FB41基本使用方法

FB41基本使用方法
FB41基本使用方法

FB41(CONT_C)基本使用

FB41“CONT_C”用于在SIMATIC S7可编程控制器上,控制带有连续输入和输出变量的工艺过程。在参数分配期间,用户可以激活或取消激活PID控制器的部分功能,如积分冻结等,以使控制器适合实际的工艺过程。

FB41“CONT_C”可以将控制器用作PID固定设定值控制器,或者在多回路控制中用作级联、混合或比率控制器。控制器的功能基于采样控制器的PID控制算法,采样控制器带有一个模拟信号;如果需要的话,还可以扩展控制器的功能,增加一个脉冲生成器环节,以产生脉宽调制的输出信号,用于带有比例执行器的两步或三步控制器。

FB41“CONT_C”必须在OB定时中断内调用,并将CYCLE(采样时间)管脚的调用时间与OB定时中断保持一致,即相等。

图1.FB41"CONT_C" 的方框图主要参数

图2. FB41"CONT_C" 程序块

注:以TIA Portal V13 SP1为例,该功能块在STEP 7中的管脚与其相同表1. FB41"CONT_C" 的输入参数

表2. FB41"CONT_C" 的输出参数

基本功能

由图1 可知,FB41可以分为偏差产生、PID运算、PID输出三部分。以下为管道压力控制实例说明:

升压时,阀门开度增加;降压时,阀门开度减小。

被控对象:0-100Kpa (压力)输入信号:4-20mA

设定值:60Kpa

执行元件:0-100% (阀门)输出信号:4-20mA 手/自动选择(MAN_ON)

表3.MAN_ON的选择

当前值PV_IN与PV_PER的选择

表4.PVPER_ON的选择

参数

状态说明

PVPER_ON 0 PV_IN有效

PVPER_ON 1 PV_PER有效

注:无论当前值选择哪个管脚,SP_INT必须与其量纲相同PVPER_ON=0

利用量程转换块FC105"SCALE"将过程变量转换为实际工程量

图3.FC105“SCALE”量程转换块

注:以TIA Portal V13 SP1为例,该功能块在STEP 7中的管脚与其相同表5.FC105“SCALE”参数引脚

图4.PVPER_ON=0时,PV_IN有效

PVPER_ON=1

直接将过程变量输入到PV_PER管脚,会按照以下公式进行规格化转换。公式:PV=(PV_PER*100/27648)*PV_FAC+PV_OFF

默认转换为0-100(%)

OTDR常用参数设置

OTDR常用参数设置 OTDR在光缆工程施工和光缆线路维护工作中经常使用,是最重要的光纤性能测试仪器,它能将长100多公里光纤的性能参数和故障状态,以一定斜率直线(曲线)的形式清晰的显示在几英寸的液晶屏上。根据图形和事件表的数据进行分析,能迅速的查找确定故障点的位置和判断障碍的性质及类别。OTDR主要是根据光学原理以及瑞利散射和菲涅尔反射理论制成的。仪表的激光源发出一定强度和波长的光束至被测光纤,由于光纤本身的缺陷,制作工艺和石英玻璃材料组分的不均匀性,使光在光纤中传输将产生瑞利散射;由于机械连接和断裂等原因将造成光在光纤中产生菲涅尔反射,由光纤沿线各点反射回的微弱的光信号经光定向耦合器到仪器的接收端,通过光电转换器,低噪声放大器,数字图象信号处理等过程,实现图表、曲线扫迹在屏幕上显现。目前OTDR型号种类繁多,本人在工作中先后使用过4种OTDR,操作方式虽各不相同,但其工作原理是一致的。铁通湖南分公司管内使用较多的型号有安捷伦Agilent HP8145A、HP8147,安捷伦Agilent E6000C,安科特纳Acterna MTS5100,在使用中只要其动态范围能达到要求,折射率、波长、脉宽、距离、均化时间等参数的设置符合要求,就可以得到满意的测试结果。 OTDR中测试仪表中的几个参数 测试距离、脉冲宽度、折射率、测试光波长、平均值、动态范围、死区、“鬼影” 下面简单介绍上面各个参数(术语)代表的意义 测试距离:由于光纤制造以后其折射率基本不变,这样光在光纤中的传播速度就不变,这样测试距离和时间就是一致的,实际上测试距离就是光在光纤中的传播速度乘上传

播时间,对测试距离的选取就是对测试采样起始和终止时间的选取。测量时选取适当的测试距离可以生成比较全面的轨迹图,对有效的分析光纤的特性有很好的帮助,通常根据经验,选取整条光路长度的1.5-2倍之间最为合适。

LINDO软件使用指导

一、软件简介 LINDO是一种专门用于求解数学规划问题的软件包。由于LINDO执行速度很快、易于方便输入、求解和分析数学规划问题。因此在数学、科研和工业界得到广泛应用。LINDO主要用于解线性规划、非线性规划、二次规划和整数规划等问题。也可以用于一些非线性和线性方程组的求解以及代数方程求根等。LINDO 中包含了一种建模语言和许多常用的数学函数(包括大量概论函数),可供使用者建立规划问题时调用。 一般用LINDO(Linear Interactive and Discrete Optimizer)解决线性规划(LP—Linear Programming)。整数规划(IP—Integer Programming)问题。其中LINDO 6 .1 学生版至多可求解多达300个变量和150个约束的规划问题。其正式版(标准版)则可求解的变量和约束在1量级以上。 LINDO则用于求解非线性规划(NLP—NON—LINEAR PROGRAMMING)和二次规则(QP —QUARATIC PROGRAMING)其中LINGO 6.0学生版最多可版最多达300个变量和150个约束的规则问题,其标准版的求解能力亦再10^4量级以上。虽然LINDO 和LINGO不能直接求解目标规划问题,但用序贯式算法可分解成一个个LINDO和LINGO能解决的规划问题。 要学好用这个软件最好的办法就是学习他们自带的HELP文件。 下面拟举数例以说明这个软件的最基本用法。 目标函数:max z=2x1+3x2 约束条件: x1+2x2<=8 4x1x6<=16 4x2 <=12 xj>=0(j=1,2 (8) 下面我们就用LINDO来解这一优化问题。 输入语句: max(不区分大小写) 2x1+3x2 ST(不区分大小写或写subject to) x1+2x2<=8 4x1x6<=16

