自蔓延高温合成法技术研究

合集下载

自蔓延高温合成多孔陶瓷(Al2O3-TiB2)的研究

自蔓延高温合成多孔陶瓷(Al2O3-TiB2)的研究
料 提供 足够 的 能量 维 持 燃 烧 波 的 蔓 延 ; 2 节 能 , () 反
的气 孔 。利用 这 种结 构 可作 各 类 过 滤 器 、 化 剂 载 催
体 和膜 的支撑 体 等 , 国 民经 济 的 各部 门有 着 广 泛 在 的应用 【- ] 目前 , 备 多孔 陶瓷 的方 法 主 要 有 添 1 3。 制 加造 孔剂 工艺 、 泡 工 艺 、 机 泡 沫 浸 渍 工 艺 、 胶 发 有 溶
Ke r s HS;p r u ea c ;f b ia in p o e s i e y wo d :S o o s c r mis a r t r s ;f t r c o c l
1 前 言
多孔 陶 瓷是一 种 体 内含 有 大量 彼此 相通 或 闭合
瓷 的特 点是 : 1 原 料 纯 度 无 特 别 要 求 , () 只要 反 应 物
au n m wdra d a dt e ,ee lmiu p o e n d ii s r .A r esi p o sd,whc bet o to r tu tr n ofbiae v p o s rp e c s o ihi a l o cn rl esrcu ea d t a r t s o p c
a dt n ,t e p o e t r e t d t s l r tfo t esu y t a h ea in b t e h p n p r st n h d io i h r p ri we e t e .I i a n r m h t d h tt er lt e we n t eo e o i a d t e s e s e o o y
Ab t a t fe t ft e p ril i ft e au n m o e d i v s a d t e c mp c ig p e s r n t e p o u t sr c :E f cso h a t e s e o h l mi u p wd ra d t e n h o a t r s u e o h r d c c z i n

