热电偶测温范围及优缺点比较

合集下载

热电偶温差电动势的测量 说明书

热电偶温差电动势的测量 说明书

测量数据可显示,SV 显示器交替显示设定值/提示符(3sec/0.5sec) 设定值 设定值 ALM1 ALM2
四、有关参数的设定及功能的解释: 1.仪表的自整定功能(AT) : (1)在内部参数层中将自整定功能(AT)设置成 ON 后,按 SET 键即启动自整定功能, (自整定 系统的 P、I、D 参数) ,仪表返回至正常 PV/SV 显示,而面板上 AT 灯开始闪烁、同时(SV)窗口交替 显示设定的温度值和自整定符号“AT ”。 (2)注意:在将自整定功能(AT)设置成 ON 后,在整个自整定过程中,系统不允许修改任何值 (包括加热上限温度的设定) ,若要修改参数先将(AT)设置成 OFF。 (3)低 SV 值的自整定:为防止自整的超调太大,可以在低于设定值 SV 的某一个值处进行自整 定,这个低于的量由仪表量程 P—SH(高满度显示值设定)/P—SL(低满度显示值设定)和 USTP(低 PV 值自整定修正)共同决定;USPT 值是量程的百分比,在 0—400 度量程下,如果 USPT=2.0 那么实 际降低的值为(400-0)×2.0%=8,也就是说在自整定状态下值将降低 8℃。 2.手动/自动无扰动切换:在 PV/SV 显示状态下,按⊳键一下,SV 显示器千位数上出现 H,后三
E x ≈ α (t − t0 )
图(1)
图(2)
式中 α 称为温差电系数,对于不同金属组成的热电偶, α 是不同的,其数值上等于两接点温度差为 10C 时所产生的电动势。 为了测量温差电动势,就需要在图(1)的回路中接入电位差计,但测量仪器的引入不能影响热电 偶原来的性质,例如不影响它在一定的温差 t − t0 下应有的电动势 E x 值。 要做到这一点, 实验时应保证一定的条件。 根据伏打定律 , 即在 A、B 两种金属之间插入第三种金属 C 时,若它与 A、B 的两 连接点处于同一温度 t0 ,如图(2) ,则该闭合回路的温差电动势 与上述只有 A、B 两种金属组成回路时的数值完全相同。所以, 我们把 A、B 两根不同化学成份的金属丝的一端焊在一起,构成 热电偶的热端 (工作端) 。 将另两端各与铜引线 (即第三种金属 C) 焊接,构成两个同温度( t0 )的冷端(自由端) 。铜引线与电位 差计相连,这样就组成一个热电偶温度计,如图(3)所示。通 常将冷端置于冰水混合物中,保持 t0 = 0 � C ,将热端置于待测温 图(3) 度处,即可测得相应的温差电动势,再根据事先校正好的曲线或 数据来求出温度 t 。 【实验仪器】 UJ-31 型电位差计,DHBC-1 型标准电势与待测低电势 (或 BC9a 标 准 电 池 ) , AZ19 型直流检流计, DHT-2 型多档恒流控温实验仪等。 【实验内容】 1.熟悉 UJ-31 型电位差计各旋钮的功能,掌握测量电动势的基本要领。

