,|1x x y y =='==的特解。
5.求曲线⎰=x t t x f 0d sin )(相应于π≤≤x 0的一段弧的长度。
6. 设物体作直线运动,已知其瞬时速度2()(/)v t t =米秒,其受到与运动方向相反的阻力()5()F t v t =(牛顿),求物体在时间间隔[]0,1(单位秒)内克服阻力所作的功。
三、计算下列各题:(每小题6分,共24分)1.求微分方程32()()1dy x x y x x y dx++-+=-的通解。
2.设0>a ,求直线231aa x y +-=与x 轴,y 轴所围三角形绕直线a x =旋转一周所得旋转体的体积。
2011年福建高考数学答案(理科)

绝密☆启用前2011年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷第3至6 页。
第Ⅱ卷第21题为选考题,其他题为必考题。
满分150分。
注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号,姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3.考试结束,考生必须将试题卷和答题卡一并交回。
参考公式: 样本数据x 1,x 2,…,x a 的标准差 锥体体积公式])()()[(122221x x x x x x nS n -++-+-=13V Sh =其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式V=Sh 2344,3S R V R ππ==其中S 为底面面积,h 为高其中R 为球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.i 是虚数单位,若集合S=}{1.0.1-,则A .i S ∈B .2i S ∈ C . 3i S ∈ D .2S i∈2.若a ∈R ,则a=2是(a-1)(a-2)=0的 A .充分而不必要条件 B .必要而不充分条件C .充要条件 C .既不充分又不必要条件3.若tan α=3,则2sin 2cos aα的值等于 A .2 B .3 C .4 D .64.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于 A .14 B .13C .12D .235.1⎰(e 2+2x )dx 等于A .1B .e-1C .eD .e+1 6.(1+2x )3的展开式中,x 2的系数等于 A .80B .40C .20D .107.设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于A .1322或B .23或2C .12或2 D .2332或 8.已知O 是坐标原点,点A (-1,1)若点M (x,y )为平面区域21y 2x y x +≥⎧⎪≤⎨⎪≤⎩,上的一个动点,则OA ·OM的取值范围是 A .[-1.0] B .[0.1] C .[0.2] D .[-1.2]9.对于函数f (x )=asinx+bx+c (其中,a,b ∈R,c ∈Z ),选取a,b,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能.....是 A .4和6 B .3和1 C .2和4 D .1和210.已知函数f (x )=e+x ,对于曲线y=f (x )上横坐标成等差数列的三个点A,B,C ,给出以下判断: ①△ABC 一定是钝角三角形 ②△ABC 可能是直角三角形 ③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形 其中,正确的判断是 A .①③ B .①④ C . ②③ D .②④2011年普通高等学校招生全国统一考试(福建卷)数 学(理工农医类)注意事项: 用0.5毫米黑色签字笔在答题卡上书写答案,在试题卷上作答,答案无效。
山大2011级高数上期末试题及答案
11-12高数上期末:一、填空题 (共5小题,每题4分,共20分)1. 设0 < a < b , 则()1lim .nnnn ab--→∞+=2. 2232ln (1)d ()d x t t yy y x x y t t=-+⎧==⎨=+⎩设函数由参数方程所确定,则________.3. 100()()d x x x x x ϕϕ=⎰设是到离最近的整数的距离,则.4. 322A y x x x x =-++曲线 与轴所围图形的面积=________.5.3s in (),()d x f x x f x x x'=⎰已知的一个原函数为则_________.一、选择题 (共5小题,每题4分,共20分) 6.下列命题中正确的一个是( )(A) 若0lim ()lim ()0x x x x f x g x δ→→≥⇒∃>,当00x x δ<-<时,有()()f xg x ≥;(B) 若0δ∃>,当00x x δ<-<时有()()f xg x >且0lim(),x x f x →0lim ()x x g x →都存在,则0lim()lim ()x x x x f x g x →→>(C)若0δ∃>,当00x x δ<-<时恒有()()f xg x >,则lim ()lim ()x x x x f x g x →→≥;(D)若0lim ()lim ()0x x x x f x g x δ→→>⇒∃>,当00x x δ<-<时有()()f xg x >7.0000(2)()()lim()2h f x h f x f x x h→--=设在处可导,则0000(A )()(B )()(C )()(D )2()f x f x f x f x ''''--000(3)0()()''()0()0y f x x f x f x fx '===<8.设在点的某邻域内具有连续的三阶导数,若,且,则()''00000(A )()()(B )()()(C )()()(D )(,())()f x f x f x f x f x f x x f x y f x =是的极大值是的极大值是的极小值为曲线的拐点9. 设2s in ()es in d ,x txf x t t π+=⎰则()F x ______.(A )为正常数 (B )为负常数 (C )恒为零 (D )不为常数10. 若连续函数()f x 满足关系式20()()d ln 2,2xt f x f t =+⎰则()f x =______(A )e ln 2x2(B )eln 2x()e ln 2xC + 2(D )eln 2x+三、解答题(共6道小题,4个学分的同学选作5道小题,每题12分,共60分;5个学分的同学6道题全做,每题10分,共60分)11. 求极限201(1)lim s inx x x→10(2)l i m,,,0.3xxx xx ab c a b c →⎛⎫++> ⎪⎝⎭其中(),012.(),()0(0)0,,0(0)(0)0,(),()0g x x f x g x x g x x g g f x f x x ⎧≠⎪''==⎨⎪=⎩'''===设函数其中可导,且在处二阶导数存在,且试求并讨论在处的连续性.