自蔓延高温合成技术的发展与应用

自蔓延高温合成技术的发展与应用

收稿日期:2005-04-20 作者简介:谭小桩(1970-),男,1989年毕业于北京科技大学金属材料与热处理专业,工程师. 文章编号:1009-9700(2005)05-0005-05自蔓延高温合成技术的发展与应用谭小桩1,贾光耀2(11广东省钢铁研究所,广东广州510640;21北京科技大学材料学院,北京100083)摘 要:自蔓延高温合成技术是20世纪后期诞生的一门新兴的前沿科学,在粉体合成及陶瓷涂层内衬的制备等方面充分显示其优越性.文章对自蔓延高温合成技术的概念、国内外基本情况进行了阐述,同时简要介绍了自蔓延高温合成的燃烧理论,对利用自蔓延合成技术进行粉体合成及陶瓷内衬钢管的应用研究等作了较为详尽的说明.关键词:自蔓延;氮化铝;陶瓷粉末中图分类号:T B 39 文献标识码:ADevelopment and application of self 2propagating high temperature synthesisT AN X iao 2zhuang 1,J I A G uang 2yao 21G uangdong Research Institute of Iron and S teel ,G uangzhou 510640;2Beijing University of Science and T echnology ,Beijing10083Abstract :Born in late 20th century as a frontier field of science ,self 2propagating high tem perature synthesis (SHS )has shown its merits in powder synthesis and manu facture of inner ceramic lining.This paper is concerned with the definition ,current status both at home and abroad ,and relevant combustion theories ,all inv olved in the SHS.The applications of the SHS technique in syn 2thetizing powders and manu facturing ceramic inner lining in steel pipes are reviewed in detail.K ey w ords :self 2propagating ;aluminum nitride ;ceramic powder1 引言 自蔓延高温合成(Self -Propagating High T em per 2ature Synthesis ,SHS ),也称燃烧合成(C ombustion Syn 2thesis ,CS ),它是一种利用化学反应自身放热使反应持续进行,最终合成所需材料或制品的新技术.任何化学物质的燃烧只要其结果是形成了有实际用途的凝聚态的产品或材料,都可被称为SHS 过程.在SHS 过程中,参与反应的物质可处于固态、液态或气态,但最终产物一般是固态.燃烧合成的基本要素.(1)利用化学反应自身放热,完全或部分不需外部热源;(2)通过快速自动波燃烧的自维持反应得到所需成分和结构的产物;(3)通过改变热的释放和传输速度来控制过程的速度、温度、转化率和产物的成分及结构.SHS 技术制备的产品纯度高、能耗低、工艺简单,用SHS 技术可以制备非平衡态、非化学计量比和功能梯度材料.其特点为:①是一种快速的合成过程;②具有节能效果;③可提高合成材料的纯度;④产物易形成多孔组织;⑤燃烧产物的组织具较大的离散性.因此,探索各种SHS 体系的燃烧合成规律,获得均匀组织也是保障SHS 产业化的关键.2 国内外研究现状1967年,苏联科学院化学物理研究所宏观动力学研究室的Borovinskaya ,Skior 和Merhanov 等人[1]在研究钛和硼的混合粉坯块的燃烧时,发现“固体火焰”,后又发现许多金属和非金属反应形成难熔化合物时都有强烈的放热反应;1972年,该所建立了年产10~12t 难熔化合物粉末(碳化钛、二硼化钛、氮化硼、硅化钼等)的SHS 中试装置;1973年,苏联开始将SHS 产物投入实际应用,并召开了全苏SHS 会总第146期2005年10月 南 方 金 属S OUTHERN MET A LS Sum.146October 2005议;1975年,苏联开始研究SHS 致密化技术,将SHS 和传统冶金及材料加工技术结合,在燃烧合成的同时进行热固结或加工成型,一步合成所需要的形状或尺寸的产品或涂层,并于1979年开始工业化生产M oSi 2粉末和加热元件;1984年,Merhanov 等提出结构宏观动力学的概念,研究燃烧合成过程中的化学转变、热交换、物质交换和结构转变及它们的关系;1987年,苏联成立成立SHS 研究中心,此前苏联几十个城市都有SHS 研究机构.据1991年的统计,前苏联有150多个单位,800多人发表了SHS 方面的论文.工业生产的SHS 产品有T iC 磨料、M oSi 2加热元件、耐火材料、形状记忆合金、硬质合金等,1996年开始规模生产铁氧体.以Merzhanov 院士为代表的俄罗斯学者为SHS 学科的建立和实际应用做出了杰出贡献.80年代初,苏联的SHS 成就引起外界的注意.Crider ,Franhouser 等人对苏联SHS 的介绍促进了外界对SHS 的了解.美国Mccauley ,H olt 等人的SHS 研究也得到了美国政府DARPA 计划的支持.Munir 和H olt [2~3]分别也对SHS 和反应烧结作了许多的研究工作.1988年在美国召开了“高温材料的燃烧合成和等离子合成”国际会议,Merhanov 应邀作了关于SHS 的长篇报告,促进了SHS 的国际交流.80年代初,日本的小田原修,小泉光惠和宫本钦生等开始SHS 研究.1987年日本成立燃烧合成研究协会.1990年,在日本召开了第一次日美燃烧合成讨论会,Merhanov 应邀作了报告.目前,日本研究的陶瓷内衬钢管和T iNi 形状记忆合金已投入实际应用.