毕奥萨伐尔定律右手螺旋定则

合集下载

毕奥---萨伐尔定律

毕奥---萨伐尔定律
毕奥---萨伐尔定律 毕奥 萨伐尔定律
两电流元之间的安培定律也可表示成 两电流元之间的安培定律也可表示成
u r r uur u r ˆ I1 I 2 dl2 × (dl1 × r12 ) d F12 = k = I 2 dl2 × dB1 2 r 12
电流元 I1d l1产生的磁场
ˆ ˆ Idl × r µ0 Idl × r dB = k = 2 2 r 4π r
• 求二阶导数
d 2B 在O 令x = 0处的 2 = 0 ⇒ 在O点附近磁场最均匀的条件 dx µ0 d 2B 2a 2 − 2 R 2 = 6π R 2 I = 0 ⇒ a2 = R2 7 2 dx 2 x =0 4π 2 a 2 2 R + 4
a=R
例1、无限长载流直导线弯成如图形状
大小
µ0 Idl dB = 4π r2
r r 方向 Idl × r0
分析对称性、 分析对称性、写出分量式
r r B⊥ = ∫ dB = 0

µ0 Idl sinα Bx = ∫ dBx = ∫ 4π r2
统一积分变量
µ0 Idl sinα Bx = ∫ dBx = ∫ 4π r2 µ0IR µ0IR dl = π = ⋅2 R 3 ∫ 3 4 r 4 r π π
a


P T
µ0I 3 BL′A = (cos π − cosπ ) 4πa 4
µ0I π BLA = (cos0 − cos ) 方向 ⊗ 4 a 4 π
方向 ⊗
T点
Bp = BLA + BL′A = 2.94×10−5T 方向 ⊗
r 电流元 Idl
——右手定则 右手定则 r r r µ0 Idl ×r 毕奥-萨伐尔定律 毕奥 萨伐尔定律 dB = 4 π r3 r r r r µ0 Idl ×r 对一段载流导线 B = ∫ dB = ∫ 4π L r3

毕萨定律

毕萨定律

Idl
c
Idl a
μ 0 Idl 水平向右 dB = 2 4π 2 R μ 0 Idl μ 0 Idl dB 总 = ⋅ 2= 2 2 4π 2 R 4 2πR
Y.L.Wang
叠加原理求磁场
例4、薄圆环内半径a,外半径b,可绕与环面垂 直的轴O以ω的角速度逆时针旋转。现给该圆环均匀 带电+Q,求环心o处的磁感应强度 解:将环分成无数同心小环, 任选其中一 个环,设其半径为 r, 环宽dr, 则环上带电量为:
Y.L.Wang
用矢量形式表示的毕奥—萨伐尔定律
I
ˆ μ Idl × r dB = 2 4π r
r
I
μ Idl × r = 3 4π r
α
dB Idl
r
dB 磁场叠加原理: 若磁场由数个运动电荷产生,各电荷单独存在时 产生的磁场分别为B1,B2,…,Bi,…,则:
B = ∑ i Bi
Y.L.Wang
dE
§8-3 毕奥-萨伐尔定律
+ dq
P

一、毕奥—萨伐尔定律
dq ˆ r dE = 2 4πε 0 r 1
方向 : l × r d ˆ μ 0 = 4π × 10 −7 ( NA−2 ) 真空中的磁导率
ˆ μ 0 Idl × r dB = 2 4π r μ 0 Idl sin θ 大小: dB = 2 4π r
说 明 1)它只适用于稳恒电流 2)Ii 与所取环路成右手螺旋时为正,反之为负 3)B 是全空间电流的贡献,但只有Ii对环流有贡献 4) ∫ B ⋅ d l ≠ 0 说明磁场为非保守场,称为涡旋场
Y.L.Wang
例、均匀通电直长圆柱体的磁
例5
Y.L.Wang

毕奥-萨伐尔定律

毕奥-萨伐尔定律

l o
r
(2)半无限长载流直导线的磁场
(a semi-infinite straight wire )
z
1
a
1

2
, 2 ; B
0 I 4a
I
(2)
0 I (cos 1) 1 , 2 ; B 4a
(3)半无限长载流直导线的磁场
I
I
o
R
x
*
B
讨论 1) N 匝薄线圈
x
2) x 0, B 的方向不变( I 和 B 成右螺旋关系) I 0 3)x 0 B 磁偶极 2R
4)x பைடு நூலகம்R, B
N 0 R I B 2 2 3/ 2 ( 2 x R)
2
0 R 2 I
2 x3
0 m 3 2π x 2 x3
10-3
毕奥—萨伐尔定律
运动电荷的磁场











