第27章相似教案
人教版初三九年级 第27章相似三角形教案27

课题27.2.2相似三角形应用举例(一)(总第7课时)教学目的:1.进一步巩固相似三角形的知识.2.能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题.3.通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力.重点、难点1.重点:运用三角形相似的知识计算不能直接测量物体的长度和高度.2.难点:灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题).一.创设情境活动1教师活动:提出问题:1、学校操场上的国旗旗杆的高度是多少?你有什么办法测量?师生活动:学生小组讨论;师生共同交流.二、例题讲解活动2(教材P48页例3——测量金字塔高度问题)教师提出问题:例3:据史料记载,古希腊数学家、天文学家泰勒斯曾经利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成的两个相似三角形来测量金字塔的高度.如图,如果木杆EF长2 m,它的影长FD为3 m,测得OA为201 m,求金字塔的高度BO.(思考如何测出OA的长?)活动3 课堂练习(见教材P50页)1.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为90米,那么高楼的高度是多少米? (在同一时刻物体的高度与它的影长成正比例.)活动4(教材P49例4——测量河宽问题)教师提出问题:问题:估算河的宽度,你有什么好办法吗?例4 如图,为了估算河的宽度,我们可以在河对岸选定一个目标P,在近岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R.如果测得QS = 45 m,ST = 90 m,QR = 60 m,求河的宽度PQ.活动5 课堂练习(见教材P50页)(平行外截法)2、如图,测得BD=120 m,DC=60 m,EC=50 m,求河宽AB。
(名师整理)数学九年级下册第27章《27.1 图形的相似》优秀教案

27.1图形的相似(第一课时)一、教学目的:1. 通过观察生活中的实例,让学生体会相似图形的概念。
2.经历探究相似多边形特征的过程,掌握相似多边形的特征。
3.在探究相似多边形特征的过程中,培养学生归纳、猜想、合作交流等方面的能力,提高数学思维水平。
二、重点、难点1.重点:相似多边形的主要特征的识别.2.难点:正确地运用相似多边形的特征解决一些实际问题。
三、教学过程一、创设情境感知相似观察图片,体会相似图形1 、同学们初二时,我们研究了全等形的有关知识,在我们生活中,除了全等形之外,我们还经常会见到这样的图形,我们称这样的两个图形是相似的。
从本节课开始我们将开始进入对第27章相似的学习,今天我们先来研究图形的相似。
(通过实例让学生观察相似图形的特点,感受形状相同的概念。
)(个人口答)2 、小组讨论、交流.得到相似图形的概念.提问:什么是相似图形?形状相同的图形叫做相似图形” (教师板书)注意:①相似图形的形状相同。
②相似图形的大小不一定相同。
③两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.3、提问:生活中有很多的相似图形,你能举出一些例子与大家分享吗?(个人口答)(让学生寻找生活中的例子,体会生活中的相似,进一步了解相似形的概念。
(师)老师呢也找了几个生活中的几个实例,你们来看看他们是否是相似的4 、思考:如图27.1-3是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?观察思考,小组讨论回答:5、练习:(1)如图,从放大镜里看到的三角尺和原来的三角尺相似吗?(2)下列图形中哪些图形是相似的?(3)观察下面的图形(a)-(g),其中哪些是与图形(1)、(2)或(3)相似的?(4)下列图形中,能确定相似的有( )A .两个半径不相等的圆 B.所有的等边三角形 C.所有的等腰三角形D.所有的正方形E.所有的等腰梯形F.所有的正六边形(让学生通过比较,体会相似图形与不相似图形的“形状”特点。
新人教版九年级数学下册《第二十七章 相似 》全章教案

新人教版九年级数学下册《第二十七章相似》全章教案本文已经没有格式错误和明显有问题的段落了,但是可以对每段话进行小幅度的改写,以增强文章的流畅性和可读性。
第一节课重点讲解了相似图形的概念和运用方法。
通过一些日常生活中的例子,让学生们理解了相似图形的形状和大小可以不同,但是它们的形状相同。
同时,老师还通过线段的长度比例的例子,让学生们理解了相似图形的比例关系。
在例题讲解中,老师通过选择题的形式,让学生们运用相似图形的特征,判断哪个图形与左边的图形相似。
同时,老师还给出了一道关于比例尺的例题,让学生们运用相似图形的知识,计算出实际距离。
第二节课重点讲解了相似多边形的主要特征和识别方法。