热电偶和热电阻热敏电阻的区别

热电偶和热电阻热敏电阻的区别

热电偶和热电阻、热敏电阻的区别热电偶热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。

其优点是:①测量精度高。

因热电偶直接与被测对象接触,不受中间介质的影响。

②测量范围广。

常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

③构造简单,使用方便。

热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所示。

当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。

热电偶就是利用这一效应来工作的。

2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。

所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。

非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。

标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。

(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。

3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。

热电偶种类与型号的区别

热电偶种类与型号的区别

热电偶种类与型号的区别热电偶是一种常见的温度传感器,常用于测量各种物体的温度。

在市场上,存在多种不同种类和型号的热电偶,本文将介绍它们之间的区别。

热电偶的种类1.K型热电偶(___):K型热电偶是最常用的热电偶之一,适用于测量温度范围为-200°C至+1350°C的物体。

它具有较高的测量精度和稳定性,在许多应用领域中广泛使用。

2.J型热电偶(铁/铜镍热电偶):J型热电偶适用于较低的温度范围,通常为-40°C至+750°C之间。

它在许多低温应用中表现优越,但在较高温度下的精度可能稍低。

3.T型热电偶(铜/铜镍热电偶):T型热电偶适用于更低的温度范围,通常为-200°C至+350°C之间。

它具有良好的稳定性和较高的灵敏度,可用于许多冷却和低温应用中。

4.E型热电偶(镍铬/铜镍热电偶):E型热电偶适用于温度范围为-200°C至+900°C。

它具有较高的测量精度和一定程度的耐腐蚀性,在某些化学和工业环境中广泛使用。

热电偶的型号对于每种热电偶种类,存在不同的型号和规格,以满足各种应用需求。

具体的型号区别取决于以下几个因素:1.热电偶材料:不同的热电偶材料(如镍铬、铁、铜等)具有不同的特性,包括温度范围、灵敏度和耐腐蚀性。

不同型号的热电偶通常使用不同的材料组合,以满足具体应用的要求。

2.外壳材料:热电偶的外壳材料可以是金属或陶瓷,不同的材料在耐高温、耐腐蚀等方面有所区别。

适合不同工作环境需求的外壳材料将使热电偶更耐用和精确。

3.线缆类型:热电偶的线缆质量和类型对信号传输和干扰抗性至关重要。

不同型号的热电偶通常使用不同材料的线缆,并采用特定的环境屏蔽和绝缘技术,以提高信号传输的精确性。

总之,热电偶的种类和型号选择应根据具体应用的温度范围、性能要求和环境条件来确定。

通过了解不同热电偶种类的特点和各自的型号区别,您可以选择最适合您应用需求的热电偶。

热电偶测温性能实验报告

热电偶测温性能实验报告

热电偶测温性能实验报告一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理(1)概况:热电偶是一种感温元件,热电偶的工作原理这就要从热电偶测温原理说起。

一次仪表,直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质温度。

热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在Seebeck电动势—热电动势,这就是所谓的塞贝克效应。

两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。

根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到不同的热电偶具有不同的分度表。

热电偶回路中接入第三种金属资料时,只要该资料两个接点的温度相同,热电偶所产生的热电势将坚持不变,即不受第三种金属接入回路中的影响。

因此,热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。

B热电偶工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,回路中就会发生电动势,这种现象称为热电效应,而这种电动势称为热电势。

热电偶就是利用这种原理进行温度丈量的其中,直接用作丈量介质温度的一端叫做工作端(也称为丈量端)另一端叫做冷端(也称为弥补端)冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。

热电偶实际上是一种能量转换器,将热能转换为电能,用所产生的热电势测量温度(2)分类:(S型热电偶)铂铑10-铂热电偶铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。

偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。

该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。

S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。

热电偶的测温原理

热电偶的测温原理

热电偶的测温原理摘要:通过对金属的接触电动势和温差电动势来进行简化的数学推导,从根源来阐述热电偶的工作原理,并通过实验来简化。

从而系统地解释了热电偶的输入量(温度)和输出量(电流,电压)的线性关系。

以及热电偶的选型要求,和材料性能。

关键词:热电效应、电动势、选型、材料;0 引言温度测量是通过某些测温物质的各种物理性能变化,例如固体的尺寸,密度,硬度粘度,电导率,热辐射等的变化来判断被测物体的温度。

在许多测量方法中,热电偶测温的应用为最广泛之一。

主要优点:①接触式测温,准确度较高;②结构简单,体积小,安装方便;③测量范围广:-150ºC----1600ºC,采用特殊材料时可达2800ºC。

④热容量小,响应速度快,热电极不受形状限制1热电偶传感器的工作原理1.1 热电效应如图1所示,由两种导体A,B 构成一个闭合回路,使两端结点处于不同温度下。

回路中便产生热电势和电流。

这种物理现象称为热电效应。

图 1定义:导体A,B为热电极;测温结点处在T温度场下为测量端,或工作端,热端。

结点处在To温度场下为参考端,或自由端,冷端。

1.2 热电偶中的电势1.2.1接触电势(伯尔帖电势)互相接触的两种金属导体内部因自由电子密度不同,当接触时两种导体在接触界面上会发生电子扩散。

电子扩散的速率与自由电子的密度及金属所处的温度呈正比。

假定,金属A 的自由电子的密度为NA,金属B 的自由电子的密度为NB. 自由电子的密度大的向自由电子的密度小的方向扩散。

失去电子一方带正电,得到电子一方带负电。

这种扩散运动逐渐在界面上建立电势,类似于势垒,它又阻碍自由电子进一步扩散,产生了一个动态平衡。

图 2接触电势的关系式:图 3K:波尔兹曼常数 J/KT:接触界面处的温度e:电子电荷量 C NA,NB 分别为金属A,B 的自由电子密度.对于To 结点有:回路总接触电势:BAAB N N e kT T e ln)(=•当T=To,或A ,B 导体同质材料时,则回路总接触电势为零。