我国在70年代初期利用M o 2Si 的放热反应制备了M oSi 2粉末[4].1983年,利用超高反应烧结制备C BN 硬质合金复合片.80年代中后期,西北有色金属研究院、北京科技大学、南京电光源研究所、武汉工业大学、北京钢铁研究总院等单位相继展开了SHS 研究[5~9].Munir 教授和Borovinskaya 教授曾分别应邀在北京科技大学和北京有色研究总院介绍了SHS.“八五”期间,国家863计划新材料领域设立SHS 技术项目,支持SHS 研究开发.1994年,在武汉召开了第一届全国燃烧合成学术会议.我国的SHS 产业化成果也得到了国外同行的高度评价.我国研制的陶瓷复合钢管年产近万吨.近年,我国在SHS 领域加强了与国外的合作与交流,发表的SHS 方面的文章数目仅次于俄、美,与日本相近.我国台湾学者在SHS 粉末和不规则燃烧方面也取得了引人注目的科研成果.目前,从事SHS 研究和开发的国家已达30多个.3 自蔓延高温合成技术理论随着对自蔓延高温合成技术实验研究的不断深入和推广应用,其理论日臻完善,目前对自蔓延高温合成技术理论的研究主要体现在以下几方面:SHS 过程热力学、绝热燃烧温度、平衡成份的确定、点火理论及动力学等[10].311 SHS 过程热力学燃烧体系进行热力学分析是SHS 研究过程的基础.绝热燃烧温度是描述SHS 反应特征的最重要的热力学参量.它不仅可以作为判断反应能否自我维持的定性判据,并且还可以对燃烧反应产物的状态进行预测并且可为反应体系的成分设计提供依据.Merzhanov 等人提出以下经验判据.当T ad ≥1800K 时,SHS 反应才能自我持续完成.f (T ad )=2RT ad E T adT ab -T o+1式中:T ad 代表反应绝热温度;T 0代表初始温度;E 代表反应激活能.312 绝热燃烧温度绝热燃烧温度是指绝热条件下燃烧所能达到的最高温度,此时反应放出的热量全部用来加热生成产物.根据其与生成物的熔点之间的关系,对反应Σm i R i =Σn j P j ,其焓变可以表示为:H oT +H o298+∫T tr298C pdT +△Htr+∫T mI ′urC ′p dT +△H m+∫T BT mC ″pdT +△H B+∫T adT BCpdT式中C p C ′p C ″p Cp 分别为反应物的低温固态、高温固态、液态和气态的摩尔热容.(T tr :相变温度;△H tr :相变热;T m :熔点;△H m :熔化热;T B :沸点;△H B :汽化热)313 SHS 产物平衡成份的确定目前有两种计算SHS 产物平衡成份的算法,一种是简化算法,另一种是精确算法,在此基础上可以通过简化推出其它算法.首先设定SHS 产物的化学成份,其设定方法一般只考虑所关心的生成物,绝热燃烧温度也是以上述假定下的化学反应所放出的热量为基础进行的.这种算法对生成物较简单的SHS 体系,特别是生成6 南 方 金 属S OUTHERN MET A LS2005年第5期 物较单一的体系是比较有效的,但对于具有多元的SHS体系,因其产物也较复杂,仅假定所关心的产物相是不够的.要实现对燃烧产物组织结构的严格控制,就必须对整个燃烧合成体系进行详尽的热力学分析,从热力学平衡的角度出发确定产物相,这就需要精确算法.314 热点火理论自蔓延高温合成的燃烧过程是强烈的自维持放热反应的过程.从无机化学反应向稳定的自维持强烈放热反应状态的过渡过程为着火过程,相反,从强烈的放热反应向无反应状况的过渡称做熄火着火的方式很多,一般可分为下列三类着火方式:化学自燃.这类着火通常不需外界给以加热,而是在常温下依靠自身的化学反应发生的.热自燃.如果将燃烧和氧化剂混合物均匀地加热,当混合物加热到某一温度时的便着火,这时是在混合物的整个容积中着火,称为热自燃.点燃.用火花、电弧、热平板、钨丝等高温热源使混合物局部受到强烈的加热而先着火燃烧,随后,这部分已燃的火焰传播到整个反应的空间,这种着火方式称为点火.自蔓延高温合成过程的着火方式绝大多数情况下均为点火方式.该理论以SHS体系的热稳定性或热失稳为研究对象,研究化学反应的动力学过程,热传递过程,着火点火之间的联系.315 燃烧波蔓延作为一类特殊的化学反应,SHS反应区前沿,即燃烧波会随着反应的进行而不断推移.因此需要建立能反映这一特征的动力学参数.燃烧波速率则是这一动力学参数,它描述了燃烧波前的移动速率.在一定的假设条件下,如忽视对流、辐射散热等,以及对燃烧波结构作一定的约束之后,可以求出燃烧波速率υ的解析式.不同的约束条件会得到略有差别的解.大多数的SHS过程,燃烧前沿都存在一个光滑的表面(平面或很小的曲面),这一表面以恒定的速率一层一层传播,称之为稳态燃烧.有时在SHS过程中,燃烧波前沿的传播在时间和空间上都是不稳定的,称之为非稳态燃烧.非稳态燃烧分为振动式和螺旋式两种模式.影响燃烧波速率的因素很多,有化学成分、稀释剂含量、压坯相对密度、反应物尺寸、预热温度等.316 SHS的动力学燃烧合成动力学,主要研究燃烧波附近高温化学转变的速率等规律,燃烧波速率是目前人们普遍采用的一个SHS动力学参量,它直接反映了燃烧前沿的移动速度;另外有关的概念还有质量燃烧速率和能量释放率等.燃烧机制是指物质燃烧过程中所发生的化学反应,物理化学变化和物质传输过程规律以及这些变化之间的关系.燃烧机制可以归纳为以下4种类型:(1)固相扩散机制;(2)气体传输机制;(3)溶解析出机制;(4)气体渗透机制.目前所采用的研究方法包括:SHS过程的快淬保持及随后对试样的逐层分析;燃烧波前沿内物质相组成变化的动力学研究.研究的主要手段有:x射线分析,包括同步辐射,动态x射线衍射分析.其平衡态SHS模型见图1.图1 SHS的平衡态模型 图中a ko反应物浓度,a pb为生成物浓度,T o为反应物初始温度,T b为生成物温度,υ为燃烧波传播速度m/s,η为热释放率.以此模型为基础形成了燃烧合成的热力学、动力学以及燃烧合成的理论包括燃烧理论、燃烧化学及结构宏观动力学等.4 SHS技术的应用燃烧合成自问世以来,已开发出6大类相关技术和工艺[11,12],即燃烧合成制备粉体,燃烧合成烧结技术,燃烧合成致密化技术,燃烧合成熔铸技术,燃烧合成焊接技术及燃烧合成涂层技术.采用燃烧合成技术可以制备常规方法难以得到的结构陶瓷、梯度材料、超硬磨料、电子材料、涂层材料金属间化合物及复合材料等.目前,SHS粉末技术已成功地应用于商业生产,SHS-离心法制备钢管涂层也已成为一种逐渐成熟的工业技术在日本,中国等地得到推广应用.