老师让学生们了解到相似多边形的对应角相等,对应边的比相等。
通过一些实例,让学生们学会了如何识别相似多边形,并运用其性质进行计算。
总的来说,本章节的教学目标是让学生们掌握相似图形和相似多边形的概念和运用方法。
通过一些生动的例子和实例,让学生们更好地理解和掌握知识点。
在研究第26页的内容时,学生需要了解判别两个多边形是否相似的条件。
这些条件包括对应角是否相等,对应边的比是否相等,这两个条件缺一不可。
如果要说明两个多边形不相似,则必须说明各角无法对应相等或各对应边的比不相等,或者举出合适的反例。
在解决这个问题时,依靠直觉观察是不可靠的。
课堂引入:1.对于图中的两个相似的四边形,它们的对应角和对应边的比是否相等。
2.相似多边形的特征是对应角相等,对应边的比相等。
如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似。
3.相似比是相似多边形对应边的比。
4.当相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形。
例1(补充)(选择题):下列说法正确的是D。
因为任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似。
例(教材P26例题):要求相似多边形中的某些角的度数和某些线段的长,可以根据相似多边形的对应角相等,对应边的比相等来解题。
2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版

课后拓展
1.拓展内容:
-阅读材料:《数学的故事》中关于几何变换的起源和发展,了解位似变换在数学史上的地位。
-视频资源:寻找与位似图形相关的教学视频,如介绍位似变换的基本概念、性质和应用实例。
-学生通过观察生活中的位似图形,将所学知识应用到实际中,提高解决问题的能力。
-鼓励学生针对位似图形的特定性质或应用进行深入研究,撰写研究报告,培养探究精神。
-教师提供必要的指导和帮助,如推荐阅读材料、解答学生在自主学习中遇到的疑问等。
-教师组织学生开展课后讨论活动,让学生分享自己的学习心得和研究成果,促进交流与合作。
三、实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与位似图形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用几何画板绘制位似图形,演示位似的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
四、学生小组讨论(用时10分钟)
2.位似比的概念及其计算方法;
3.位似图形的画法,包括位似中心、位似向量、位似图形的作图方法;
4.应用位似变换解决实际问题。
本节课将结合新人教版教材,以生活实例为导入,让学生在实际操作中体会位似图形的特点,培养他们的观察能力和空间想象能力,从而提高解决几何问题的能力。
核心素养目标
本节课旨在培养学生的以下数学核心素养:
2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版
学校
授课教师
九年级数学下册 第27章 相似复习课教案 (新版)新人教版

与方法
培养学生运用几何知识进行推理及计算的能力。
情感态度与价值观
通过问题情境和探索活动的创设,激发学生的学习兴趣。
重点
掌握三角形相似的判定与性质。
课堂小结
1.回顾本节课知 识点;
2.回顾解题方法和易错点。
总结本节课的知识点和需要注意的地方。
难点
能够应用相似三角形的判定与性质进行推理及计算。
教学过程设计
27章相似第教案年月日星期教学过程设计课题27章相似复习课备课人知识与目标方法与策略学生活动教师活动师生互动个性化设计课型新授课教法22师友互助审核人目标c
27章相似
第____教案
_____年_____月_____日
星期_____
教学过程设计
课题
27章相似(复习课)
备课人
知识与目标
方法与策略
学生活动
教师活动(师 生互动)
个性化设计
课型新授课ຫໍສະໝຸດ 教法“2+2”师友互助
审核人
目标C:同步测试
独立思考后师友交流,四人小组讨论,小组展示讲解。
1.教师按小组指导。
2.提问学生 讨论结果。
3.核对答案,讲解易错点。
教
学
目
标
知 识
与技能
1.掌握三角形相似 的判定 与性质。
2.能够应用相似三角形的判定与性质进行推理 及计算。
1.完成题组A的 1、2、3题。
2.师友纠错,展示
1.对学生的回答进行归纳和补充。
2.对3题适度拓展补充。
目标B:应用相似三角形的判定与性质进行推理及计算
1.独立完成
2.师友交流
3、展示讲解
1.环视学生对小组进行辅导;
第27章相似三角形-相似三角形中怎样找对应边教案