petrel教程

Learn log 地质建模工作流程: 地震解释地质对比测井曲线加载 断层模型测井曲线处理、解释 油组构造模型岩石物性曲线 岩性模型 岩石物理模型 成果输出及地质分析 功能键: 1、ctrl+Shift+鼠标左键放大缩小图形。 鼠标左键+上滚轮(鼠标中键),放大缩小图形。 2、ctrl+鼠标左键图形平移 上滚轮(鼠标中键),图形平移 3、鼠标左键图形旋转

建新工区lxj1 .pet 一、建井文件夹new well folder 在Insert的new folders→点New Well Floders 1、加头文件在lxj1.pet Input窗下,右健点Wells→选Import (on select)… 出现Import File输入窗中,点Petrel projects –-> cha19 → Well-data目录, 选 文件名:ch19-wellhead.txt 文件类型:well heads(*.*) 文件格式例子: WellName X-Coord Y-Coord KB TopDepth BottomDepth Symbol 34/10-A-10 60491.7 35683.0 56.6 0 2534 Oil 34/10-A-15 61757.5 30147.1 23.6 0 3133 Gas 34/10-A-21 62165.3 32653.8 12.6 0 2431 Dry 34/10-A-27 66552.1 31629.3 23.6 0 2986 MinorOil ... ... 按打开,出现Import Well Heads窗,图如下: 在窗口中参考Header info提供的列位置,填好列号,例如 井名Name 1列 X-坐标X-coordina 2列 Y-坐标Y-coordina 3列 补心Kelly bushing 4列 井符号Well symbol 7列 顶界深Top depth 5列 底界深Bottom depth 6列 在Extend well处选顶扩展或底扩展多少米,例如20米。 按OK,确定。如果有不合适的井数据,会有提示指出,表示那些井不被加入。 见下图:

OTDR基本使用方法

OTDR基本使用方法 一、按设备顶部的红色按钮启动机器 二、进入系统后选择F3进入专家模式 三、在上面图的右面面板有三个按钮:“km”“Ω”“λ” 1. km键的作用是选择需要测试的距离,一般选择你实际距离的2倍,在设备屏幕右边出现16KM/8M的字样,这个表示距离16公里每8米采集一个数据。 2. Ω:选好距离和采样距离后选择,这个表示脉宽 脉宽越长,动态测量范围越大,测量距离更长,但在OTDR曲线波形中产生盲区更大;短脉冲注入光平低,但可减小盲区。一般50公里以下选择2500ns和5000ns,50公里以上选择10000ns和20000ns 3. λ:波长,这个切换两种波长1310和1550,一般50公里以下选择1310,50公里以上选择1550 四、选好以上后连接好光线,这里光纤选择对端收光的一端,否则数据会不正常, 五、按下设备右面面板上的红色按钮(TEST/STOP)开始测试,测试1到2分钟即可. 按(A/B SET)选定游标A,转动旋钮,将游标A移动到过渡光纤尾端接头 反射峰后的线性区起始点,然后按(A/B SET)选定游标B,转动旋钮,将 游标B移动到被测光纤的尾端反射峰前 波长1550nm 脉宽30ns 平均时间30s 光纤折射率1.4671

这是测试完成后出现的表,在这个表中我们A端在0起始线,B端是那条虚线.可以看到AB两点间相距53.4252KM。在虚线旁有个高峰后落下,这表示光纤已经到了设备或终端。在图中a点b点为熔接点, OTDR测试的光线曲线斜率基本一致,若某一段斜率较大,则表明此段衰减较大,b 点为正常情况,a点有上升的情况,是由于在熔接点之后的光纤比熔接点之前的光纤产生更多的后向散光而形成的. 如果出现П这个图标或一个高峰后线没有落到底处,这表示这是个跳接。在图中间上方20.147dB,这表示这条线路的衰减值。 2006-08-14 | OTDR使用方法 一/OTDR的使用 用OTDR进行光纤测量可分为三步:参数设置、数据获取和曲线分析。人工设置测量参数包括: (1)波长选择(λ): 因不同的波长对应不同的光线特性(包括衰减、微弯等),测试波长一般遵循与系统传输通信波长相对应的原则,即系统开放1550波长,则测试波长为1550nm。