10.3
毕奥—萨伐尔定律
Idl
一、毕奥-萨伐尔定律 问题:电流产生磁场,如何计算? 1. 电流元产生的磁场 (1)电流元:Idl
(differential current element)
dB
dB
r

Idl
I
•大小:Idl P * •方向:线元上电流的方向。 (2) 毕奥—萨伐尔定律:
(square current loop)
2
B B1 B2 B3 B4 4B1 0 I 根据 B1 (cos 1 cos 2) 4πa b 其中 a , 1 , 2 3 2

大学物理:11-2,3 毕奥-萨伐尔定律

大学物理:11-2,3 毕奥-萨伐尔定律

r E
=
qrr
4π ε0r 3
r B
=
μ0qvv × rr
4πr 3
r dB
=
μ
0
r Idl
×
rr
4πr 3
无限长均匀带电直线的电场
无限长直电流的磁场
E= λ 2π ε0r
(⊥带电直线)
B=
μ0I 2πr
(环绕电流)
容易混淆的静电场与稳恒磁场公式比较
均匀带电圆环轴线上电场 圆电流轴线上磁场 带电圆环圆心处电场
2 β1
讨论
B
=
μ0nI
2
(cos β2

cos β1)
(1) 无限长的螺线管
( ) 由 β1 = π , β2 = 0 代入
B = μ0nI
2
cos β2 − cos β1
实际上,L>>R 时,螺线管内部的 磁场近似均匀,大
小为 μ0nI
B = μ0nI
B
=
μ0nI
2
(cos
β2

cos
β1
)
R2
*o
B0
=
μ0I
4R2
− μ0I
4R1兹圈:两个完全相同的 N 匝共轴密绕
短线圈,其中心间距与线圈半径 R 相等,通同向平
行等大电流 I。求轴线上 o1 , o2 之间任一点P 的磁
场.
N匝
R
N匝
R
R
BP
=
μ0 NIR2
2[( R2 + ( R + x)2 ]32
§11-2 毕奥—萨伐尔定律
历史之旅
1819 年4月: 丹麦物理学家奥斯特(1777~1851) 发现电流的磁效应。

电磁学系列十一:安培定律

电磁学系列十一:安培定律
2
由于任意的载流导线均可视为由许多电流元组成,只要知道了电流元产生磁场的规律, 再利用场强迭加原理,就可计算出任意电流激发的磁场分布。所以,对任意载流导线,其激 发的磁场分布为:
0 Idl r B d B 2 4 r l
磁场方向的判断(右手螺旋定则): (1)通电直导线:用右手握住通电直导线,让大拇指指向电流的方向,那么四指的指向就 是磁感线的环绕方向; (2)通电螺线管:用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指 的那一端是通电螺线管的 N 极。 一个电流片段激发的磁场朝着流动方向向右旋转,最外侧强度最强,正中间为零。
安培定律毕奥萨伐尔定律1820年法国物理学家毕奥和萨伐尔通过实验测量了长直电流线附近小磁针的受力规律发表了题为运动中的电传递给金属的磁化力的论文后来人们称之为毕奥萨伐尔定律
深圳市宝安区洪浪北二路凌云大厦 10 楼

【RFsister 线上课堂】电磁学系列十一:“安培定律”
B 0i
总结下上面的三个公式: 毕奥-萨伐尔定律: 电流激发的磁通密度矢量 B 与电流片段激发的磁通密度矢量 d B 完全重叠。 安培定律(积分型): 环路积分的磁通密度矢量 B 等于被围于其中的电流 0 安培定律(微分型): 磁通密度矢量场 B 的旋转等于位于该点的电流密度 0
毕奥-萨伐尔定律
1820 年,法国物理学家毕奥和萨伐尔,通过实验测量了长直电流线附近小磁针的受力规 律,发表了题为“运动中的电传递给金属的磁化力”的论文,后来人们称之为毕奥--萨伐尔 定律.稍后,在数学家拉普拉斯的帮助下,以数学公式表示出这一定律,其表达式为:
dB
0 Idl r 0 4 r
深圳市宝应场强度矢量B沿任意闭合路径L一周的线积分,等于穿过这环路所有电流强度的代 数和的μ0倍.用公式表示为:

毕奥萨伐尔定律

毕奥萨伐尔定律
• 我们只计算了轴线上的磁场分布,轴线以外磁场分布的计算比 较复杂, 略。为了给同学们一个较全面的印象,下左图显示 了通过圆线圈轴线的平面上磁感应线的分布图。可以看出, 磁感应线是一些套连在圆电流环上的闭合曲线。
• 下右图给出另一个右手定则,用它可以判断载流线 圈的磁感应线方向。这右手定则是:用右手弯曲的 四指代替圆线圈中电流的方向,则伸直的姆指将沿着 轴线上B的方向。
生的磁感应强度的大小 • 与电流元Idl的大小成正比, • 与电流元和从电流元到P点的位矢之间的夹
角θ的正弦成正比, • 与位矢r的大小的平方成反比。即:
一、毕奥---萨伐尔定律
dB的方向 垂直于dl和r所确定的平面,沿
dl×r的方向,用右手螺旋法 则来判定。
矢量表示为: d B 0 Id l r 4 r 3
• 其中:S=πR2为圆线圈的面积。
三、载流圆环导线轴线上的磁场
• 圆线圈轴线上各点的磁感应强度都沿着轴线方向, 与电流方向组成右手螺旋关系。
• 下面讨论两种特殊的情况: • 1、在圆心O处,即a=0处的磁感应强度为: •
• 2、在远离线圈处,即 a>>R,轴线上各点的磁感 应强度约为:
三、载流圆环导线轴线上的磁场
• 由图
cos 1
x L 2
R2 (x L )2 2
cos 2
x L 2
R2 (x L)2 2
代入即得螺线管轴线上任一点P的磁感应强度。
B随x变化关系见上图中的曲线,由这曲线可以看出,当 L>>R时,在螺线管内部很大一个范围内磁场近于均匀, 只在端点附近B值才显著下降。
• 其中 40为比例系数, • μ0 称 为 真 空 磁 导 率 , :

7-4毕奥-萨伐尔定律

7-4毕奥-萨伐尔定律

r
x
O
dB dB dB
P


, 所有 dB 形成锥面。
Idl
dB
X
§2. 毕奥-萨伐尔定律/二、应用举例/ 例2
§2. 毕奥-萨伐尔定律/二、应用举例/ 例2

由对称性分析得 所以有
dB dBII dB
B dB 0
0 m B 2x 3
等效圆电流(具有磁矩)
地球
22 2 大磁偶极子 磁矩为 m 8.0 10 A m
§2. 毕奥-萨伐尔定律/二、应用举例/ 例2


思考题:
1、求半径为 R ,载有电流为I 的细圆环在其圆心
处 O 点所产生的磁感强度。 解:任取电流元,由毕—萨定律,其在 O 点 的磁感强度大小为
Idl
I
B
R
r
x
I
O

dB dB dB
P
Idl
§2. 毕奥-萨伐尔定律/二、应用举例/ 例2
dB
X
讨论:
B
1在圆心处,x 0,则圆心处磁感应强度 为
0 IR2
2 2 3/ 2
2( R x )
B
0 I
2R
2当x R,即P点远离圆电流时,磁感 应强度为
0
§2. 毕奥-萨伐尔定律/二、应用举例/ 例1
3若P点在载流直导线的延长 线上,1 2则B 0。
解题关键在于确定
0 I cos 1 cos 2 B 4a
1 , 2
1与电流的起点相关, 2与电流的终点相关。
其他例子:
a
O
I

毕奥萨伐尔定律

毕奥萨伐尔定律

毕奥萨伐尔定律毕奥-萨伐尔定律指出: 磁场的是电流元,磁场随场点到电流元的距离平方而衰减,磁场遵从叠加原理,由任意形状通电导线所激发的总磁感应强度B 是由电流元所激发的磁感应强度dB 的矢量积分,任意形状的载流导线都可以看成由许多电流元Idl 组成,只要知道了电流元激发磁场的规律,再用叠加原理就可以求得任意载流导线激发的磁场分布。

载流导线的任一电流元Idl 在给定点P 所产生的磁感应强度dB 的大小与电流元的大小成正比,与电流元和由电流元到P 点的矢径r 之间夹角的正弦成正比,并与电流元到P 点的距离的平方成反比; dB 的方向垂直于dl 与r 所决定的平面,指向由右手螺旋法则决定,即当右手螺旋由Idl 经小于180°的角转向r 时螺旋前进的方向,如附图-1 所示。

其数学表达式为附图-1 电流元到P 点dB 的方向地球磁场起源理论式中: k 为比例系数,在真空中k =107T·m·A-1,不同的磁介质k 值不同。

为了使dB 的公式有理化,取k = μ/4π,μ为介质的磁导率,真空中μ= 4π×107T·m·A-1,这样,式( 附-1) 改为:地球磁场起源理论毕奥-萨伐尔定律的矢量表达式为:地球磁场起源理论任意形状载流导线在P 点产生的磁感应强度B,等于导线上各个电流元Idl 在该点处所产生的磁感应强度矢量和,即:地球磁场起源理论毕奥-萨伐尔定律给出了电流元Idl 对距离r 处的空间某一点P 处产生dB 的大小与方向,但由于电流元不可能单独存在,所以毕奥-萨伐尔定律不可能由实验直接加以验证。