此外,学生小组讨论的环节让我感到欣慰。他们能够围绕相似三角形在实际生活中的应用提出自己的观点,并进行深入的交流。但在引导讨论的过程中,我发现有些学生对于开放性问题的回答不够自信,这可能是因为他们在批判性思维和创造性思维方面还有待提高。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形的基本概念、判定方法以及在实际问题中的应用。同时,我们也通过实践活动和小组讨论加深了对相似三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
第27章相似三角形-相似三角形中怎样找对应边教案
一、教学内容
第27章相似三角形-相似三角形中怎样找对应边教案:
1.知识点一:相似三角形的定义及性质
-列举相似三角形的定义及性质,如对应角相等、对应边成比例等。
2.知识点二:相似三角形的判定方法
(名师整理)数学九年级下册第27章《27.1 图形的相似》优秀教案

27.1 图形的相似(一)【教学目标】1.理解并掌握两个图形相似的概念.2.了解成比例线段的概念,会确定线段的比.【重点、难点】1.重点:相似图形的概念与成比例线段的概念.2.难点:成比例线段概念.3.难点的突破方法(1)对于相似图形的概念,可用大量的实例引入,但要注意教材中“把形状相同的图形说成是相似图形”,只是对相似图形概念的一个描述,不是定义;还要强调:①相似形一定要形状相同,与它的位置、颜色、大小无关(其大小可能一样,也有可能不一样,当形状与大小都一样时,两个图形就是全等形,所以全等形是一种特殊的相似形);②相似形不仅仅指平面图形,也包括立体图形的情况,如飞机和飞机模型也是相似形;③两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形.(2)对于成比例线段:①我们是在学生小学学过数的比,及比例的基本性质等知识的基础上来学习成比例线段的;②两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;③线段的比是一个没有单位的正数;④四条线段a,b,c,d成比例,记作或a:b=c:d;⑤若四条线段满足,则有ad=bc(为利于今后的学习,可适当补充:反之,若四条线段满足ad=bc,则有,或其它七种表达形式).【教学过程】课堂引入1.(1)请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星他们的形状、大小有什么关系?再如下图的两个画面,他们的形状、大小有什么关系.(还可以再举几个例子)(2)教材P24引入.(3)相似图形概念:把形状相同的图形说成是相似图形.(强调:见前面)(4)让学生再举几个相似图形的例子.(5)讲解例1.2.问题:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB和CD,那么这两条线段的长度比是多少?归纳:两条线段的比,就是两条线段长度的比.3.成比例线段:对于四条线段a,b,c,d,如果其中两条线段的比与另两条线段的比相等,如(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.【注意】(1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;(2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d成比例,记作或a:b=c:d;(4)若四条线段满足,则有ad=bc.【例题讲解】例1:(补充)一张桌面的长a=1.25m,宽b=0.75m,那么长与宽的比是多少?(1)如果a=125cm,b=75c m,那么长与宽的比是多少?(2)如果a=1250mm,b=750mm,那么长与宽的比是多少?解:略.小结:上面分别采用m、cm、mm三种不同的长度单位,求得的的值是相等的,所以说,两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致.例2:(补充)已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm,求北京到上海的实际距离大约是多少km?分析:根据比例尺= ,可求出北京到上海的实际距离.解:略答:北京到上海的实际距离大约是1120 km.六、课堂练习1.教材P25的观察.2.下列说法正确的是()A.小明上幼儿园时的照片和初中毕业时的照片相似.B.商店新买来的一副三角板是相似的.C.所有的课本都是相似的.D.国旗的五角星都是相似的.3.如图,请测量出右图中两个形似的长方形的长和宽,(1)(小)长是_______cm,宽是_______cm;(大)长是_______cm,宽是_______cm;(2)(小);(大).(3)你由上述的计算,能得到什么结论吗?(答:相似的长方形的宽与长之比相等)4.在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm,那么福州与上海之间的实际距离是多少?5.AB两地的实际距离为2500m,在一张平面图上的距离是5cm,那么这张平面地图的比例尺是多少?【课后作业】完成本课时相应的习题. 【教学反思】。