[]110()0,1(0,1)(1)=e()d xk f x f k x f x x-⎰13.已知函数在上连续,在内可导,且满足(1).k >其中 1(0,1),()(1)().f f ξξξξ-'∈=-证明:至少存在一点使得14.()()d xf tg x t t -⎰求(0),x ≥0x ≥其中当时,(),f x x =s in ,02.0,2x x x x ππ⎧≤<⎪⎪⎨⎪≥⎪⎩而g ()=15. 求微分方程243(1)22x y x y x y '++=满足初始条件 01|2x y ==的特解2s in s in s in 16.(1)lim 1112n n nn n n n πππ→∞⎛⎫⎪+++ ⎪+ ⎪++⎝⎭.计算 (2).()[0,1]1()2,f x f x ≤≤设函数在连续,且 证明:1119()d d .()8f x x x f x ≤⎰⎰一.填空题1.1a2.(65)(1)t t t++ 3. 25 4.37125. 22ln ln x x C -+二.选择题6. D7. A8. D9. A 10. B 三.解答题 11. 21(1)lim s inx x x→2211s in1,lim 0lim s in0x x xx xx→→≤=∴=有界10(2)l i m,,,0.3xxx xx ab c a b c →⎛⎫++> ⎪⎝⎭其中()()0013131(1)(1)(1)1ln 1lim 1limln ln ln 33333lim eeeex x xx x x x x xx x a b c a b c a b c a b c x x xx a b c →→⎛⎫⎛⎫++-++--+-+-⋅+ ⎪ ⎪++ ⎪ ⎪⎝⎭⎝⎭→=====原极限2222()(0)()()1()(0)1(0)limlimlimlim(0)222()(),0()1(0),02()()()(0)(lim ()limlimlim(0)l x x x x x x x x f x f g x g x g x g f g xxxxx g x g x x xf xg x x g x g x g x g g x f x xxxg →→→→→→→→'''--'''====='-⎧≠⎪⎪'=⎨⎪''=⎪⎩'''--'==-''=-12.解:)0()1im(0)(0)22()0x g x g f xf x x →''''=='∴=在处连续1-11-1111113.[0,],(1)e().11, 1.(0,1).()e (),()[0,](0,)(1)=(1)e ()().(0,)()e()e()e()0,e0,xf f kk kF x x f x F x F f f F F f f f f ηηξξξξηηηηηηηηηηξξξξξξξ-----∃∈=><∈===''=-+=>由积分中值定理,使得得则令由题意知在上连续,内可导且由罗尔中值定理,在内存在一点,使得得-1()()()0()(1-)().(0,1).f f f f ξξξξξξξξξ''-+=⇒=∈其中20014.,d d .()()d ()()d ()()d ;()()d =()s in d s in ;2()()d ()s in d 0 1.2s in 2()()d =12xxxx x xxu x t u t f t g x t t f x u g u u f x u g u u x f x u g u u x u u u x x x f x u g u u x u u u x x x x f t g x t t x x πππππ=-=--=--=-≤<--=-≥-=-+=--≤<--≥⎰⎰⎰⎰⎰⎰⎰⎰令则于是当0时,当时,,0所以,⎧⎪⎪⎨⎪⎪⎩4322342222222d 2215.,d 3(1)3(1)d d ,3d d 1d 22d 22-,--(1)3d 3(1)3(1)d 11d 2-0,(1)z (1)(d 1y x x yyxx x z y z y yxxz xx zxx z z xx x x xxzxz z C x x u x x ----+=++==-+==++++==+=++讲方程改写为:这是贝努里方程.令则,代入上述方程得:即, 这是一阶线性非齐次方程,它对应的齐次方程为它的通解为,令22222222203321)d d (1)2(),(1)d d d 22d 2(1)2()(1)()-,-,d 11d 11,(1)1(1),1111(1).|81,7.2(78).x x z u x x u x xxu x x u x x x u x x u x xxxxxu C z C x xC x y C C yy x =--=++++-+==+++=+=+++=++==+==+则将其代入得即积分得即的通解为从而原方程的通解为由初始条件,有故所求的特解为11112s ins ins in 12116.(1)(s ins ins in )s in111212lims ins in ()d .2s ins ins in 121(s ins ins in )s in111112limni nn i ni n i n nn nnnnnn n ni x x nnn i n nn n nnn nnn n nnn πππππππππππππππππ=→∞==→∞+++<+++=+++==+++>+++=++++++∑∑⎰∑而另一方面且1112s in=s in ()d .12.ni i x x nnππππ===∑⎰所以由夹逼准则知原式111011100(2)1()2(()1)(()2)0,(()1)(()2)10()d 2d 3()()1d 3()19()d d .()8f x f x f x f x f x f x x x f x f x xx f x f x xx f x ≤≤∴--≤--≤+≤≤≤⎰⎰⎰⎰⎰⎰得,即,得到从而整理得:。
2011年福建卷理科数学高考试卷(原卷 答案)
绝密★启用前2011年普通高等学校招生全国统一考试(福建卷)理科数学本试卷共21题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷(选择题 共50分)选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