Petrel操作教程

Petrel建模主要流程(未完) 一、加载数据: 准备数据: 井头文件wellhead: wellname x y kb td zhen16 36459506.27 3981749.43 1533.87 2500 zhen207 36455221.44 3991070.49 1537.79 2500 zhen21 36455028.03 3977605.084 1343.26 2500 zhen211-17 36456478.22 3983284.84 1425.33 2500 zhen211-18 36456671.83 3983534.45 1423.57 2500 zhen212-16 36456345 3982675 1301.46 2500 分层数据welltops: Wellname TYPE MD SURFACE zhen16 HORIZON 2349.5 C811top zhen16 HORIZON 2367.2 C812top zhen16 HORIZON 2384.2 C813top zhen16 HORIZON 2395.58 C813bot zhen207 HORIZON 2394.53 C811top zhen207 HORIZON 2412.465 C812top zhen207 HORIZON 2428.035 C813top zhen207 HORIZON 2443.255 C813bot zhen21 HORIZON 2166.5 C811top zhen21 HORIZON 2184.22 C812top zhen21 HORIZON 2197.715 C813top zhen21 HORIZON -999 C813bot zhen211-17 HORIZON 2245.625 C811top zhen211-17 HORIZON 2263.18 C812top zhen211-17 HORIZON 2276.3 C813top zhen211-17 HORIZON 2289.42 C813bot 测井文件数据(.las格式): DEPTH Por Perm SW 2101.4225518 -999.250000 -999.2500000 -999.250000 2101.5000000 -999.250000 -999.2500000 -999.250000 2101.6250000 -999.250000 -999.2500000 -999.250000 2101.7500000 -999.250000 -999.2500000 -999.250000 2101.8750000 -999.250000 -999.2500000 -999.250000 二、操作流程: (一)导入数据

petrel软件安装流程

Petrel软件安装流程 1、虚拟网卡(Virtnet)安装 参考安装说明,注意:我的电脑属性的设备管理中网络适配器Virtnet Network Adapter#2右键属性,高级一栏中输入 0022B06074E6 2、Petrel软件安装 参考安装说明(破解时有变化,请注意),注意: (1)将Petrel安装在C盘中,目录:C:\Program Files\Schlumberger。(2)许可管理程序安装,目录 :(3)破解 ①将安装包中petrel-crack-for zhangfeng中petrel2014中的4个覆盖C:\Program Files\Schlumberger\Petrel 2014 ②将安装包中petrel-crack-for zhangfeng中Schlumberger Licensing 中2014.1中的slbsls文件和petrel-crack-for zhangfeng中 Petrel-zhangfeng20150402.lic文件一同放入C:\Program Files(86)\Schlumberger\Schlumberger Licensing\ 2014.1 (4)调整许可内部参数:双击安装的许可图标

①Add license file: C:\program files(x86)\schlumberger\schlumber licensing\2014.1\petrel-zhangfeng20150402.lic ②Add license server : @localhost 3、路径设置 中的Imtool设置 (1)

OTDR使用经验大全

OTDR使用经验大全 1 OTDR的使用用OTDR进行光纤测量可分为三步:参数设置、数据获取和曲线分析。 人工设置测量参数包括:(1)波长选择(λ):因不同的波长对应不同的光线特性(包括衰减、微弯等),测试波长一般遵循与系统传输通信波长相对应的原则,即系统开放1550波长,则测试波长为1550nm。 (2)脉宽(Pulse Width): 脉宽越长,动态测量范围越大,测量距离更长,但在OTDR曲线波形中产生盲区更大;短脉冲注入光平低,但可减小盲区。脉宽周期通常以ns来表示。(3)测量范围(Range): OTDR测量范围是指OTDR获取数据取样的最大距离,此参数的选择决定了取样分辨率的大小。最佳测量范围为待测光纤长度1.5~2倍距离之间。 (4)平均时间:由于后向散射光信号极其微弱,一般采用统计平均的方法来提高信噪比,平均时间越长,信噪比越高。例如,3min的获得取将比1min的获得取提高0.8dB的动态。但超过10min的获得取时间对信噪比的改善并不大。一般平

均时间不超过3min。(5)光纤参数: 光纤参数的设置包括折射率n和后向散射系数n和后向散射系数η的设置。折射率参数与距离测量有关,后向散射系数则影响反射与回波损耗的测量结果。这两个参数通常由光纤生产厂家给出。 参数设置好后,OTDR即可发送光脉冲并接收由光纤链路散射和反射回来的光,对光电探测器的输出取样,得到OTDR曲线,对曲线进行分析即可了解光纤质量。2 经验与技巧 (1)光纤质量的简单判别: 正常情况下,OTDR测试的光线曲线主体(单盘或几盘光缆)斜率基本一致,若某一段斜率较大,则表明此段衰减较大;若曲线主体为不规则形状,斜率起伏较大,弯曲或呈弧状,则表明光纤质量严重劣化,不符合通信要求。 (2)波长的选择和单双向测试: 1550波长测试距离更远,1550nm比1310nm光纤对弯曲更敏感,1550nm比1310nm单位长度衰减更小、1310nm比1550nm测的熔接或连接器损耗更高。在实际的光缆维护工作中一般对两种波长都进行测试、比较。对于正增益现象和超过距离线路均须进行双向测试分析计算,才能获得良好的测试结论。 (3)接头清洁:

petrel软件的学习步骤

petrel软件的学习步骤 一、加载数据1.加井头文件Importfile——wellheads(数据输入格式:wellhead)数据编写格式:Excel.具体如下:井名X Y KB 补心高MD 井类别…… …… …… …… …… …… …… 2.加井斜数据在生成的wells文件中输入井斜数据(格式为:wellpath/deveation) 一、加载数据 1.加井头文件 Import file—— well heads(数据输入格式:well head)数据编写格式:Excel.具体如下: 井名X Y KB 补心高MD 井类别 …… …… …… …… …… …… …… 2.加井斜数据 在生成的wells文件中输入井斜数据(格式为:well path/deveation)编写数据格式为Excel,具体如下: MD 井斜(倾角)方位角 …… …… …… 可以在wells文件中进行calculator——字母=常数(如:A=1)——目的是增加一个道,以便以后加载曲线。 3.加数字化断层 新建文件夹——New folder——右键改名——数字化断层(格式:General lines/points)编写数据格式为:文本格式。具体如下: X Y Z …… …… …… 4.加数字化构造层 新建文件夹——New folder ——右键改名——数字化构造层面(格式:General lines/points)编写数据格式为:文本格式。具体同上。 5.加分层数据 在Insert 窗口下选择new well tops生成well tops1(可以改名)文件夹——Import file——加入分层数据(格式:Petrel well tops(ASCII))编写数据格式为:文本格式。具体如下: 井名分层名或断层名(用引号引起)MD X Y Z …… …… …… …… …… …… well “surface” MD X Y Z 6.加小层 在Insert 窗口下选择new well tops生成well tops1(可以改名:例如改为小层)文件夹——右键——Import(on selection)——选择小层数据(输入格式为:Petrel Well Tops (ASCII)(*.*))——OK。 井名MD X Y “小层号“ A3 1400.60 20401670.20 4950029.89 "TIIItop" A3 1410.00 20401669.79 4950029.66 "TIII 8#小层" A3 1417.60 20401669.46 4950029.46 "TIII 9#小层" 二、建构造模型(断层模型) 7.编辑Pillar

正确、熟练掌握仪表的使用方法 OTDR

随着光缆线路的大量敷设和使用,光纤通信系统的可靠性和安全性越来越受到人们的关注。由于我国幅员辽阔,地形地貌差异很大,对光缆线路可能造成的各种危险因素很多,这包括各种自然因素和人为破坏的光缆线路损毁等。从过往的光缆线路障碍分析中可以出由于光缆本身的质量问题和自然灾害引起的障碍占的比例较少,大部分障碍是属于人为性质的损坏。 一、光缆线路的故障定位 在光传输系统故障处理中故障定位的一般思路为:先外部、后传输,即在故障定位时,先排除外部的可能因素,如光纤断裂、电源中断等,然后再考虑传输设备故障。 首先分析光缆线路的常见障碍现象及原因 1.线路全部中断:光板出现R-LOS告警,可能原因有光缆受外力影响被挖断、炸断或拉断等 2.个别系统通信质量下降:(1)出现误码告警,可能的原因有光缆在敷设和接续过程中造成光纤的损伤使线路衰耗时小时大,活动连接器未到位或者出现轻微污染,或者其它原因造成适配时好时坏;(2)光纤性能下降,其色散和衰耗特性受环境因素影响产生波动;(3)光纤受侧应力作用,全程衰耗增大;(4)光缆接头盒进水;(5)光纤在某些特殊点受压(如收容盘内压纤)等 在确定线路障碍后,用OTDR对线路测试,以确定障碍的性质和部位,当遇到自然灾害或外界施工等外力影响造成光缆线路阻断时,查修人员根据测试人员提供的位置,一般比较容易找到。但有些时候不容易从路由上的异常现象找到障碍地点,这时,必须根据OTDR 测出障碍点到测试点的距离,与原始测试资料进行核对,查出障碍点处于个哪个区段,再通过必要的换算后,再精确丈量其间的地面距离,直至找到障碍点的具体位置。但往往障碍点与测量计算的位置相差很大,这样既浪费人力物力,更由于光缆线路障碍未能尽快修复造成很大影响或损失。 如何才能更精确的判断障碍点的准确位置呢? 二、首先要分析影响光缆线路障碍点准确定的主要因素 1.OTDR测试仪表存在的固有偏差 由OTDR的测试原理可知,它是按一定的周期向被测光纤发送光脉冲,再按一定的速率将来自光纤的背向散射信号抽样、量化、编码后,存储并显示出来。OTDR仪表本身由于抽样间隔而存在误差,这种固有偏差主要反映在距离分辩率上。OTDR的距离分辩率正比于抽样频率。 2.测试仪表操作不当产生的误差

Petrel中文说明书

Petrel软件实例操作流程

第1章Petrel简介 1.1安装并启动Petrel 把安装盘放入光驱,运行Setup.exe程序,根据提示就可以顺利完成安装,在安装的过程中同时安装DONGLE的驱动程序,安装的过程中不要把DONGLE插入USB插槽,安装完毕,再插入DONGLE,如果LICENSE过期,请和我们技术支持联系,然后按下面的顺序打开软件。 1. 双击桌面上的Petrel图标启动Petrel。 2. 如果是第一次运行Petrel,将出现一个Petrel的介绍窗口。 3. 打开Gullfaks_Demo项目。点击文件>打开项目,从项目目录中选择Gullfaks_2002SE.pet。 1.2界面介绍 1.2.1菜单 / 工具栏 与大多数PC软件一样,Petrel软件的菜单有标准的“文件”、“编辑”、“视图”、“插入”、“项目”、“窗口”、“帮助”等下拉菜单,以及一些用于打开、保存project的标准操作按钮。在Petrel的显示窗口的右边是对应于操作进程的工具栏,这些工具是否有效取决于选择进程表中的哪个进程。 操作步骤 1.点击上面工具栏中的每一项看会出现什么,你可以实践一些感兴趣的选项。 2.将鼠标放在工具栏中的按钮上慢慢移动,将会出现描述每一个按钮功能的文本出现。 3.点击“What's This”按钮,然后再点击其它的某个按钮,将会现该按钮功能的详细描述。 1.2.1.1文件菜单(File)

1.2.1.3显示菜单(View)

1.2.1.4项目菜单(Project) 1.2.1.5工具菜单(Tools)