热电偶介绍

热电偶介绍

K是热电偶的分度号表示可以检测0-1200的温度范围。

还有S分度号的可以检测0-1600的分度号。

1检出(测)元件热电偶是工业上最常用的温度检测元件之一。

必须配二次仪表,其优点是:①测量精度高。

因热电偶直接与被测对象接触,不受中间介质的影响。

②测量范围广。

常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

③构造简单,使用方便。

热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

2根据温度测量范围及精度,选用相应分度号的热电偶、使用温度在1300~1800℃,要求精度又比较高时,一般选用B型热电偶;要求精度不高,气氛又允许可用钨铼热电偶,高于1800℃一般选用钨铼热电偶;使用温度在1000~1300℃要求精度又比较高可用S型热电偶和N型热电偶;在1000℃以下一般用K型热电偶和N型热电偶,低于400℃一般用E型热电偶;250℃下以及负温测量一般用T型电偶,在低温时T型热电偶稳定而且精度高。

(K型热电偶)镍铬-镍硅热电偶镍铬-镍硅热电偶(K型热电偶)是目前用量最大的廉金属热电偶,其用量为其他热电偶的总和。

正极(KP)的名义化学成分为:Ni:Cr=90:10,负极(KN)的名义化学成分为:Ni:Si=97:3,其使用温度为-200~1300℃。

K型热电偶具有线性度好,热电动势较大,灵敏度高,稳定性和均匀性较好,抗氧化性能强,价格便宜等优点,能用于氧化性惰性气氛中。

广泛为用户所采用。

K型热电偶不能直接在高温下用于硫,还原性或还原,氧化交替的气氛中和真空中,也不推荐用于弱氧化气氛中。

镍铬-镍硅热电偶材料性能参数名称镍铬合金丝镍硅合金丝密度g/cm3 8.5 8.620℃时的电阻率μ &#8486;&#8226;cm 70.6 29.40~1200℃平均电阻温度系数1/℃ 2.9×10-3 1.6×10-3熔点 1427 1399k热电偶有磁性那一极为负极,记住<慈父>这个词,就不忘了.品牌:胜利,V ICT OR,VC 型号:VC-01,VC01,VC 01,VICTOR 01,VICTOR-01,VICTOR01 测量范围:模拟八种热电偶(R/S/K/E/J/T/B/N)(kPa)精度等级:DCV输出(100mV/1000mV),电阻模拟输出(400Ω)环境温度:电阻类型过程仪表的校验(℃)装箱数:1胜利过程仪表校验仪VICTOR 01温度校验仪特点:模拟八种热电偶(R/S/K/E/J/T/B/N)和两种热电阻(Pt100/ Cu50)输出DCV输出(100mV/1000mV),电阻模拟输出(400Ω)mV、电阻输出功能可完成额外的温度及mV、电阻类型过程仪表的校验可摄氏和华氏温度显示5位LCD大字符显示,简便的键盘操作小巧、坚固、可靠,适合现场使用面板自动校准价格低廉技|术|指|标|输出功能。

热电偶热电阻测温应用原理

热电偶热电阻测温应用原理

热电偶热电阻测温应用原理热电偶测温的应用原理热电偶是工业上最常用的温度检测元件之一。

其优点是:①测量精度高。

因热电偶直接与被测对象接触,不受中间介质的影响。

②测量范围广。

常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

③构造简单,使用方便。

热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

1.热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。

当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。

热电偶就是利用这一效应来工作的。

2.热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。

所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。

非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。

标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。

(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固;②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。

3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。

必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。

s型热电偶的测温范围

s型热电偶的测温范围

s型热电偶的测温范围(原创版)目录一、简介二、S 型热电偶的测温范围1.适用范围2.优点3.缺点三、T 型热电偶的测温范围1.适用范围2.优点3.缺点四、热电偶的选用原则五、结论正文一、简介热电偶是一种常见的温度测量仪表,它主要由热电极和连接导线组成。