i 是虚数单位,若集合S=}{1.0.1−,则A.i S ∈B.2i S ∈ C. 3i S ∈ D.2S i ∈2.若a ∈R ,则a=2是(a-1)(a-2)=0的A.充分而不必要条件 B 必要而不充分条件C.充要条件 C.既不充分又不必要条件3.若tan α=3,则2sin 2cos a α的值等于A.2B.3C.4D.64.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A.14 B.13C.12D.235.10⎰(e2+2x )dx 等于A.1B.e-1C.eD.e+1 6.(1+2x)3的展开式中,x2的系数等于A.80B.40C.20D.107.设圆锥曲线r 的两个焦点分别为F1,F2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于A.1322或B.23或2C.12或2D.2332或 8.已知O 是坐标原点,点A (-1,1)若点M (x,y )为平面区域,上的一个动点,则OA ·的取值范围是A.[-1.0]B.[0.1]C.[0.2]D.[-1.2]9.对于函数f (x )=asinx+bx+c(其中,a,b ∈R,c ∈Z),选取a,b,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能是A.4和6B.3和1C.2和4D.1和210.已知函数f(x)=e+x ,对于曲线y=f (x )上横坐标成等差数列的三个点A,B,C ,给出以下判断: ①△ABC 一定是钝角三角形 ②△ABC 可能是直角三角形 ③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形 其中,正确的判断是A.①③B.①④C. ②③D.②④2011年普通高等学校招生全国统一考试(福建卷)数 学(理工农医类)注意事项:用0.5毫米黑色签字笔在答题卡上书写答案,在试题卷上作答,答案无效。
厦门大学《高等代数》期末试题及答案(数学系)
一、单选题(32 分. 共8 题, 每题4 分)1) 设b 为3 维行向量,V ={(x1 , x2 , x3 ) | ( x1 , x2 , x3 ) =b},则。
CA) 对任意的b ,V 均是线性空间;B) 对任意的b ,V 均不是线性空间;C) 只有当b = 0 时,V 是线性空间;D) 只有当b σ 0 时,V 是线性空间。
2)已知向量组I:α1 ,α2 ,...,αs 可以由向量组II:⎭1 , ⎭2 ,..., ⎭t 线性表示,则下列叙述正确的是。
AA)若向量组I 线性无关,则s t ;B) 若向量组I 线性相关,则s >t ;C) 若向量组II 线性无关,则s t ;D) 若向量组II 线性相关,则s >t 。
3)设非齐次线性方程组AX =⎭中未定元个数为n,方程个数为m,系数矩阵A 的秩为r,则。
DA)当r <n 时,方程组AX =⎭有无穷多解;B) 当r =n 时,方程组AX =⎭有唯一解;C) 当r <m 时,方程组AX =⎭有解;D) 当r =m 时,方程组AX =⎭有解。
4)设A 是m ⨯n 阶矩阵,B 是n ⨯m 阶矩阵,且AB =I ,则。
AA) r( A) =m, r(B) =m ;B) r( A) =m, r(B) =n ;C) r( A) =n, r(B) =m;D) r( A) =n, r(B) =n 。
5)设K 上3 维线性空间V 上的线性变换ϕ在基⋂,⋂{1 1 1,⋂ 下的表示矩阵是|1 0 1| ,则ϕ 在基⋂1 , 2⋂2 ,⋂3 下的表示矩阵是 。
C1 2 3|||1 1 1|{1 2 1112222{ 1 11| | |2|| || 2 |A) |2 0 2 |;B) | 11 10 1 |;C) |10 1 ;D)|2 0 2 |。
|1 2 1 || 1 | 2|1 2 1 || 1 |26)设ϕ是V 到U 的线性映射,dim V =n, dim U =m 。
2011年福建高考数学理科试卷(带详解)
2011福建理第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,若集合{}1,0,1S =-,则,则( ) A .i S Î B .2i S Î C . 3i S ÎD .2iS Î 【测量目标】复数的基本概念、集合的含义.【测量目标】复数的基本概念、集合的含义.【考查方式】给出虚数单位和集合,判断它们之间的关系.【考查方式】给出虚数单位和集合,判断它们之间的关系. 【难易程度】容易【难易程度】容易 【参考答案】B【试题解析】22i 1S =-Î.故选B .2.若a ÎR ,则2a =是()()120a a --=的 ( ) A .充分而不必要条件.充分而不必要条件 B .必要而不充分条件.必要而不充分条件C .充要条件.充要条件 C .既不充分又不必要条件.既不充分又不必要条件 【测量目标】充分、必要条件.【测量目标】充分、必要条件.【考查方式】给出两个命题,判断两个命题的关系.【考查方式】给出两个命题,判断两个命题的关系. 【难易程度】容易【难易程度】容易 【参考答案】A【试题解析】当2a =时,()()120a a --=,所以2a =是()()120a a --=的充分条件,但是()()120a a --=时,1a =或2a =,所以2a =不是()()120a a --=的必要条件.故选A .3.若tan 3α=,则2sin 2cos aa的值等于的值等于 ( ) A .2 B .3 C .4D .6 【测量目标】同角三角函数的基本关系、二倍角公式.【测量目标】同角三角函数的基本关系、二倍角公式.【考查方式】给出式子和正切函数值,利用同角三角函数的基本关系和二倍角公式求解. 【难易程度】容易【难易程度】容易 【参考答案】D 【试题解析】22sin 22sin cos 2tan 6cos cos ===aa aa a a.故选D .4.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABE △内部的概率等于内部的概率等于 ( ) A .14 B .13 C .12D .23第4题图题图【测量目标】几何概型.【测量目标】几何概型.【考查方式】给出图形,利用几何概型求事件的概率.【考查方式】给出图形,利用几何概型求事件的概率. 【难易程度】容易【难易程度】容易 【参考答案】C 【试题解析】因为12ABE ABCD S S =△,则点Q 取自ABE △内部的概率12ABE ABCD S P S ==△.故选C . 5.()1e2xx dx +ò等于等于( ) A .1 B .e 1- C .eD .e 1+ 【测量目标】定积分.【测量目标】定积分.【考查方式】给出定积分,求解.【考查方式】给出定积分,求解. 【难易程度】容易【难易程度】容易 【参考答案】C【试题解析】()()11200e 2e e 1e 0e x x x dx x +=+=+--=ò.故选C . 6.()512x +的展开式中,2x 的系数等于的系数等于 ( ) A .80 B .40 C .20 D .10 【测量目标】二项式定理.【测量目标】二项式定理.【考查方式】给出二项式根据二项展开式的公式特点计算二项式系数.【考查方式】给出二项式根据二项展开式的公式特点计算二项式系数. 【难易程度】容易【难易程度】容易 【参考答案】B 【试题解析】15C 2rrr r Tx +=,令2r =,则2x 的系数等于225C 240=.故选B . 7.设圆锥曲线Γ的两个焦点分别为12,F F ,若曲线Γ上存在点P 满足1122::4:3:2P F F F P F =,则曲线Γ的离心率等于的离心率等于 ( ) A .12或32B .23或2C .12或2D .23或32【测量目标】圆锥曲线的定义.【测量目标】圆锥曲线的定义. 【考查方式】通过给出圆锥曲线上的点与两个交点之间的线段长度比例关系,求圆锥曲线的离心率.离心率.【难易程度】中等【难易程度】中等 【参考答案】A【试题解析】因为1122::4:3:2PF F F PF =,所以设14PF λ=,123F F λ=,22PF λ=.