1.2.1.7帮助菜单(Help) 1.2.2 Petrel 资源管理器 Petrel 资源管理器(左上角)跟任何PC 机上的windows 资源管理器一样工作。通过点击加号、减号可以打开和关闭文件夹。注意Petrel 资源管理器下面的标签,这些标签可以从一个文件夹移到另一个文件夹。 操作步骤 1. 点击输入标签。 2. 展开文件夹显示其内容。 3. 右键点击文件夹有效的选项,从选项列表中选择设置,弹出一个窗口,可以设置有关显示的多种参数。 4. 右键点击一个文件并选择设置,出现这个文件有关信息。

lindoapi数学软件介绍

lindoapi数学软件介绍 LINDO是一种专门用于求解数学 规划问题的软件包。由于LINDO执行速度很快、易于方便输入、求解和分析数学规划问题。因此在数学、科研和工业界得到广泛应用。LINDO主要用于解线 性规划、非线性规划、二次规划和整数规划等问题。也可以用于一些非线性和线性方程组的求解以及代数方程求根等。LINDO中包含了一种建模语言和许多常用 的数学函数(包括大量概论函数),可供使用者建立规划问题时调用。 LINDO 6.1是求解线性、整数和二个规划问题的多功能工具。LINDO 6.1互动的环境可以让你容易得建立和求解最佳化问题,或者你可以将LINDO的最佳化引擎挂在您己开发的程序内。而另一方面,LINDO也可以用来解决 一些复杂的二次线性整数规划方面的实际问题。如在大型的机器上,LINDO被用来解决一些拥有超过50,000各约束条件和200,000万个变量的大规 模复杂问题 LINGO则用于求解非线性规划(NLP—NON—LINEAR PROGRAMMING)和二次规则(QP—QUARATIC

PROGRAMING)其中LINGO 6.0学生版最多可版最多达300个变量和150个约束的规则问题,其标准版的求解能力亦再10^4量级以上。虽然LINDO 和LINGO不能直接求解目 标规划问题,但用序贯式算法可分解成一个个LINDO和LINGO能解决的规划问题。 什么是LINDO 在这里有必要先让大家知道什么是运筹学。运筹学是近四十年来发展起来的一门新兴学科。它的目的是为行政管理人员在作决策时提供科学的依据。因此,它是实 现管理现代化的有力工具。运筹学在生产管理、工程技术、军事作战、科学试验、财政经济以及社会科学中都得到了极为广泛的应用。讲到这里,你已经被运筹学深 深吸引了吧,至于你会怎么去学不是我们讨论的问题,在这里我们只说学运筹学要用到的工具。应用运筹学去处理问题有两个重要特征:一是从全局的观点出发;二 是通过建立模型如数学模型或模拟模型,对于要求解的问题得到最合理的决策。好了,说到这里,LINDO该出场了,它的作用就是负责把问题的最优决策求出来,省去大量难以想象的人工计算。如果你是运筹学的学习者,你就必须拥有

OTDR测试时常遇到的问题

OTDR测试时常遇到的几个问题 一、我们在使用光时域反射仪(OTDR)时,常常由于测试链路较长不能看到所有的链路情况。那么在什么情况是动态范围不足的表现哪 1、轨迹被淹没在噪声中,有时候会测到的轨迹波动很大,但却保持着轨迹应有的发展趋势。 2、当分析轨迹时,出现《扫描结束》的标识。所谓扫描结束实际是说从该点以后的测试结果只作为参考。扫描结束的出现实际上是因为轨迹的清晰度变差,噪声水平较高,轨迹波动性较大。 3、已知测试链路的长度较长,应该考虑通过设置增大动态范围。 增大动态范围有两种最为常用的方法,一是增加激光注入能量,另一是提高信噪比(S/N)。两种方法均可以通过仪表设置达到。下面是对几种方法的简单概述。 1、选择更大的脉冲宽度。 实际上这种方法是最为常用的方法,它的本质是增加激光的注入能量。由于激光器的性能限制,不可能直接调整激光器以求更大的发射能量。我们知道,OTDR测量必须采用脉冲方式,加大脉冲宽度实际上是使激光器发射的持续时间增加,以达到增大注入能量的目的。因此,这种方法可以获得更大的动态范围。然而,更大的脉宽意味着会有更大的盲区,这种方法是有一定代价的。 2、选择《取平均时间》测量模式,并选择更长的取平均时间。 这种方法被我们实际测量中大量采用,实际上是增大信噪比的一种数字信号处理的算法。主要采用将多次测量的结果相加取平均值的方式提高信噪比。它利用了信号及噪声的不同特性达到提高信噪比的目的。信号是有规律性的,而噪声是随机的。在相加过程中,信号被一次次放大,而噪声相加总的趋势是趋近于“0”。取平均的过程,是将信号还原到原有的强度。整个处理过程实际上是降低噪声的

LindoLingo软件基本知识

Lindo /Lingo 软件基本知识 Lindo/Lingo 软件是美国Lindo 系统公司开发的一套专门用于求解优化模型的软件。 一.Lingo 入门 1.编写简单的Lingo 程序 Lingo 程序:在“模型窗口”中,按Lingo 语法格式,输入一个完整的优化模型。 (注意:一个程序就是一个优化模型) 例1 要求解线性规划问题 . 0,, 1253,1034.., 32max ≥≤+≤++=y x y x y x t s y x z 输入程序: max=2*x+3*y; 4*x+3*y<=10; 3*x+5*y<=12; 例2 求解 .,0,, 2, 100.., 23.027798max 21212122212121且都是整数≥≤≤+---+x x x x x x t s x x x x x x 输入程序: max=98*x1+277*x2-x1^2-0.3*x1*x2-2*x2^2; x1<=2*x2;x1+x2<=100; @gin(x1); @gin(x2); 2.语法格式 (1)目标函数 max= 或 min= (2)每个语句的结尾要有“;” (3)程序中,各个语句的先后次序无关 (4)自动默认各个变量均为大于等于零的实数 (5)不区分大写、小写 (6)程序中的“<=”、“<”等同于原模型中的“≤” 程序中的“>=”、“>”等同于原模型中的“≥” (7)对一个特定的变量 x ,进行限制: @free(x) :把x 放宽为任意实数