由SHS一步合成致密材料的研究也在7 总第146期谭小桩等:自蔓延高温合成技术的发展与应用进行中,致密化时的加压可在燃烧波蔓延时或蔓延后产物仍处于高温时进行.加压方式可以采用单向加压,等静压,准等静压及动态加载法.SHS粉末合成技术包含的工序类似于粉末冶金制粉.但两者又有区别,其区别主要在合成工序. SHS粉末合成技术的工艺流程如图2所示.图2 SHS粉末合成技术的工艺流程411 利用SHS工艺制备难熔化合物低成本与高性能是许多先进材料研究与应用领域普遍存在的问题[13],利用化学反应释放的高热量低温制备高熔点先进材料的燃烧合成熔化技术可合成许多难熔化合物粉体或复合材料.难熔化合物指碳化物、氮化物、硅化物和硼化物,既包括金属也包括非金属的碳、氮、硅、硼化合物.表1是利用SHS工艺所制备的部分难熔化合物材料.表1 SHS技术合成的部分材料碳化物氮化物硅化物硼化物T iCZ rC CrB2H fC T iN M oS i2H fB2NdC Z rC T aS i2NdB2S iC BN T i5S i3T aB2Cr3C2AiN Z rS i2T iB2B4C S i3N4LaB2WC T aN M oB2412 SHS制备陶瓷内衬钢管41211 基本原理很多高放热SHS体系的燃烧温度超过燃烧产物的熔点,燃烧后的产物是熔体.这种SHS体系与常规的冶金方法相结合,产生了SHS技术,利用SHS法得到熔体,用常规冶金法处理熔体[14,15].SHS冶金包括SHS铸造和SHS-离心技术.铝热反应由于其高放热而被广泛用于SHS冶金.其化学反应式为:(1) Fe2O3+Al→Fe+Al2O3+O(2) 2M oO3+4Al+C→2Al2O3+M o2C+Q41212 SHS-离心法在石油化工、电力及冶金行业,钢管的使用寿命成为人们最关心的问题,然而由于钢管的内径小、长度大,用其它的防腐处理方法很难实现,而用次工艺便可很容易的解决.它是利用铝、镁、硅、锆等粉末与金属氧化物的高放热化学反应,依靠化学反应潜热加热反应物—陶瓷与金属或陶瓷与陶瓷.由于反应温度超过了陶瓷及金属的熔点,整个体系处于熔融状态.在离心力的作用下,熔体按密度大小分层,大密度的组分与钢管基体结合,小密度的陶瓷组分涂覆在钢管的内壁,形成陶瓷涂层,见图3.目前,涂层内衬钢管的生产技术已相当成熟.图3 SHS-离心法原理41213 SHS-重力法比较直的钢管采用离心法是可以的,如果是弯管或其它不规则形状的钢管仍采用离心法显然是不可行的.经过工程技术研究人员的努力,利用重力原理使得在SHS过程中熔体涂覆到钢管的内壁.因铝热反应产生的高温使反应物处于熔融状态,钢管中在反应物料上形成了由金属Fe及陶瓷两相熔体组成的熔池,由于Fe的密度大于涂层相的密度,在重力作用下,两熔体分离,Fe沉积于熔池的底部,熔融的涂层相浮于熔池的上部.随着自蔓延反应的进行,液面逐渐下降,导致Fe的液相和陶瓷液相依次附与钢管内壁并结晶凝固,从而在钢管内壁形成连续均匀的涂层[9].其原理如图4所示.8南 方 金 属S OUTHERN MET A LS2005年第5期 图4 SHS-重力法原理5 结束语 经过材料科学工作者几十年的努力,自蔓延高温合成技术已成功应用于难熔化合物的制备,包括粉体的制备及复合材料的制备等,而采用SHS法制备的陶瓷内衬钢管以其良好的耐磨、耐蚀、耐高温性能和优异的抗机械冲击、抗热冲击性能,产品重量轻、不怕磕碰、价格低等优点在许多工程中也得到了广泛应用,使用寿命是现行管材的几倍几十倍.尽管自蔓延高温合成技术在材料的改性方面已得到了广泛的应用,在性能价格比方面有优越性,但是科学工作者不满于现状仍在继续完善SHS工艺,比如将SHS工艺与加压相结合,可获得更致密与基体结合更牢固的陶瓷涂层材料,以满足于防腐、耐磨、隔热等不同使用环境的要求[4,10,11,15].参考文献[1] Merzhanov A G.C ombustion and Plasma Synthesis of High- T em perature Materials[M].New Y ork:C VH Publ inc, 1990.[2] Munir Z A.Synthesis of High-T em perature Materials by Self-Propagating C ombustion Methods[J].Ceramic Bulletin, 1998,667(2):342~349.[3] H olt J B.The Fabrication of S iC,S i3N4and AlN by C om2bustion Synthesis[J].Ceramic C om ponents for engines, 1983,3(2):721~728.[4] 殷 声.燃烧合成[M].北京:冶金工业出版社,1999.[5] 唐华生.精密陶瓷自燃烧结法的研究与应用[J].兵器材料科学与工程,1990,8(2):8~13.[6] 许伯潘.静态自蔓延合成陶瓷涂层实验研究[J].武汉冶金工业大学学报,1998,21(2):166~169.[7] 傅正义.自蔓延高温合成(SHS)过程的点火模型与分析[J].硅酸盐学报,1994,22(5):447~452.[8] 张树格.材料合成与粉末冶金[J].粉末冶金技术,1992,10(4):301.[9] 赵忠民.重力分离SHS法制备陶瓷涂层内衬复合钢管的组织与性能[J].机械工程材料,1998,22(2):34~37.[10]许兴利,韩杰才,杜善义.自蔓延合成理论研究与进展(一)[J].功能材料,1996,27(6):223~227.[11]李文戈,周和平.燃烧合成陶瓷涂层技术的应用形状及发展前景[J].材料保护,2001,34(1):35~37. [12]殷 声.燃烧合成的发展状况.粉末冶金技术[J].2001,19(2):93~97.[13]薛群基,喇培清.低温制备高熔点先进材料的燃烧合成熔化技术[J].甘肃科技纵横,2002,12(3):28~31. [14]雷林海.材料合成新工艺———自蔓延高温合成[J].石油化工腐蚀与防护,1997,14(3):12~16.[15]殷 声.自蔓延高温合成法(SHS)的发展[J].粉末冶金技术,1992,10(3):223~227.标题新闻 广东省省委副书记、省长黄华华8月15日寄语韶钢,努力把韶钢建成资产或销售收入超千亿元的“航空母舰”,成为我省产业发展的排头兵.9 总第146期谭小桩等:自蔓延高温合成技术的发展与应用。