若Γ为椭圆,则12122426,23,PF PF a λλλF F c λì+==+=ïí==ïî所以12c e a ==.若Γ为双曲线,则12122422,23,PF PF a λλλF F c λì-==-=ïí==ïî所以32c e a ==.故选A . 8.已知O 是坐标原点,点()1,1A -,若点(),M x y 为平面区域212x y x y +ìïíïî………上的一个动点,则OA OM的取值范围是的取值范围是( ) A .[]1,0- B .[]0,1 C .[]0,2 D .[]1,2- 【测量目标】判断不等式组表示的平面区域、向量的数量积.【测量目标】判断不等式组表示的平面区域、向量的数量积.【考查方式】给出点的坐标和不等式组,判断两向量数量积的取值范围.【考查方式】给出点的坐标和不等式组,判断两向量数量积的取值范围. 【难易程度】中等【难易程度】中等 【参考答案】C【试题解析】设()()1,1,z OA OM x y x y ==-=-+ .作出可行域,如图,直线z x y =-+,即y x z =+经过()1,1B 时,z 最小,min 110z =-+=,y x z =+经过()0,2C 时,z 最大,max 022z =+=,所以OA OM 的取值范围是[]0,2.故选C .第8题图题图9.对于函数()sin f x a x bx c =++(其中,,a b ÎR ,c ÎZ ),选取,,a b c 的一组值计算()1f 和()1f -,所得出的正确结果一定不可能.....是 ( ) A .4和6 B .3和1 C .2和4D .1和2 【测量目标】函数的求值.【测量目标】函数的求值.【考查方式】给出函数式,判断两函数之和的结果.【考查方式】给出函数式,判断两函数之和的结果. 【难易程度】中等【难易程度】中等 【参考答案】D【试题解析】()()()11sin1sin 12f f a b c a b c c +-=+++--+=,因为c ÎZ ,则()()11f f +-为偶数,四个选项中,只有D ,123+=不是偶数.不是偶数.10.已知函数()e xf x x =+,对于曲线()y f x =上横坐标成等差数列的三个点,,A B C ,给出以下判断:给出以下判断:①ABC △一定是钝角三角形②ABC △可能是直角三角形可能是直角三角形 ③ABC △可能是等腰三角形可能是等腰三角形 ④ABC △不可能是等腰三角形不可能是等腰三角形 其中,正确的判断是其中,正确的判断是( ) A .①.①,,③ B .①.①,,④ C .②.②,,③ D .②.②,,④【测量目标】基本不等式、指数函数的性质、函数的单调性、等差数列的性质、函数图象的应用.应用.【考查方式】给出指数函数,判断其图象横坐标上的三个点所成的形状.【考查方式】给出指数函数,判断其图象横坐标上的三个点所成的形状. 【难易程度】较难【难易程度】较难 【参考答案】B【试题解析】设a b <.首先证明()()22f a f ba b f ++æö>ç÷èø.()()22f a f b a b f ++æö-ç÷èø2eee22a baba ba b +++++=--2e e e2a b ab++=-222e e e e e 0a ba ba bab+++-=-= …,(步骤1)当且仅当a b =时等号成立,由于a b <,所以等号不成立,于是,所以等号不成立,于是 ()()022f a f b a b f ++æö->ç÷èø, ()()22f a f b a b f ++æö>ç÷èø. ① (步骤2) 设点(),A A A x y ,(),B B B x y ,(),C C C C x x y y,且,,A B C x x x 成等差数列,A B C x x x <<.由()f x 是R 上的增函数,则A B C y y y <<, ② (步骤3) 如图,D 为AC 的中点,过,,A B C 作x 轴的垂线,垂足依次为,,M N P . 因为2A CB x x x +=,所以D 在直线BN 上,作AE BN ^交BN 于E ,作B F C P ^交CP 于F .因为()()22A C A CD f x f x y y y ++==,2A CB x x y f +æö=ç÷èø, 由①式,D B y y >,(步骤4)D A DE y y =-,D B DB y y =-,由②,DE DB >,所以点B 在DE 内部,(步骤5)因而90DBA DEA °Ð>Ð=,又CB A D B A Ð>Ð,所以ABC △一定是钝角三角形.结论①正确.(步骤6)若ABC △是等腰三角形,因为D 为AC 的中点,则BD AC ^,因而AC x 轴,这是不可能的,所以ABC △不是等腰三角形.结论④正确;不是等腰三角形.结论④正确; 所以结论①,④正确.故选B .(步骤7)第10题图题图二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置. 11.运行如图所示的程序,输出的结果是_______.第11题图题图【测量目标】程序语句.【测量目标】程序语句.【考查方式】给出程序语句,计算求解.【考查方式】给出程序语句,计算求解. 【难易程度】容易【难易程度】容易【参考答案】3【试题解析】123a =+=.所以输出的结果是3.12.三棱锥P ABC -中,PA ABC ^底面,3PA =,底面ABC 是边长为2的正三角形,则三棱锥P ABC -的体积等于______. 【测量目标】三棱锥的体积.【测量目标】三棱锥的体积.【考查方式】给出三棱锥的底边边长和高,求其体积.【考查方式】给出三棱锥的底边边长和高,求其体积. 【难易程度】容易【难易程度】容易 【参考答案】3【试题解析】2113233334ABCV SPA ==´´´=△. 13.盒子装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______. 【测量目标】随机事件与概率.【测量目标】随机事件与概率.【考查方式】给出条件,利用随机概率求解.【考查方式】给出条件,利用随机概率求解. 【难易程度】中等【难易程度】中等 【参考答案】35【试题解析】所取出的2个球颜色不同的概率113225C C 233C 105P ´===. 14.如图,ABC △中,2AB AC ==,23BC =,点D 在BC 边上,45ADC °Ð=,则AD 的长度等于______.第14题图(1)【测量目标】余弦定理、正弦定理.【测量目标】余弦定理、正弦定理.【考查方式】给出三角形边长及角度,利用余弦定理和正弦定理求长度.【考查方式】给出三角形边长及角度,利用余弦定理和正弦定理求长度. 【难易程度】中等【难易程度】中等【参考答案】2【试题解析】解法一:由余弦定理【试题解析】解法一:由余弦定理22241243c o s 222223AC BC AB C AC BC +-+-===´´ ,(步骤1) 所以30C °=.(步骤2) 再由正弦定理再由正弦定理s i n s i n A D A C C A D C =Ð,即2sin 30sin 45AD °°=,所以2AD =.(步骤3) 解法二:作AE BC ^于E ,因为2AB AC ==,所以E 为BC 的中点,因为23BC =,则3EC =.