(2021年整理)新人教版九年级下册第27章_相似_全章教案

新人教版九年级下册第27章_相似_全章教案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(新人教版九年级下册第27章_相似_全章教案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为新人教版九年级下册第27章_相似_全章教案的全部内容。
初三数学九(下)第二十七章:相似第1课时图形的相似 (1)教学目标:1、知识目标:从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.2、能力目标:在相似图形的探究过程中,让学生运用“观察—比较—猜想”分析问题.3、情感目标:在探究相似图形的过程中,培养学生与他人交流、合作的意识和品质.重点、难点教学重点:认识图形的相似.教学难点: 理解相似图形概念.一.创设情境活动1观察图片,体会相似图形同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗? (课本图27。
1—1)( 课本图27.1-2)师生活动: 教师出示图片,提出问题;学生观察,小组讨论;师生共同交流.得到相似图形的概念.教师活动:什么是相似图形?学生活动:共同交流,得到相似图形的概念.学生归纳总结:(板书)形状相同的图形叫做相似图形在活动中,教师应重点关注:学生用数学的语言归纳相似图形的概念;活动2思考:如图27.1—3是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?学生活动:学生观察思考,小组讨论回答;二. 通过练习巩固相似图形的概念活动3练习问题:1。
如图,从放大镜里看到的三角尺和原来的三角尺相似吗?2.如图,图形a~f中,哪些是与图形(1)或(2)相似的?教师活动:教师出示图片,提出问题;学生活动:学生看书观察,小组讨论后回答问题.教师活动:在活动中,教师应重点关注:在练习中检验学生对相似图形的几何直觉.三。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第27章相似教案篇一:第27章相似全章初三数学九(下)第二十七章:相似第1课时图形的相似(1)教学目标:1、知识目标:从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.2、能力目标:在相似图形的探究过程中,让学生运用“观察—比较—猜想”分析问题.3、情感目标:在探究相似图形的过程中,培养学生与他人交流、合作的意识和品质.重点、难点教学重点:认识图形的相似.教学难点:理解相似图形概念.一.创设情境活动1观察图片,体会相似图形同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?(课本图27.1-1)(课本图27.1-2)师生活动:教师出示图片,提出问题;学生观察,小组讨论;师生共同交流.得到相似图形的概念.教师活动:什么是相似图形学生活动:共同交流,得到相似图形的概念.学生归纳总结:(板书)形状相同的图形叫做相似图形在活动中,教师应重点关注:学生用数学的语言归纳相似图形的概念;活动2思考:如图27.1-3是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗学生活动:学生观察思考,小组讨论回答;二.通过练习巩固相似图形的概念活动3练习问题:1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗?2.如图,图形a~f中,哪些是与图形(1)或(2)相似的?教师活动:教师出示图片,提出问题;学生活动:学生看书观察,小组讨论后回答问题.教师活动:在活动中,教师应重点关注:在练习中检验学生对相似图形的几何直觉.三.小结巩固活动3(1)谈谈本节课你有哪些收获.(2)课外作业1、下列说法正确的是()A.小明上幼儿园时的照片和初中毕业时的照片相似.B.商店新买来的一副三角板是相似的.C.所有的课本都是相似的.D.国旗的五角星都是相似的.2、填空题1、形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的或而得到的。
课后反思:第2课时图形的相似(2)教学目标:1、知识目标:(1)理解相似三角形的概念,了解相似三角形的对应元素及相似比;(2)掌握判定三角形相似的预备定理。
2、能力目标:培养学生探究新知识,提高分析问题和解决问题的能力。
增进发放思维能力和现有知识区向最近发展区迁延的能力。
3、情感目标:加强学生对新知识探究的兴趣,渗透几何中理性思维的思想。
教学重点、难点:重点:相似三角形的概念及判定的预备定理难点:当两个相似三角形部分重叠时,判别它们的对应角和对应边以及例1的证明教学过程:一、类比联想,动手实验1.回顾全等三角形的含义(两个三角形形状、大小相同,能够完全重合),全等三角形所具有的性质(对应边、对应角相等)。