自蔓延高温合成生产工艺流程

自蔓延高温合成生产工艺流程

自蔓延高温合成生产工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!自蔓延高温合成生产工艺流程一、准备工作阶段在进行自蔓延高温合成之前,需要做好充分的准备工作。

自蔓延高温合成涂层技术及其研究进展

自蔓延高温合成涂层技术及其研究进展

涂层 ,是 近年 来发展 起来 的一 种制备 金属基 复合 材 料 的新 技术 。该工 艺将传 统的 铸造 和材料 表面复 合
强 化技术 相结 合 ,一 次成 型 ,在 铸造 过程 中,充分 利用 了浇 注及 凝 固时所产 生的 佘热 ,不 仅能够 降低
反应速度、燃烧温度 、反应转化率等条件 ,进而获得
T c n q eo HS Co tn n t s a c r g e s e h i u fS a i g a d IsRe e r h P o r s
Lu o g a e u a i i n iH nj n, n j n, ma u R F i LY
(.o ee f t i Si c ad hm cl ni en ;.col f n i n n ltd s h a n es f es ecs hn407) 1 lg o Ma rl c ne n C e i E g er g2Sho oE v omet S i , i U i rt G oc ne, a 304 C l ea e a ni r a u eC n v i yo i Wu
引燃 化学反 应 ,利 用放 出的 热使反 应持 续进行 ,同
自蔓延高温合成(e — rp g t g H g — e S l p o a ai ih tm— f n p rtr y tei,缩写S ) ,是利用化学反应 ea eS nh s u s HS技术 自身放热 ,依靠燃烧波 自我维持 ,并通过控 制 自维持
同时引 发原位 高温 化学反 应 ,从而在 铸件 表面 获得
的合 金元 素呈梯 度分 布 ,大大 提高 了铸件 表面 的硬 度 、耐磨 、耐 热 、耐 蚀等性 能 。这种 方法 与非铸 造 途径 的表 面强化方 法( 如粉 末冶金 、金属喷涂 、真 空 离子 溅射 、激光处理 等) 比,不需要 专用的处理设 相

自蔓延高温合成法合成金属陶瓷功能梯度材料研究进展

自蔓延高温合成法合成金属陶瓷功能梯度材料研究进展
g r a d e d ma t e r i a l s b y S HS a r e d i s c u s s e d, wh i c h a r e s y n t h e t i c ma t e r i a l ,i g n i t i o n p r o c e s s ,r e a c t i o n e n v i r o n me n t a n d s u p — p o r t me a s u r e s . Th e p r o b l e ms o f S HS c e r me t f u n c t i o n a l l y g r a d e d ma t e r i a l a r e me n t i o n e d i n t h e p e r i o d o f p r e p a r a t i o n ,
s y n t h e s i s a n d a f t e r - t r e a t me n t .At t h e s a me t i me ,t h e c e r me t f u n c t i o n a l l y g r a d e d ma t e r i a l s p r e p a r a t i o n t e c h n o l o g y c o m— b i n i n g S HS wi t h o t h e r c r a f t s ,SHS r e a c t i v e s p r a y t e c h n o l o g y, a r e i n t r o d u c e d , a n d t h e d e v e l o p me n t d i r e c t i o n o f t h e c e r —
TAN J u n ,Z HANG Yo n g , W U Di ,Z HAO J u n j u n

自蔓延高温合成法名词解释

自蔓延高温合成法名词解释

自蔓延高温合成法名词解释
嘿,朋友们!今天咱来聊聊自蔓延高温合成法。

这玩意儿可神奇啦,就好像是化学反应里的一场奇妙冒险!
你看啊,自蔓延高温合成法就像是一个特别厉害的魔法。

普通的化学反应就像是慢慢悠悠散步,而它呢,那简直就是一路狂奔!它利用化学反应自身放出的热量,让反应像着了火一样迅速蔓延开来,呼呼地就合成出了我们想要的东西。

这就好比是一场赛跑,自蔓延高温合成法就是那个一马当先、风驰电掣的选手,一下子就冲到了终点,把其他的方法都甩在了身后。

而且它还特别高效,不需要太多额外的能量输入,自己就能热热闹闹地搞起来。

咱想象一下,一堆材料放在那儿,然后“轰”的一下,反应就开始了,那场面多壮观呀!就像放烟花一样,瞬间绽放出绚丽的成果。

它能合成出各种各样的材料呢,从陶瓷到金属间化合物,啥都能搞定。

这可真是个万能的宝贝呀!而且呀,它的成本有时候还比较低呢,这可给我们省了不少钱。

比如说,我们要做一个特别的陶瓷零件,用其他方法可能得费好大的劲,还不一定能做好。

但用自蔓延高温合成法,嘿,说不定一下子就成功了!这不是很厉害吗?
它的应用范围也特别广,在材料科学领域那可是大显身手。

科研人员们可喜欢它啦,就像找到了一个宝贝工具。

总之呢,自蔓延高温合成法就像是化学反应世界里的一颗闪亮明星,给我们带来了很多惊喜和便利。

它让我们看到了科技的魅力,也让我们对未来的材料发展充满了期待。

不用它,那不是太可惜了吗?所以呀,大家可得好好了解了解它,说不定哪天就能派上大用场呢!。

溶胶凝胶基本原理与自蔓延溶胶凝胶方法简介.