(步骤1)于是221AE AC EC =-=,(步骤2)因为ADE △为有一角为45°的直角三角形.且1AE =,所以2AD =.(步骤3)第14题图(2) 15.设V 是全体平面向量构成的集合,若映射:f V ®R 满足:对任意向量()11,x y V =Îa ,()22,x y V =Îb ,以及任意λÎR ,均有,均有()()()()()11f f f l l l l +-=+-a b a b则称映射f 具有性质P .先给出如下映射:先给出如下映射:① ()()11:,,,f V f x y x y V®=-=ÎR m m ;② ()()222:,,,f V f x y x y V ®=+=ÎR m m ; ③ ()()33:,1,,f V f x y x y V ®=++=ÎR m m .其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号). 【测量目标】向量的坐标运算、映射.【测量目标】向量的坐标运算、映射.【考查方式】给出三个映射,利用向量的坐标运算求出与f 具有相同性质的映射.具有相同性质的映射. 【难易程度】较难【难易程度】较难 【参考答案】①,③【参考答案】①,③【试题解析】设()11,x y V =Îa ,()22,x y V =Îb ,则,则()()()()11221,1,x y x y l l l l +-=+-a b()()()12121,1x x y y l l l l =+-+-.(步骤1) 对于①,对于①, ()()()()()()1212111fx x y y l l l l l l +-=+--+-a b()()()11221x y x y =-+--l l ,(步骤2)()()()()()()112211f f x y x y l l l l +-=-+--a b ,所以()()()()()11f f f l l l l +-=+-a b a b 成立,①是具有性质P 的映射;(步骤3)对于②,()()()()()()21212111f x x y y l l l l l l +-=+-++-a b()()()()2121211x x y y =+-++-l l l l()()()22221122121121x y x y x x =++-+-+-l l l l l l ,(步骤4) ()()()()()()22112211f f x y x y l l l l +-=++--a b , 显然,不是对任意λÎR ,()()()()()11ff f l l l l +-=+-a b a b 成立,成立,所以②不是具有性质P 的映射;(步骤5) 对于③,()()()()()()12121111fx x y y l l l l l l +-=+-++-+a b()()()112211x y x y =++-++l l ,(步骤6)()()()()()()11221111f f x y x y l l l l +-=+++-++a b()()()()112211x y x y =++-+++-l l l l ()()()112211x y x y =++-++l l . 所以()()()()()11ff f l l l l +-=+-a b a b 成立,③是具有性质P 的映射.的映射.(步骤7)因此,具有性质P 的映射的序号为①,③.(步骤8)三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 16.已知等比数列{}n a 的公比3q =,前3项和3133S =. (Ⅰ)求数列{{}}n a 的通项公式;的通项公式;(Ⅱ)若函数()sin(2)(0,0π)f x A x A j j =+><<在π6x =处取得最大值,且最大值为3a ,求函数()f x 的解析式.的解析式.【测量目标】等比数列的通项、性质及前n 项和、函数sin()y A x w j =+的图象及性质.的图象及性质. 【考查方式】给出等比数列的公比和前几项的和,给出等比数列的公比和前几项的和,求其通项公式;求其通项公式;求其通项公式;已知函数的最大值为数列已知函数的最大值为数列的一项,求其解析式.的一项,求其解析式. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)由3q =,3133S =Þ()311313133a -=-,解得113a =.(步骤1)所以11211333n n n n a a q---==´=.(步骤2) (Ⅱ)由(Ⅰ),32333a -==,所以函数()f x 的最大值为3,于是3A =.(步骤3) 又因为函数()f x 在π6x =处取得最大值,处取得最大值, 则πsin 216jæö´+=ç÷èø,因为0πj <<,所以π6j =.(步骤4) 函数()f x 的解析式为π()3sin 26f x x æö=+ç÷èø.(步骤5) 17.已知直线:l y x m =+,m ÎR .(Ⅰ)若以点()2,0M 为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程;方程;(Ⅱ)若直线l 关于x 轴对称的直线为l ¢,问直线l ¢与抛物线2:4C x y =是否相切?说明理由.明理由.【测量目标】圆的方程、直线与圆的位置关系、直线与抛物线的位置关系.【测量目标】圆的方程、直线与圆的位置关系、直线与抛物线的位置关系.【考查方式】给出直线方程,根据圆与直线的位置关系求圆的方程;根据圆与直线的位置关系求圆的方程;给出抛物线方程和直线给出抛物线方程和直线的条件,判断两者之间的位置关系.的条件,判断两者之间的位置关系. 【难易程度】较难【难易程度】较难【试题解析】(Ⅰ)解法一:由题意,点P 的坐标为(())0,m .因为以点()2,0M 为圆心的圆与直线l 相切与点P ,所以MP l ^.01102MP l m k k -==-- ,所以2m =.(步骤1) 点P 的坐标为()0,2.设圆的方程为()2222x y r -+=, 则()()2202208r MP ==-+-=,(步骤2) 所以,所求的圆的方程为()2228x y -+=.(步骤3)第17题图(1)解法二:设圆的方程为()2222x y r -+=,因为以点()2,0M 为圆心的圆与直线l 相切与点()0,P m ,所以224202m r mr ì+=ï-+í=ïî,解得222m r =ìïí=ïî.(步骤1) 所以,所求的圆的方程为()2228x y -+=.(步骤2)(Ⅱ)解法一:因为直线:l y x m =+,且,且直线l ¢与直线l 关于x 轴对称,则:l y x m ¢=--.(步骤4)由24,,x y y x m ì=í=--î得2440x x m ++=, 2Δ4440m =-´=,解得1m =.(步骤5)所以,当1m =时,Δ0=,直线l ¢与抛物线2:4C x y =相切,当1m ¹时,Δ0¹,直线l ¢与抛物线2:4C x y =不相切.(步骤6)解法二:因为直线:l y x m =+,且直线l ¢与直线l 关于x 轴对称,则:l y x m ¢=--.