@gin(x) :限制x 为整数 @bin(x) :限制x 只能取0或1 @bnd(-6,x,18) :限制x 为闭区间[-6,18]上的任意实数 例3:某学校游泳队要从5名队员中选4名参加4乘100米混合泳接力赛。 5名队员4种泳姿的百米成绩(单位:秒) ----------------------------------------------------------------------------------- 李 王 张 刘 赵 蝶泳 66.8 57.2 78 70 67.4 仰泳 75.6 66 67.8 74.2 71 蛙泳 87 66.4 84.6 69.6 83.8 自由泳 58.6 53 59.4 57.2 62.4 ----------------------------------------------------------------------------------- 如何选拔? (1)请建立“0----1规划”模型; (2)用Lingo 求解。 解:若第i 名队员参加第j 种泳姿比赛,则令1=ij x ;否则令0=ij x ;共有20个决策变量ij x 。第i 名队员的第j 种泳姿成绩记为ij c ,则 目标函数为:∑∑==5141min i j ij ij x c 约束条件有:每名队员顶多能参加一种泳姿比赛 5,4,3,2,1,14 1=≤∑=i x j ij ; 每种泳姿有且仅有一人参加 .4,3,2,1,151==∑=j x i ij 这样就能建立如下“0----1规划”模型: ∑∑==5141min i j ij ij x c s.t. 5,4,3,2,1,141=≤∑=i x j ij .4,3,2,1,151==∑=j x i ij

OTDR原理及使用详解

OTDR原理及使用详解 为什么要使用OTDROTDR工作原理 OTDR定义 定义OTDR的英文全称是Optical Time Domain Reflectometer,中文意思为光时域反射仪 工作原理OTDR在精准时钟电路的控制之下,按照设定的参数向光口发射光脉冲信号,之后OTDR不断的按照一定的时间间隔从光口接收从光纤中反射回的光信号,分别按照瑞利背向散射(测试光钎的损耗)和菲涅尔反射(测试光钎的反射)的原理对光纤进行相应的测试。 Rayleigh 背向散射(瑞利散射) 原因源于光纤内部微小粒子或不均匀结构反射和吸收,当光照射到杂质上时,一些颗粒将光重定向到不同的方向,同时产生了信号衰减和背向散射。 规律其损耗的大小与波长的4次方成反比,即随着波长的增加,损耗迅速下降。光纤中某一点的后向回波可以反映出光纤中光功率的分布情况,椐此可以测试出光纤的损耗。损耗:Rayleigh Backscatter(瑞利背向散 射)=5Log(P0×W×S)-10ax(loge) 式中:P0:发射的光功率(瓦)W:传输的脉冲宽度(秒)S:光纤的反射系数(瓦/焦耳)a:光纤的衰减系数(奈踣/米)

1奈踣=8.686dBx:光纤距离 Fresnel 反射(非涅尔反射) 原因当光到达折射率突变的位置(比如从玻璃到空气)时,很大一部分光被反射回去,产生Fresnel 反射,它可能比Rayleigh 背向散射强上千倍。Fresnel 反射可通过OTDR 轨迹的尖峰来识别。 产生位置这样的反射例子有连接器、机械接头、光纤、光纤断裂或打开的连接器。 用途可检测链路沿线的物理事件。OTDR 的结构OTDR测试过程 第一步:清理光纤接口端面(法兰口)第二步:用光功率计测试链路是否有光(有强光会损坏OTDR)第三步:了解待测链路的状态,设置OTDR相应的参数第四步:OTDR测试及结果分析,保存 距离测量原理如果折射率“n”设置不正确,所测出的距离也将是错误的!!损耗测量原理OTDR 产生返回光强度(背向散射加上反射)与光纤长度相关的光纤曲线熔接损耗是一种由于信号电平在接头点突然下降而造成的点损耗熔接时如 果接点含有空气隙,就会产生具有反射的点损耗。OTDR曲线分析 典型的后向散射信号曲线a、输入端的Fresnel反射区(即盲区)b、恒定斜率区c、局部缺陷、接续或耦合引起的不连

lingo-lindo简介

Lingo、lindo简介 一、软件概述 (1) 二、快速入门 (4) 三、Mathematica函数大全--运算符及特殊符号 (11) 参见网址: https://www.360docs.net/doc/f57634382.html,/ 一、软件概述 (一)简介 LINGO软件是由美国LINDO系统公司研发的主要产品。LINGO是Linear Interactive and General Optimizer的缩写,即交互式的线性和通用优化求解器。LINGO可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解等,功能十分强大,是求解优化模型的最佳选择。其特色在于 内置建模语言,提供十几个内部函数,可以允许决策变量是整数(即整数规划,包括 0-1 整数规划),方便灵活,而且执行速度非常快。能方便与EXCEL,数据库等其他软件交换数据。 LINGO实际上还是最优化问题的一种建模语言,包括许多常用的函数可供使用者建立优化模型时调用,并提供与其他数据文件(如文本文件、Excel 电子表格文件、数据库文件等)的接口,易于方便地输入、求解和分析大规模最优化问题。 (二)LINGO的主要特点: Lingo 是使建立和求解线性、非线性和整数最佳化模型更快更简单更 有效率的综合工具。Lingo 提供强大的语言和快速的求解引擎来阐述和求 解最佳化模型。