溶胶凝胶基本原理与自蔓延溶胶凝胶方法简介.

结语
溶胶—凝胶技术经过半个多世纪的发展 ,无论在基础理论研 究,还是实际应用研究方面,都已可谓硕果累累。但是,在这两 方面仍然还有大量的工作需要进行。 在基础理论研究工作中,需要从胶体化学、结构化学和量子化 学的角度对溶胶—凝胶技术进行更深入的研究,以期更加清晰地 描述溶胶—凝胶过程的化学与结构变化的规律,为设计和剪裁特 定性能和形貌的材料提供理论依据。 在应用研究方面,虽然溶胶—凝胶技术有诸多优点:前驱 体溶 液化学均匀性好, 凝胶热处理温度低,烧结性 能好,粉体纯度 高,颗粒细,反应过程易于控制,设备简单 ,操作方便。但同时 也存在干燥收缩大,金属醇盐价格昂贵, 有机物对健康的损害, 工业化生 产的难度等缺点。因此今后溶胶—凝胶技术应用研 究 应着眼于克服这些缺点,而突出优点,使溶胶—凝胶技术更好地 服务于材料科学的发展。 总而言 之,溶胶—凝胶技术尚有一个广阔的空间等待研究 者 们去开发。
5 干燥
在凝胶化的最后阶段,水和有机溶剂不断蒸发,固态基 质的体积逐渐缩小。当内部液体在超临界状态下蒸发时, 终产物为气凝胶。
6 烧结
烧结是指在高表面能的作用下, 使凝胶内部孔度缩小的 致密化过程。由于凝胶内部的固/液界面面积很大,故可 在相对较低的温度下(<1000 ℃)进行烧结。
自蔓延溶胶凝胶法
基本反应原理(以硝酸盐与柠檬酸体系为例)
硝酸盐与柠檬酸反应后,形成的凝胶在加热时,发生氧化还原发应,其 中NO3-提供氧化气氛,COO-作为燃料,处于凝胶结构中的NO3-和COO-在 一定温度下发生“原位”氧化—还原反应,从而发生自蔓延燃烧。自蔓延 燃烧的现象是:在某温度下,凝胶在某处点燃,燃烧迅速地向四周推进, 直到所有的干凝胶燃烧完,形成疏松的粉末。
自蔓延溶胶凝胶法是利用硝酸盐与一些有机燃料(如柠 檬酸、尿素、氨基乙酸)的氧化还原放热反应,引起自蔓 延燃烧现象的一种方法。即采用溶胶凝胶法,制得前体,

自蔓延高温合成氮化硅多孔陶瓷的研究进展

自蔓延高温合成氮化硅多孔陶瓷的研究进展

自蔓延高温合成氮化硅多孔陶瓷的研究进展张叶;曾宇平【期刊名称】《无机材料学报》【年(卷),期】2022(37)8【摘要】多孔氮化硅陶瓷兼具有高气孔率和陶瓷的优异性能,在吸声减震、过滤等领域具有非常广泛的应用。

然而,目前常规的制备方法如气压/常压烧结、反应烧结-重烧结以及碳热还原烧结存在烧结时间长、能耗高、设备要求高等不足,导致多孔Si_(3)N_(4)陶瓷的制备成本居高不下。

因此,探索新的快速、低成本的制备方法具有重要意义。

近年来,采用自蔓延高温合成法直接制备多孔氮化硅陶瓷展现出巨大潜力,其可以利用Si粉氮化的剧烈放热同时完成多孔氮化硅陶瓷的烧结。

本文综述了自蔓延反应的引发以及所制备多孔氮化硅陶瓷的微观形貌、力学性能和可靠性。

通过组分设计和工艺优化,可以制备得到氮化完全、晶粒发育良好、力学性能与可靠性优异的多孔氮化硅陶瓷。

此外还综述了自蔓延合成多孔Si_(3)N_(4)陶瓷晶界相性质与高温力学性能之间的关系,最后展望了自蔓延高温合成多孔Si_(3)N_(4)陶瓷的发展方向。

【总页数】12页(P853-864)【作者】张叶;曾宇平【作者单位】中国科学院上海硅酸盐研究所高性能陶瓷和超微结构国家重点实验室;中国科学院大学材料科学与光电工程中心【正文语种】中文【中图分类】TQ174【相关文献】1.自蔓延高温合成法合成金属陶瓷功能梯度材料研究进展2.自蔓延高温合成Al2O3-TiO—TiO2复相多孔陶瓷3.自蔓延高温合成Al2O3-TiB2多孔陶瓷4.自蔓延高温合成陶瓷内衬复合管的研究进展5.自蔓延高温合成多孔陶瓷(Al_2O_3-TiB_2)的研究因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自蔓延高温合成法技术研究 陈起龙 (南通大学机械工程学院,江苏南通,226000) 【摘 要】对自蔓延高温合成技术(SHS)的最新研究动态进行了介绍,指出SHS技术作为一种制备和合成材料的新技术,以其高效、节能、经济、材料性能优良等优点,现已成为制备新材料的崭新途径,并提出自蔓延高温合成技术今后的研究方向。