设直线l ¢与抛物线214y x =相切的切点为()00,x y , 由214y x =得12y x ¢=,则0112x =-,02x =-, ()022y m m =---=-.(步骤3) 所以切点为()2,2m --,切点在抛物线214y x =上,则21m -=,1m =.(步骤4)所以,当1m =时,直线l ¢与抛物线2:4C x y =相切,当1m ¹时,直线l ¢与抛物线2:4C x y =不相切.(步骤5)第17题图(2)18.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中36x <<,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.千克. (Ⅰ)求a 的值;的值;(Ⅱ)若该商品的成品为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.所获得的利润最大.【测量目标】一元二次函数模型,利用倒数求函数的最值.【测量目标】一元二次函数模型,利用倒数求函数的最值.【考查方式】给出函数关系式,根据条件求解,再利用导数求利润最大时的销售价格. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)因为5x =时,11y =,由函数式,由函数式210(6)3ay x x =+--得 11102a =+,所以2a =.(步骤1) (Ⅱ)因为2a =,所以该商品每日的销售量为2210(6)3y x x =+--,()36x <<.每日销售该商品所获得的利润为每日销售该商品所获得的利润为()()()222310(6)2103(6)3f xx x x x x éù=-+-=+--êú-ëû,()36x <<.(步骤2)()()()()()()21062363064f x x x x x x éù¢=-+--=--ëû.(步骤3) 于是,当x 变化时,()f x ¢,()f x 的变化情况如下表:的变化情况如下表:x()3,44()4,6()f x ¢+-()f x极大值由上表可以看出,4x =是函数在区间()3,6内的极大值点,也是最大值点.(步骤4) 所以,当4x =时,函数()f x 取得最大值42.因此当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.(步骤5) 19.某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,,8…,其中5X …为标准A ,3X …为标准B ,已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准行标准(Ⅰ)已知甲厂产品的等级系数1X 的概率分布列如下所示:的概率分布列如下所示:1X 5 6 7 8P0.4 a b0.1且1X 的数字期望16EX =,求,a b 的值;的值;(Ⅱ)为分析乙厂产品的等级系数2X ,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 53 8 34 3 4 4 75 67 用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数2X 的数学期望.的数学期望. (Ⅲ)在(Ⅰ),(Ⅱ)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.可购买性?说明理由.注:(1)产品的“性价比”=产品的零售价期望产品的等级系数的数学;(2)“性价比”大的产品更具可购买性.“性价比”大的产品更具可购买性. 【测量目标】离散型随机变量的期望和方差.【测量目标】离散型随机变量的期望和方差.【考查方式】给出分布列和期望,求分布列中的未知数;【考查方式】给出分布列和期望,求分布列中的未知数;根据样本数据求期望;给出产品性根据样本数据求期望;给出产品性价比的公式,判断购买性.价比的公式,判断购买性. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)因为16EX =,所以,所以50.46780.16a b ´+++´=,即67 3.2a b +=,(步骤1)又0.40.11a b +++=, 所以0.5a b +=,解方程组67 3.20.5a b a b +=ìí+=î解得0.3a =,0.2b =.(步骤2)(Ⅱ)由样本的数据,样本的频率分布表如下:(Ⅱ)由样本的数据,样本的频率分布表如下:2X3 45 6 7 8 f0.30.20.20.10.10.1(步骤3)用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数2X 的概率分布列如下表:列如下表:2X 345 6 7 8P0.3 0.20.2 0.1 0.1 0.1(步骤4) 所以230.340.250.260.170.180.1 4.8EX =´+´+´+´+´+´=.(步骤5) (Ⅲ)甲厂的产品的等级系数的数学期望为6,价格为6元/件,所以性价比为616=,(步骤6)甲厂的产品的等级系数的数学期望为4.8,价格为4元/件,所以性价比为4.81.214=>.所以,乙厂的产品更具可购买性.(步骤7)20.如图甲,四棱锥P ABCD -中,PA ABCD ^底面,四边形ABCD 中,AB AD ^,4AB AD +=,2CD =,45CDA °Ð=.(Ⅰ)求证:PAB ^平面平面P AD ; (Ⅱ)设AB AP =.(i )若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;的长;(ii )在线段AD 上是否存在一个点G ,使得点G 到点,,,P B C D 的距离都相等?说明理由.明理由.第20题图题图【测量目标】面面垂直的判定、线面角、立体几何中的探索性问题.【测量目标】面面垂直的判定、线面角、立体几何中的探索性问题.【考查方式】给出四棱锥及其边角关系和条件,证明面面垂直;根据线面角求解线段长度,探索点的存在性.探索点的存在性. 【难易程度】较难【难易程度】较难 【试题解析】(Ⅰ)因为PA ABCD ^底面,AB ABCD Ì底面,所以PA AB ^.(步骤1)又AB AD ^,PA AD A =∩,所以AB ^平面P AD ,又AB Ì平面P AB , PAB ^平面平面P AD .(步骤2)(Ⅱ)以A 为坐标原点,建立如图的空间直角坐标系A xyz -.在平面ABCD 内,作//CE AB 交AD 于E . 则CE AD ^.(步骤3)在Rt CDE △中,2cos 45212DE CD °===.(步骤4) 设AB AP t ==,则(),0,0B t ,()0,0,P t .由4AB AD +=,则4AD t =-,所以()0,3,0E t -,()0,4,0D t -,()1,3,0C t -.()1,1,0CD =- ,()0,4,PD t t =--,(步骤5)(i )设平面PCD 的法向量为(),,x y z =n ,由CD ^ n ,PD ^ n 得00CDPD ì=ïí=ïîn n , ()040x y t y tz -+=ìí--=î取x t =,则y t =,4z t =-.