毕奥-萨伐尔定律的正确性是通过间接的方法被证实的,因为由毕奥-萨伐尔定律推出的所有结果都能很好地与实验结果相符合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕奥萨伐尔定律右手螺旋定则
一、定义
在静磁学中,毕奥-萨伐尔定律描述电流元在空间任意点P处所激发的磁场。

该定律在静磁近似中是有效的,并且与Ampère的电路规律和磁性高斯定律一致,以Jean-Baptiste Biot和FélixSavart命名。

二、背景
毕奥-萨伐尔定律是由H.C.奥斯特实验(见电流磁效应)引起的,这个实验表明,长直载流导线对磁极的作用力是横向力。

为了揭示电流对磁极作用力的普遍定量规律,J.B.毕奥和F.萨伐尔认为电流元对磁极的作用力也应垂直于电流元与磁极构成的平面,即也是横向力。

他们通过长直和弯折载流导线对磁极作用力的实验,得出了作用力与距离和弯折角的关系。

在P.S.M.拉普拉斯的帮助下,经过适当的分析,得到了电流元对磁极作用力的规律。

根据近距作用观点,它被理解为电流元产生磁场的规律。

三、方程
(一)电流(沿闭合曲线)
毕奥-萨伐尔定律适用于计算一个稳定电流所产生的磁场。

这电流是连续流过一条导线的电荷,电流量不随时间而改变,电荷不会在任意位置累积或消失。

采用国际单位制,用方程表示:
其中,
是源电流,
是积分路径,
是源电流的微小线元素,
为电流元指向待求场点的单位向量,
为真空磁导率其值为
的方向垂直于和,所确定的平面,当右手弯曲,四
指从方向沿小于180度角转向时,伸直的大拇指所指的方向为
的方向,即
、、三个矢量的方向符合右手定则。

积分通常围绕闭合曲线,因为电流只能在闭合路径周围流动。

无限长的电线(如电流SI单位定义中所使用的安培)是一个反例。

要应用公式,可以任意选择要计算磁场的空间点(r)。

保持该点固定,计算电流路径上的线积分以找出该点处的总磁场。

该法的应用隐含地依赖于磁场的叠加原理,即磁场是由电线的每个无穷小部分单独产生的场的向量和的事实。

(二)电流(整个导体体积)
当电流可以近似为穿过无限窄的电线时,上面给出的配方工作良好。

如果导体具有一定厚度,则适用于Biot-Savart定律(再次以SI为单位):
(三)恒定均匀电流
在稳定的恒定电流I的特殊情况下,磁场B是
即电流可以从积分中取出。

(四)磁响应应用
Biot-Savart定律可用于计算即使在原子或分子水平的磁响应,例如,化学屏蔽或磁化率,条件是可以从量子力学计算或理论获得电流密度。

(五)空气动力学
Biot-Savart定律也用于空气动力学理论,以计算由涡流引起的速度。

在空气动力学应用中,与磁性应用相比,涡度和电流的作用相反。

在麦克斯韦的1861年的“物理力量线”中,磁场强度H直接等于纯涡度(旋转),而B是加权涡度,对涡旋海的密度进行加权。

麦克斯韦认为磁导率μ是海洋密度的度量。

因此,
磁感应电流
基本上是类比于线性电流关系的旋转,
电对流
其中ρ是电荷密度。

B被认为是在其轴向平面上排列的一种涡流磁流,其中H是涡流的圆周速度。

电流方程可以视为涉及线性运动的电荷对流电流。

通过类比,磁方程是涉及自旋的感应电流。

电感电流沿B矢量方向没有线性运动。

磁感应电流表示力线。

特别地,它代表反平方律力的线。

在空气动力学中,感应气流正在涡流轴上形成螺旋形环,涡旋轴正在扮演电流在磁性中的作用。

这使得空气动力学的气流成为磁感应矢量B在电磁学中的等效作用。

在电磁场中,B线形成围绕电源电流的螺线管环,而在空气动力学中,气流围绕源涡流轴线形成螺线管环。

因此,在电磁学中,涡流起“效应”的作用,而在空气动力学中,涡旋起“原因”的作用。

然而,当我们孤立地看待B线时,我们确切地看到空气动力学情况如此之多,因为B是涡旋轴,H是圆周速度,如麦克斯韦1861年的文章。

在二维中,对于无限长度的涡流线,点处的感应速度由下式给出
其中h是涡流的强度,r是点与涡流线之间的垂直距离。

这是有限长度涡旋段的公式的极限情况:
其中A和B是线段和线段的两端之间的(带符号)角度。

相关文档
最新文档