【关键词】自蔓延高温合成;新材料;结构材料;功能材料;应用研究 中图分类号: TB39; TG148 文献标识码: A Research Situation of Self-propagating H igh-temperature Synthesis CHEN Qi-long (Nantong university college in mechanical engineering ,Jiangsu nantong ,226000) Abstract:The progress on current research of self-propagating high-temperature synthesis is introduced. Due to some advantages, such as high performance, energy-saving, low cost and so on, the SHS process has already been a newmethod of fabricating advancedmaterials and it is suggested that the development ofself-propagating high-temperature synthesis and technology lies in the investigation and developmentofnewmaterials fabricated by the SHS process. Key words:Self-propagating high-temperature synthesis; New materials; Structural materials; Functional materials; Application research

1. 自蔓延高温合成技术原理 自蔓延高温合成(Self-propagating High-tem-perature Synthesis,缩写SHS)技术,是利用化学反应自身放热,依靠燃烧波自我维持,并通过控制自维持反应速度、燃烧温度、反应转化率等条件,进而获得具有指定成分结构产物的一种新型材料制备技术。自1967年前苏联的Merzhanov[1]等发明后,受到物理、化工、冶金、材料与械工程等领域界的日益重视和广泛应用,成为合成、制造和加工处理材料的新技术。 迄今为止,用 SHS 制备的材料已涉及碳化物、氮化物、硼化物、氧化物及复合氧化物、超导体、合金等许多领域,带动了相应的各种新型 SHS 技术的产生和发展,其中具有代表性的技术有以下五种: (1) SHS 制粉技术。通常将压坯至于惰性气氛的反应容器中,通过镁热还原等自蔓延反应方式得到疏松的烧结块体。若产物为单一物相,可采用机械粉碎法获得烧结粉体( 如 TiB2的合成) ; 若产物含反应引入杂质,则可采用湿化学法去除( 如用镁热还原 ZrO2制备 ZrC,除去产物中 MgO) 。 (2) SES 熔铸技术。高放热量的 SHS 反应体系在自蔓延过程中产生的高温若超过产物熔点则形成熔体。采用冶金工艺处理熔体,就可以得到铸件,这一方向被称为 SHS 冶金。它包括两个步骤: ①SHS法得到熔体; ②冶金法处理熔体[2]。 (3) SHS 焊接技术。利用 SHS 反应的放热及其产物来焊接受焊母材的技术。SHS 焊接可用来焊接同种和异型的难熔金属、耐热材料、耐蚀氧化物陶瓷或非氧化物陶瓷和金属间化合物。SHS 焊接工艺要求首先根据母材或接头的性能要求配制粉末焊料。 可采用数层混合粉末构成FGM 焊料。在原料中引入起增强作用的添加剂降低燃烧温度的惰性添加剂 ,以构成复合焊料及控制高温对母材、增强相的热损伤。然后加热引发 SHS,同时施加一定的压力进行焊接[3]。 (4) 反应爆炸固结技术。SHS 反应热冲击波做功在材料中产生大量缺陷,并能引起大幅度的塑性变形,促进物质流动扩散,使反应物产生紧密接触。 (5) “化学炉”技术。采用自蔓延反应体系作为外部热源,利用其超快的升温速率及外加的高机械压力,在低。于坯体物质熔点的温度下大幅提升致密度。一般反应速度可从 0. 1cm/s 到 90cm/s,通过添加稀释剂可以调节燃烧温度,从 1000 K 到 6000 K[4]。

2. 自蔓延高温合成国内外研究成果 2.1 纳米材料的制备 1984年Gleitel首次制得纳米材料并对其进行系统研究,各国对采用SHS工艺制备纳米粉末及纳米结构涂层的可行性进行了广泛的讨论,并且在实验中已制得纳米材料,如通过对原材料进行高能磨活化处理,采用SHS工艺进行合成,制备出NbAl3纳米材料;或直接通过机械合金化诱发自蔓延反应(MASHS),或称SHS反应球磨[5],如周兰章[6]等进行了NiAl/TiC纳米材料的机械诱发自蔓延合成方面的研究;或采用卤化物为原料,直接采用SHS工艺制备TiB2-ZrB2,其晶粒尺寸<0. 1μm。采用同样工艺可制得Ti、Zr、Hf、W、Mo、Nb、Ta、Cr等纳米硅化物及碳化物陶瓷材料。美国Munir等把高能球磨活化处理后的原料置于一个石墨模内,当电流通过模子加热引燃SHS反应后,立刻加压制得密度在95%以上的Fe/Al、Mo/Si纳米材料[7]。 溶胶-凝胶法是近些年发展起来的用于制备纳米材料的一种新工艺,而溶胶-凝胶法与自蔓延高温合成法相结合的自蔓延溶胶-凝胶法更是最近发展起来的一种新的制备纳米复合粉末的方法[8],该法充分利用了自蔓延一次合成和溶胶-凝胶法的优势,制备的粉末不需要再进行高温热处理。清华大学[9-10]以金属硝酸盐和柠檬酸为原料,用溶胶-凝胶法与自燃烧方法相结合制备了NiZnCu铁氧体复合粉末,其颗粒的形状为规则的多边形,颗粒大小均匀,颗粒的磁性能良好。中南大学郭睿倩[11]等人将溶胶-凝胶法与自蔓延高温合成法相结合制备了稀土 镧掺杂钡铁氧体BaLaxFe12-xO9超微粉末,粉末粒径小于300 nm,其中La3+的加入可以明显改变BaFe12O19的电磁性能。