(),,4n t t t =- ,(步骤6) 又(),0,PB t t =-,由直线PB 与平面PCD 所成的角为30°,得,得22222241cos602(4)2PB t t PBt t t t °-===++- n n .(步骤7) 解得45t =或4t =(因为40,4AD t t =-><,故舍去),故舍去)所以45AB =.(步骤8)第20题图(1)(ii )假设线段AD 上存在一个点G ,使得点G 到点,,,P B C D 的距离都相等,的距离都相等, 设()0,,0G m ,()04mt -剟.则()1,3,0GC t m =-- ,()0,4,0GD t m =-- ,()0,,GP m t =-,(步骤9)则由GC GD = 得()()22134t m t m +--=--,即3t m =-, ①由GP GD =得()2224t m m t --=+, ②(步骤10)从①,②消去t ,并化简得2340m m -+= ③方程③没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点,,,P B C D 的距离都相等.(步骤11)第20题图(2)解法二:假设线段AD 上存在一个点G ,使得点G 到点,,,P B C D 的距离都相等,的距离都相等, 由GC GD =得45GCD GDC °Ð=Ð=, 从而90CGD °Ð=,则CG GD ^,(步骤9)设AB λ=,则由4AB AD +=,得4AD λ=-,(步骤10)3AG AD GD λ=-=-.(步骤11) 在Rt ABG △中,()222223932122GB ABAG λλλæö=+=+-=-+>ç÷èø. (步骤12)与1GB GD ==矛盾,矛盾,所以在线段AD 上不存在一个点G ,使得点G 到点,,,P B CD 的距离都相等.的距离都相等. (步骤13)第20题图(3)21.本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,如果多做,则按所做的前两题计分,做答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.号涂黑,并将所选题号填入括号中. (1)选修42-:矩阵与变换:矩阵与变换设矩阵设矩阵 00a Mb æö=ç÷èø(其中0a >, 0b >). (Ⅰ)若2,3a b ==,求矩阵M 的逆矩阵1M -;(Ⅱ)若曲线22:1C x y +=在矩阵M 所对应的线性变换作用下得到曲线22:14x C y ¢+=,求,a b 的值.的值.【测量目标】矩阵与行列式初步.【测量目标】矩阵与行列式初步.【考查方式】给出矩阵,求其逆矩阵;给出曲线方程及其在矩阵对应的线性变化作用下得到的曲线方程,求未知量.的曲线方程,求未知量. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)设矩阵M 的逆矩阵11122xy Mx y -æö=ç÷èø,则11001MM -æö=ç÷èø,(步骤1) 因为2003M æö=ç÷èø,所以112220100301x y x y æöæöæö=ç÷ç÷ç÷èøèøèø,(步骤2) 所以121x =,120y =,230x =,231y =, 即112x =,10y =,20x =.213y =,(步骤3) 所以1102103M -æöç÷=ç÷ç÷ç÷èø.(步骤4) (Ⅱ)设曲线C 上的任意一点为(),P x y ,在矩阵M 所对应的线性变换作用下得到点(),P x y ¢¢¢.则00a x x b y y ¢æöæöæö=ç÷ç÷ç÷¢èøèøèø,即ax x by y ¢=ìí¢=î,(步骤5) 又点(),P x y ¢¢¢在曲线22:14x C y ¢+=上,所以2214x y ¢¢+=,(步骤6) 即222214a xb y +=为曲线22:1C x y +=的方程,则24a =,21b =,(步骤7)又因为0,0a b >>,则2,1a b ==.(步骤8) (2)选修44-:坐标系与参数方程:坐标系与参数方程在直接坐标系x O y 中,直线l 的方程为40x y -+=,曲线C 的参数方程为3c o s s i nx θy θì=ïí=ïî(θ为参数).(Ⅰ)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x轴正半轴为极轴)中,点P 的极坐标为π4,2æöç÷èø,判断点P 与直线l 的位置关系;的位置关系; (Ⅱ)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.【测量目标】坐标系与参数方程、点与直线的位置关系.【测量目标】坐标系与参数方程、点与直线的位置关系.【考查方式】给出直线方程和点的极坐标,判断点与直线的位置关系;给出曲线的参数方程,求曲线上的动点到直线的最小距离.求曲线上的动点到直线的最小距离. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)点P 的极坐标为π4,2æöç÷èø,则直角坐标为()0,4,把()0,4P 代入直线l 的方程40x y -+=,(步骤1)因为0440-+=,所以点P 在直线l 上.(步骤2)(Ⅱ)因为点Q 是曲线C 上的一个动点,则点Q 的坐标可设为()3cos ,sin Q αα.点Q 到直线l 的距离为的距离为π2cos 43cos sin 4π62cos 22622αααdαæö++ç÷-+æöèø===++ç÷èø.(步骤3) 所以当πcos 16αæö+=-ç÷èø时,d 取得最小值2.(步骤4) (3)选修45-:不等式选讲:不等式选讲设不等式211x -<的解集为M . (Ⅰ)求集合M ;(Ⅱ)若,a b M Î,试比较1ab +与a b +的大小.的大小.【测量目标】不等式选讲.【测量目标】不等式选讲.【考查方式】给出不等式,求其解集;给出关于集合两个元素的式子,比较它们的大小. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)由211x -<得1211x -<-<,解得01x <<, 所以{}01M x x =<<.(步骤1)(Ⅱ)因为,a b M Î,则01a <<,01b <<,(步骤2)()()()()1110ab a b a b +-+=-->,所以1ab a b +>+.(步骤3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
1、求下列各题积分:(每题5分,共20分)
(1)sind1+cosxxx (2) 22lndxxx
(3)211221dxxx (4)(1cos2||sin)dxxxx
解:(1)
2
2sincossinsind(cos)
sin22222d=d=d=2d()2=2lncos1+cos222coscoscoscos2222xxxxxxxx
xxxCxxxxx||
(2)222222ln11lnln1dlnd()ln2d2lnd()xxxxxxxxxxxxxx
22
2
ln11ln+2ln22[lnd]cxxxxxxxxx
.