2.让学生动手画一个三角形及三角形的一条中位线,教师提问:三角形的中位线所截的三角形与原三角形的形状有什么关系?大小呢?各角有什么关系?各边有什么关系?/二、直观演示,展示新知A1.相似三角形的定义C’将上面所截得的三角形移出,记为A’B’C’,原三角形记为ABC,因此有’B=’,CC’,BC,ABAB//BCBC//CACA//12,即两个三角形的对应角相等,对应边成比例。
这样的两个三角形虽然大小不一定相等,但形状相同。
定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形。
2.表示方法:教师介绍表示法,同时强调应把表示对应顶点的字母写在对应的位置上(可以以此与全等符号及表示作一比较,加强记忆)。
3.相似三角形的性质:相似三角形的对应角相等,对应边成比例。
4.相似比:相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)。
’B’C’的相似比是kABC与’B’C’的相似比是k练习:判断下列命题是否正确。
错误的,举出反例;正确的,用定义加以说明:。
⑴所有的等腰三角形都相似。
⑵所有的等边三角形都相似。
⑶所有的直角三角形都相似。
⑷所有的等腰直角三角形都相似。
教师示范一个规范过程,让学生模仿,学会用定义来解决问题。
1ABC 中,A三、范例研讨,迁移练习:DEDE//BC,D。
E分别在AB,AC上。
求证:△ADE∽△ABCCF师生共同探讨:(1)目前要证明两个三角形相似只能根据什么?(定义)(2)根据定义证明两个三角形相似,要证明满足哪两个条件?(对应角相等,对应边成比例)(3)△ADE与△ABC满足“对应角相等”吗?为什么?(4)对应边成比例,由“DE//BC”的条件可得到怎样的比例式?ADABAEEC(5)本题的关键归结为“只要证明什么”?AEACDEBC(6)根据以前的推论,如何把DE移到BC上去,即应添怎样的辅助线?(EF//AB)教师板演证明过程。
2.如图,DE//BC,D、E分别在BA、CA的延长线上,DE△ADE与△ABC相似吗?A——相似CB由此得到预备定理:3.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
4.例2,如图,D为△ABC的AB边上的一点,过点D作DE//AC,交BC于E,已知BE:EC=2:1,AC=6CM,求DE的长。
5、练习:P122页1、2、36、课后拓展(机动):(1ACB,则AD:AB=:,AB:BD=:,如果AD=2,DC=1,那么AB=(2)ABC中,AD是角平分线,求证:ABACBDDCC。
ACBDC图甲图乙四、归纳总结、布置作业:1.今天学习了相似三角形的定义,它既是三角形相似的判定,又是相似三角形的性质,同时可知全等三角形是相似三角形的特殊情况,其相似比是1;2.平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
课后反思:第3课时相似三角形的判定(1)教学目的:1、会用符号“∽”表示相似三角形如△ABC∽△ABC;2、知道当△ABC与△ABC的相似比为k时,△ABC与△ABC的相似比为1/k.3、理解掌握平行线分线段成比例定理4、在平行线分线段成比例定理探究过程中,让学生运用“操作—比较—发现—归纳”分析问题.5、在探究平行线分线段成比例定理过程中,培养学生与他人交流、合作的意识和品质.重点、难点教学重点:理解掌握平行线分线段成比例定理及应用.教学难点:掌握平行线分线段成比例定理应用.二.创设情境谈话复习引入课题(1)相似多边形的主要特征是什么?(2)在相似多边形中,最简单的就是相似三角形.在△ABC与△A′B′C′中,如果∠A=∠A′,∠B=∠B′,∠C=∠C′,且ABABBCBCCACAk.我们就说△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′,k就是它们的相似比.反之如果△ABC∽△A′B′C′,则有∠A=∠A′,∠B=∠B′,∠C=∠C′,且ABABBCBCCACA.(3)问题:如果k=1,这两个三角形有怎样的关系?教师活动:明确(1)在相似多边形中,最简单的就是相似三角形。
(2)用符号“∽”表示相似三角形如△ABC∽△ABC;(3)当△ABC与△ABC的相似比为k时,△ABC与△ABC的相似比为1/k.活动1(教材P40页探究1)如图27.2-1),任意画两条直线l1,l2,再画三条与l1,l2相交的平行线l3,l4,l5.分别量度l3,l4,l5.在l1上截得的两条线段AB,BC和在l2上截得的两条线段DE,EF的长度,AB︰篇二:九年级数学(人教版)第27章《相似》全章第27章《相似》全章教案27.1图形的相似第一课时一、教学目标(一)知识目标通过对生活中的事物或图形的观察,获得理性认识,从而加以识别相似的图形.(二)能力目标通过观察、归纳等数学活动,与他人交流思维的过程和结果,能用所学的知识去解决问题.(三)情感目标在获得知识的过程中培养学习的自信心.二、教学重点引导学生观察图形,并从中获取信息,培养他们的观察、分析及归纳能力.三、教学难点应用获得的数学知识解决生活中的实际问题.四、教学过程一、创设情境,导入新课:观察教材第36页的两组图形,你能发现它们之间有什么关系二、师生互动,探索新知:1、观察下列几组几何图形,你能发现它们之间有什么关系从而得出:具有相同形状的图形叫相似形.(出示课题——图形的相似)2、对(2)中的3组图形,通过图形的缩小或放大,再利用图形的平移或旋转等变换,使它与另一个图形能够重合,从而加以验证它们是相似的图形。