2.2 氧化物功能材料的研究 以往对SHS工艺的研究偏重于非氧化物陶瓷或金属结构材料,最近又对氧化物功能材料的制备加强了研究,尤其是关于铁氧体的自蔓延高温合成。利用自蔓延高温合成技术来合成磁性材料是SHS技术发展的一个新的方向[12]。P·B·Avakyan利用金属氧化物和铁粉氧化烧结了软磁(MnZn、NiZn)铁氧体材料,这类氧化物可被用作低频扼流器及磁头的耐磨磁芯;同时,还利用SHS技术合成具有钙钛矿结构的抗冲击压电陶瓷(Pb0·93Sr0·07)(Zr0·52Ti0·48)O3和(Ba0·24P0·75Sr0·01)(Ti0·47Zr0·53)O3;对天然气、汽油、丙酮和乙烯醇等气体敏感的BiFeO3、BiFe2O9和Bi2V2O11陶瓷;以及对水蒸汽敏感的NaBiTi2O6、Na0·56Bi4·5Ti4O15, Bi3TiNbO9, BiTiTaO6, PbBiTa2O9,PbBiNb2O9等陶瓷。这些陶瓷可应用于传感器行业。M·V·Kuznetsov[13]用Li2O2、Na2O2、KO2、Fe2O3和Fe粉的混合物在空气中成功氧化烧结了具有尖晶石结构的AxFeyOz,A为碱金属。这类软磁材料可用作微波的波管材料,并且成功合成出了稀土的铬酸盐,通式为ReCr2O4。其它一些物质如过渡金属的复杂氧化物(CuCr2O4、ZnCr2O4等)也可以用此法合成。V·B·Balashovjul利用SHS技术合成Ni3B,其导电率只有0·05Ω/m2,可替代银或银铂合金,用在集成电路中,以及用作精密电阻CrSi2, FeSi2,Mn2Si2,MoSi2,Ta2Si等电子材料。武汉理工大学陈志君等采用自蔓延高温合成技术对类钙钛矿巨磁电阻材料进行了系统的合成工艺研究成功地制备出了具有单一相的复杂金属氧化物材料La1xsrxMnO3[14]。 2.3 环保材料 目前,自蔓延技术在环保材料制备方面的应用也逐渐增多,主要有饮用水净化过滤材料制备、工业废料的处理和核废料的处理方面等方面。 2.3.1 饮用水净化过滤材料 俄国Borovinskaya等报道了采用SHS工艺生产饮用水多孔过滤膜片。饮用水经过滤后,可净化各种金属杂质如Fe、Mn、Ba、Ce、Zn、Cu、Pb、U等,使水中分子-离子杂质的含量非常低,膜片还能有效降低水中溶解的丙酮、四氯代甲烷、三溴甲基氯代甲烷、甲苯、石碳酸、苯氧醋酸等有机物含量,此外膜片的各项性能均优于采用常规工艺生产的产品。 2.3.2 工业废料的处理 铝铸造业产生大量的废渣。由单晶硅制备硅芯片的半导体业产生含有抛光剂Al2O3、锆英石及用于污水沉降的氧化铁和CaO等废液和60%以上的残料,这些残渣废液都会造成严重的环境污染。日本的Miyamoto利用这些残渣及残料,通过SHS工艺制备出Sialon基陶瓷材料,“变废为宝”。此陶瓷材料中除含有Sialon外,还含有ZrO2及铁的硅化物。该材料的烧结制品的抗弯强度达150 MPa,如果在合成前用盐酸除去原料中的氧化铁及CaO,则合成后制品的抗弯强度可达270MPa,并在1 200℃下仍有良好的抗氧化性能。 电解锌厂排放的大量毒性较大的固体废料对环境造成严重的污染。这些废料经加入一定量合成剂后,采用SHS工艺可以合成出两种产品,即含重金属的硅铝酸盐非晶玻璃结构产品和经煅烧后返入炼锌炉中的再用物料。

2.4 SHS催化剂与载体 SHS方法极易合成过渡金属碳化物、硼化物、氮化物以及金属间化合物等。SHS过程反应速度快、温度梯度高,使生成物晶体点阵具有高密度的缺陷;同时SHS易生成多孔骨架结构,使生成物具有大的表面积,吸附和催化的发生位置在催化剂表面,使其具有高活性。 Grigoryan[15]利用SHS技术合成含有Y-Ba-Cu-O及过渡金属稀土元素的复杂氧化物,在CH4转化为C2H4过程中显示了极高的活性和稳定性,且催化过程简单,对环境污染小。Gladun[16]利用SHS生产的具有骨架结构的NiAl金属间化合物,其氧化活性是常规Olefin催化剂的2~5倍。Y-Ba-Cu-O除可用作催化剂外,还可作超导材料。Merzhanov、Zenin、Yoshinari等对SHS技术合成超导材料Y-Ba-Cu-O系的步骤和机理研究较多[17]。另外, Yoshinari、Morozov等还研究了LiNbO3、Bi1.6P0·4Sr2,Ca2Cu3Ox,Ta-Ba-Ca-O系高超导材料.

相关文档
最新文档