(3)22122222122244411sindsincostdcottd[csct1]dsinxtxxttttxt
2
4
(cot)|14tt
.
(4) 0(1cos2||sin)d1cos2d22|cos|dxxxxxxxx
2
0
2
22cosd22cosd42xxxx
2、(10分)设函数()yx由参数方程333131xttytt确定,求曲线()yyx向上凸的x取值
范围.
解 222dd12d1dd11dyyttxxttt,222232(1)d410dd3(1)dyttxxtt,所以0t.
厦门大学《高等数学A》课程期末试卷
____学院____系____年级____专业
主考教师:高等数学A教学组 试卷类型:(A卷)
2
又0t对应于1x. 因此()yyx向上凸的x取值范围为,1.
3、(10分)设函数()()fxx,g在0x的某个邻域内连续,且00()()lim1lim21cos()xxxfxxx2g,g
试问: 0x是否是()fx的极值点?如果是极值点,是极大还是极小?其极值为多少?
解:由题设条件()xg在0x连续,则 00()(0)lim()lim(1cos)01cosxxxxxxggg,
同理 200()(0)lim()lim()0()xxfxffxgxx2g。 因为0()lim2()xfxx2g,由极限的保号性,在
0x
的某个邻域(0,)内,有()()(0)0()()fxfxfxx22gg, 由此得 对(0,)x,有
()(0)fxf,由极值的定义,()fx
在0x处取极小值,其极小值为0.
4、(10分)求函数lnyx的最大曲率.
解:211,yyxx, 由曲率公式,得
333
222
222
2
||1()(0)1[1()][1][1]yx
kxxyxxx
31
22222
22
33
22
22
[1]3[1]1[12]()==0[1][1]xxxxxkxxx
解得1=2x
当1<2x时,()0kx,当1>2x时,()0kx,所以当1()=2kxx在处取最大值,最
大值为12()233k。
3
5、(10分)求函数2()ln(1)fxx的凹凸区间及拐点
.
解:222222(1)(),1(1)xxfxyxx。令0y,得121,1xx,不存在二阶不可导点。
x
(,1) 1 (1,1) 1 (1,)
y
0 0
y
ln2 ln2
凸区间有(,1)和(1,),凹区间是(1,1),两个拐点是(1,ln2)和(1,ln2)。
6、(10分)求函数x4e016()=d1tfxtt的最小值.
解:因为x44e01616()=[d]11xxxtefxtete, 令()=0fx,得到驻点ln2x.
当ln2x时,()<0fx,当ln2x时,()>0fx, 函数()fx在ln2x处取得最小值,
44
2222
2
0000
16(1)15154min()=dd(1)(1)d15d15ln31113ttfxttttttttt
7、(10分)设()fx在[0,1]上可导,且0()<1,(0,1),(0)0fxxf,证明
11
23
00
[ ()d]()dfxxfxx
.
证:令 2300()[ ()d]()dttFtfxxfxx
32
00
()2() ()d()=()[2 ()d()]ttFtftfxxftftfxxft
因为()>0fx,所以()fx严格递增,因此()>(0)=0fxf,
令20()2 ()d()tgtfxxft,()2()2()()=2()(1())>0gtftftftftft,
所以()gx严格递增,因此()>(0)=0gxg。于是()>0Ft,从而(1)>(0)=0FF,即
11
23
00
[ ()d]()dfxxfxx
。
8、(10分)已知函数()fx连续,且0()lim0xfxAx.设10() ()d,xfxtt 求(0).
解:由0()lim0xfxAx,得(0)0f,10(0) (0)d(0)0,fttf
4
1001() ()d()x
xfxttuxtfudux
,
2
0
000()-(0)1()(0)limlim()lim22xxxxxfxAfuduxxx
.
9、(10分)(1) 计算广义积分0d()nxxexn为自然数;
(2) 利用()s函数的性质,求极限 0limdnxnex.
解:(1) (1)100dd(n1)nnxnxxexxex!
解: (2) 作变量代换111,nnxtdxtdtn
11
1100011111dtdtd()(1)nxttnnexetetnnnnn
由于()s在(0,)上连续,01limdlim(1)(1)1nxnnexn.
附加题:(10分)
设()0fx且()0fx 对[,]xab成立 , 证明: 2() ()d,bafxfxxba [,]xab.
证明:将()fx在点[,]tab处展成一阶泰勒式
2
1
()=()+()()+()()2!fxftftxtfxt
, xt在与之间
因为()0fx,于是 ()0()()+()()ffxftftxt,则 ,两边在[,]ab上关于t积分
得 ()dt()dt+()()dtbbbaaafxftftxt
()()()dt+()()dtbbaafxbaftftxt
()()()dt+()()|()dtbbbaaafxbaftftxtft
()()2()dt+()()()()bafxbaftfbxbfaxa
因为()0,()0,()0,,0fxfbfaxabx所以且,因此
()()()()0fbxbfaxa
,故 ()()2()dbafxbaft,即2() ()dbafxfxxba.