1 简单的模型表示 LINGO 可以将线性、非线性和整数问题迅速得予以公式表示,并且容易阅读、了解和修改。LINGO的建模语言允许您使用汇总和下标变量以一种易懂的直观的方式来表达模型,非常类似您在使用纸和笔。模型更加容易构建,更容易理解,因此也更容易维护。 2 方便的数据输入和输出选择 LINGO 建立的模型可以直接从数据库或工作表获 取资料。同样地,LINGO 可以将求解结果直接输出到数据库或工作表。使得您能够在您选择的应用程序中生成报告。 3 强大的求解器 LINGO拥有一整套快速的,内建的求解器用来求解线性的,非线性的(球面&非球面的),二次的,二次约束的,和整数优化问题。您甚至不需要指定或启动特定的求解器,因为LINGO会读取您的方程式并自动选择合适的求解器。 4交互式模型或创建Turn-key应用程序 您能够在LINGO内创建和求解模型,或您能够从您自己编写的应用程序中直接调用LINGO。对于开发交互式模型,LINGO提供了一整套建模环境来构建,求解和分析您的模型。对于构建turn-key解决方案,LINGO提供的可调用的DLL 和OLE界面能够从用户自己写的程序中被调用。LINGO也能够从Excel宏或数据库应用程序中被直接调用。 5 广泛的文件和HELP功能

lindo详细使用说明

LINDO软件包使用手册 目录 第一节简介与安装 第二节用LINDO求解线性规划(LP) 问题 第三节用LINDO求解整数规划(IP) 和二次规划(QP) 问题第四节GINO简介 第五节LINGO简介

第一节简介与安装 1·1简介 本文主要面向大中专学生, 研究生, 及掌握一定的高等代数知识的读者,介绍LINDO软件包(学生版)的基本使用方法。该软件包(学生版)主要功能在于帮助使用者较快地输入一个优化问题的式子, 求解并分析该优化问题, 然后可做些较小的改动, 并重复上述的过程. 该软件包(学生版)在微机上DOS环境下运行。其使用界面不是图形式的,而是字符式的;不是菜单式的, 而是面向具体的命令(Command). 它有许多的命令, 每一个命令都可随时执行, 由系统检查该命令是否在上下文中起作用. 它采用一种对用户友好的交互使用方式, 包括了所有的使用过程指导. 基于使用的具体情况, 它会向使用者询问下一步将做什么, 或等待使用者输入下一个命令. LINDO软件包(学生版)包括LINDO,GINO,LINGO和LINGO NL(LINGO2)等优化软件的学生版以及相应的例子文件。由于LINDO程序执行速度很快,易于方便地输入、求解和分析优化问题,LINDO在教学、科研和工业界得到广泛应用。这里用LINDO软件包作为LINDO,GINO,LINGO和LINGO NL等的统称,包含五种组件,下面分别介绍如下: (1)LINDO是Linear INteractive and Discrete Optimizer字首的缩写形式,是由Linus Schrage 于1986年开发的优化计算软件包, 可以用来求解线性规划(LP----Linear Programming), 整数规划(IP----Integer Programming) 和二次规划(QP----Quadratic Programming) 问题. LINDO易于规划问题的输入、求解和分析,程序执行速度很快。LINDO学生版最多可求解多达200个变量和100个约束的规划问题。 (2)GINO可用于求解非线性规划(NLP----Nonlinear Linear Programming) 问题,求解线性和非线性方程组和不等式组,以及代数方程求根。GINO中包含了有关财务、概率等方面的函数和三角函数,以及各种一般的数学函数,可供使用者建立问题模型时调用。GINO 学生版最多可求解多达50个变量和30个约束的问题。 (3)LINGO 可用于求解线性规划和整数规划问题。 (4)LINGO NL(LINGO2)可用于求解线性、非线性和整数规划问题。 与LINDO和GINO不同的是,LINGO和LINGO NL(LINGO2)包含了内置的建模语言,允许以简练、直观的方式描述所需求解的问题,模型中所需的数据可以以一定格式保存在列表(List)和表格(Table)中,也可以保存在独立的文件中。LINGO和LINGO NL(LINGO2)学生版最多可求解多达200个变量和100个约束的问题。 (5)例子文件:在软件包中还含有例子文件,其中有些例子文件与各软件在一起,但大多数例子文件一般安装在例子目录。例子目录下的例子文件是以LUTOS 1-2-3的WK1格式存储的(也可用MS-OFFICE工具的EXCEL软件读写)。

Petrel2009建模教程真正实用精简要点

主要模块介绍 一、数据准备 本实例中的数据整理如下: wellhead井位坐标文件 jinghao X Y kb topdepth bottomdepth X21-233973816364714261433.0821502195 X21-243974070364716291433.082156.12193.1 X21-253974257364718491433.082154.42190.4 X21-263974480364720961436.52154.82189.8 X22-193972535364705161407.562120.32152.3 X22-203972803364707951417.462139.12165.1 X22-213973010364710401379.72102.62135.6 welltop分层文件 X Y hb wellpoint surface jinghao 397381636471426-716.92Horizon c811X21-23 397381636471426-724.92Horizon c8121X21-23 397381636471426-735.92Horizon c8122X21-23 397381636471426-755.92Horizon c813X21-23 397381636471426-761.92Horizon c821X21-23 397407036471629-723.02Horizon c811X21-24 397407036471629-731.02Horizon c8121X21-24 397407036471629-742.02Horizon c8122X21-24 397407036471629-754.02Horizon c813X21-24 397407036471629-760.02Horizon c821X21-24 测井文件准备 DEPTH PERM_K POR_K SW_K VSH_K NTG 2140.1250.00590100 2140.250.0059010 1 2140.3750.00590100 2140.50.005900 1 0 二、数据输入 1 输入WellHeader(井位坐标文件) 右键点击输入Well Header:

如何正确设定OTDR测试参数

如何正确设定OTDR测试参数 在使用OTDR时,要想准确地测试光纤长度和衰耗,在开始测试前必须要正确地设置相关参数。主要参数有:折射率、脉冲宽带和平均时间;同时,如何用光标准确取点也是至关重要的。一、折射率设置光纤群折射率的设置是否准确对纤长测试的影响较大。该折射率值由光纤生产厂家给出,另外不同厂家的OTDR其距离的算法也略有不同。一般来说,OTDR的纤长测试距离误差由以下的三个因素构成:0.000025%′测试距离±OTDR距离分辨率±光纤折射率引起的误差下面我们通过一个例子来说明 光纤群折射率对纤长测试的影响:假设被测光纤在距离测试点120km处断开,若用XX公司的YY型OTDR进行测试,在此距离范围内若采样点为32,000点,其距离分辨率为8m。我们将光纤群折射率的误差值取为0.001(因为操作者设置折射率时往往在1.467~1.468之间变动): D = 0.000025%′120,000m + 8m + 120,000m′0.001/1.467=100.8m 其中折射率所带来误差为81.8m,约占总误差的81.15%。通过上面的例子我们可以理解折射率设置对光纤纤长测试是多么重要!!!二、脉冲宽度和平均时间设置理论上讲,对于同一段光纤,脉冲宽度越大,距离测试误差就越大。但是若脉冲宽度很小,则不能精确识

别光纤末端与噪声电平的界线。操作人员应根据实际情况选择适当的脉冲宽度,原则是在保证能识别光纤末端的情况下,尽可能地小地设置脉冲宽度。如图一所示: 图一、在保证能识别光纤末端的情况下,尽可能小地设置脉冲宽度一般来说,很难机械地定义测试距离与所用脉冲宽度的关系,因为每根光纤的衰耗不同,很难用标准的尺度去衡量到底用多大的脉冲宽度去测试一定距离 的光纤。但是,有两个原则是必须把握的:1、用尽可能小的脉冲宽度去测试光纤,这样距离和衰耗的精度才能得到保证。只有脉冲宽度小到能够能够看到大致的曲线形状,就可以通过平均来测出曲线。2、当脉冲宽度确定以后,所选取的平均时间应该足够长,一般在15秒至60秒之间。被测光纤越长,平均时间约长(同时脉冲宽带也约大)。三、正确使用光标进行取点操作人员在使用OTDR时,因为取点所带来的误差也是不可避免的。对于发射事件,取点位置应在曲线陡升的起点;对于非反射事件,取点位置应在曲线陡降的起点。在测试时应将故障点处的曲线放大后再确定精确的故障点位置。如图二所示。 虽然OTDR的事件表里面有每个事件所对应的距离值,但是对承担抢修任务的技术人员而言,这个距离值不一定是十分可靠的。因为事件表里的距离值只有在正确设置了

OTDR的使用方法

OTDR使用方法 一、OTDR的使用 用OTDR进行光纤测量可分为三步:参数设置、数据获取和曲线分析。人工设置测量参数包括: (1)波长选择(λ): 因不同的波长对应不同的光线特性(包括衰减、微弯等),测试波长一般遵循与系统传输通信波长相对应的原则,即系统开放1550波长,则测试波长为1550nm。 (2)脉宽(Pulse Width): 脉宽越长,动态测量范围越大,测量距离更长,但在OTDR曲线波形中产生盲区更大;短脉冲注入光平低,但可减小盲区。脉宽周期通常以ns来表示。 (3)测量范围(Range): OTDR测量范围是指OTDR获取数据取样的最大距离,此参数的选择决定了取样分辨率的大小。最佳测量范围为待测光纤长度1.5~2倍距离之间。 (4)平均时间: 由于后向散射光信号极其微弱,一般采用统计平均的方法来提高信噪比,平均时间越长,信噪比越高。例如,3min的获得取将比1min 的获得取提高0.8dB的动态。但超过10min的获得取时间对信噪比的改善并不大。一般平均时间不超过3min。

(5)光纤参数: 光纤参数的设置包括折射率n和后向散射系数n和后向散射系数η的设置。折射率参数与距离测量有关,后向散射系数则影响反射与回波损耗的测量结果。这两个参数通常由光纤生产厂家给出。参数设置好后,OTDR即可发送光脉冲并接收由光纤链路散射和反射回来的光,对光电探测器的输出取样,得到OTDR曲线,对曲线进行分析即可了解光纤质量。 二、经验与技巧 1.光纤质量的简单判别: 正常情况下,OTDR测试的光线曲线主体(单盘或几盘光缆)斜率基本一致,若某一段斜率较大,则表明此段衰减较大;若曲线主体为不规则形状,斜率起伏较大,弯曲或呈弧状,则表明光纤质量严重劣化,不符合通信要求。 2.波长的选择和单双向测试: 1550波长测试距离更远,1550nm比1310nm光纤对弯曲更敏感,1550nm比1310nm单位长度衰减更小、1310nm比1550nm测的熔接或连接器损耗更高。在实际的光缆维护工作中一般对两种波长都进行测试、比较。对于正增益现象和超过距离线路均须进行双向测试分析计算,才能获得良好的测试结论。 3.接头清洁: 光纤活接头接入OTDR前,必须认真清洗,包括OTDR的输出接头和被测活接头,否则插入损耗太大、测量不可靠、曲线多噪音甚至使

相关文档
最新文档