热电偶的工作原理是基于热电效应,即在温度变化时,热电极之间的热电动势会发生变化。

通过测量这个热电动势,可以间接地测量出被测物体的温度。

热电偶具有结构简单、安装方便、测量范围广等优点,因此在工业生产中得到了广泛的应用。

二、S 型热电偶的测温范围1.适用范围S 型热电偶,又称单铂铑热电偶,其分度号为 S 分度号。

它主要适用于 0~1600℃的介质温度测量,是贵金属热电偶的一个范畴。

S 型热电偶在焦化厂、钢厂等高温使用的场合表现良好。

2.优点S 型热电偶在热电偶系列中具有准确度最高、稳定性最好、测温温区宽、使用寿命长等优点。

它的物理、化学性能良好,热电势稳定性及在高温下抗氧化性能好。

3.缺点S 型热电偶的不足之处是热电势、热电势率较小,灵敏度低,高温下机械强度下降。

三、T 型热电偶的测温范围1.适用范围T 型热电偶的最大可设温度范围为 -200~400,不过大多数仪表是-200~350。

T 型热电偶具有线性度好、热电动势较大、灵敏度较高、温度近似线性和复制性好、传热快、稳定性和均匀性较好等优点。

特别在-200~0 温区内使用,稳定性更好,年稳定性可小于 3V,经低温检定可作为二等标准进行低温量值传递。

2.优点T 型热电偶具有线性度好、热电动势较大、灵敏度较高、温度近似线性和复制性好、传热快、稳定性和均匀性较好等优点。

特别在 -200~0 温区内使用,稳定性更好。

3.缺点T 型热电偶的正极铜在高温下抗氧化性能差,故使用温度上限受到限制。

四、热电偶的选用原则在选择热电偶时,应根据被测物体的温度范围、测量精度要求、使用环境等因素进行综合考虑。

同时,应选择合适的热电偶规格和保护套管,以保证热电偶的正常工作和使用寿命。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S型热电偶:铂铑10-铂热电偶,温度范围0~1600℃,旧分度号LB-3。优点:
耐热性、安定性、再现性良好及较优越的精确度;耐氧化、耐腐浊性良好;可以
做为标准使用。缺点:热电动势值小;在还元性气体环境较脆弱(特别是氢、金
属蒸气);补偿导线误差大;价格高昂。
R型热电偶:铂铑13-铂热电偶,温度范围0~1600℃。优点:耐热性、安定性、
再现性良好及较优越的精确度;耐氧化、耐腐浊性良好;可以做为标准使用。缺
点:热电动势值小;在还元性气体环境较脆弱(特别是氢、金属蒸气);补偿导线
误差大;价格高昂。
B型热电偶:铂铑30-铂铑6热电偶,温度范围600~1800℃,旧分度号LL-2,
自由端在0~50℃内可以不用补偿导线。优点:适用1000℃以上至1800℃;在
常温环境下热电动势非常小,不需补偿导线;耐氧化、耐腐浊性良好;耐热性与
机械强度较R型优良。缺点:在中低温域之热电动势极小,600℃以下测定温度
不准确;热电动势值小;热电动势之直线性不佳;价格高昂。
K型热电偶:镍铬-镍硅热电偶、镍铬-镍铝热电偶,温度范围-200~1300℃。优
点:热电动势之直线性良好;1000℃以下耐氧化性良好;在金属热电偶中安定性
属良好。缺点:不适用于还元性气体环境,特别是一氧化碳、二氧化硫、硫化氢
等气体;热电动势与贵金属热电偶相比较经时变化较大;受短范围排序之影响会
产生误差。
N型热电偶:镍铬硅--镍硅热电偶,温度范围-270~1300℃。优点:热电动势之
直线性良好;1200℃以下耐氧化性良好;为K型之改良型,克服了K 型热电偶
在300~500℃之间由于镍铬合金的晶格短程有序而引起的热电动势不稳定和在
800℃左右镍铬合金发生择优氧化而造成的热电动势不稳定的不足。受Green
Rot(高温腐蚀性)之影响较小,耐热温度较K型高。缺点:不适用于还元性气体
环境;热电动势与贵金属热电偶相比较经时变化较大。
E型热电偶:镍铬硅-康铜热电偶,温度范围-270~1000℃。优点:现有热电偶
中感度最佳者;与J热电偶相比耐热性良好;两脚不具磁性;适于氧化性气体环
境;价格低廉。缺点:不适用于还元性气体环境;稍具履历现象。
J型热电偶:铁--康铜热电偶,温度范围-210~1200℃。优点:可使用于还元性
气体环境;热电动势较K热电偶大20%;价格较便宜,适用于中温区域。缺点:
(+)脚易生锈;再现性不佳。
T型热电偶:铜-康铜热电偶,温度范围-270~400℃。优点:热电动势之直线性
良好;低温之特性良好;再现性良好、高精度;可使用于还元性气体环境。缺点:
使用温度限度低;(+)脚之铜易氧化;热传导误差大。

相关文档
最新文档