3、你还见过哪些相似的图形,请举出一些例子与同学们交流.三、试一试:利用课本后面的网格或格点图纸出几组相似的图形,并利用幻灯片加以展示,使学生在学习中获得成功的喜悦.四、探究:1、思考教科书第37页观察中的问题,哈哈镜里看到的不同镜像它们相似吗?2、观察下图中的3组图形,它们是不是相似形为什么(激发学生的求知欲,为下一节课“相似图形的特征”做好准备)五、课堂练习完成课本第37页练习第1、2题。
六、课堂小结这节课你哪些收获七、课时作业1、根据今天所学的内容,请你收集或一些相似的图案.2、习题27.1第1、2题.27.1图形的相似第二课时一、教学目标(一)知识与技能通过对生活中的事物或图形的观察,获得理性认识,从而加以识别相似的图形.(二)过程与方法1、经历对相似图形观察、分析、欣赏以及动手操作、画图、测量等过程,能用所学的知识去解决问题;2、回顾相似图形的性质、定义,得出相似三角形的定义及其基本性质。
(三)情感态度与价值观通过观察、归纳等数学活动,与他人交流思维的过程和结果,在获得知识的过程中培养学习的自信心.发展审美能力,增强对图形欣赏的意识。
二、教学过程1.情境导入播放多媒体——教材中的图27.1.l-4(1)(用投影幻灯片或用教学挂图展示).观察相似三角形的特征,得出:三角相似的对应角相等、对应边成比例以及相似比.2.课前热身分组活动:(5分钟)复习相似变换图形,掌握相似形的基本特征:对应角相等,对应边的比相等.3.合作深究(1)整体感知从回顾旧知“相似多边形性质”入手定义相似三角形,认识符号相似于“∽”,会用数学语言表达两个三角形相似——从课本第41页中“习题27.1第5题”,通过测量得到DE∥BC时,△ADE∽△ABC-一给出三角形相似的定义.(1)四边互动互动1师:教师展示投影1:课本第38页中图27.1.1-4.这两个图形有何共同特征?生:回答略.师:这两个图形的不同点在哪里?生:回答略(教师在学生进行议论、交流、评判形成共识后可由学生进行口头归纳.)明确图上所展示的两个相似图形中,∠A=∠A',∠B=∠B',∠C=∠C',定义相似比:两个相似三角形对应边的比叫相似比.注意:相似比是有顺序的,△ABC与△A'B'C'的相似比为k,则△A'B'C'与△ABC的相似比为互动2师:展示投影2:课本中第39页图27.1-5.△ABC与△ADE的三个角对应相等吗?为什么?生:略.师:△ABC与△ADE的三边对应成比例吗?量量看.生:动手测量得出结论并与同伴交流.师:△ABC与△AD E相似吗?生:学生分组进进行讨论.明确在同学交流、评判的过程中,老师进一步阐述,平行于三角形一边的直线截其他两边或其延长线所得的三角形与原三角形相似.4.达标反馈ABBCAC.ABBCAC1.k课本第40页练习第l-3题.注:(1)题中找对应边应考虑长边与长边、中边与中边、短边与短边是否对应成比例及大角与大角、小角与小角、中角与中角是否对应相等.5.学习小结(1)内容相似用符号“∽”表示,读作“相似于”.两个相似三角形对应边的比称为相似比,相似比是有顺序的.△ABC 与△A'B'C'的相似比为k,则△A'B'C'与△ABC的相似比为.k平行于三角形一边的直线截三角形的另两边,所得对应线段成比例.(2)方法归纳学会动手画平行线,动手测量、计算、观察、猜想规律;重在培养学生的合作、交流与探索的能力.(三)延伸拓展1.链接生活找一些生活中存在的相似变换的实例.2实践探索(1)实践活动画出公路两旁的电线杆(观察远近不同的两根电线杆及其上面的支架和瓷瓶).(2)巩固练习①课本第41页习题27.1第4、7题.(3)补充作业①中心对称的两个图形是相似图形.(V)②所有等边三角形都是相似图形.(V)③线段既是轴对称图形也是中心对称图形.(V)④半径不同的两个圆是相似图形.(V)⑤人的一双眼睛是相似图形.(V)⑥自己选画一如意图形,然后再确定一个对应顶点,再画出一个与它相似的图形.⑦(a)所有正方形是不是相似图形?若是,请说明理由.(b)所有矩形呢把矩形改为梯形又如何?换成菱形呢?改为等腰梯形或平行四边形?27.2.1相似三角形的判定第一课时教学目标(一)知识与技能1、了解相似比的定义,掌握判定两个三角形相似的方法“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”;2、掌握“如果两个三角形的三组对应边的比相等,那么这两个三角形相似”的判定定理。